Journal Home > Volume 15 , Issue 8

Breast cancer is a common malignancy in women with disappointing prognosis especially the triple-negative subtype. Recently, nanomedicine becomes a promising therapeutic strategy for breast cancer, such as platinum nanoparticles (PtNPs). Despite the promising anticancer effects of PtNPs, the safety of PtNPs remains to be fully evaluated. Herein, a series of cell and animal experiments demonstrate that PtNPs facilitate breast cancer metastasis by damaging the vascular endothelial barrier. PtNPs disrupt endothelial cell proliferation, migration and tube-like structure formation, destruct endothelial adhesions junctions and induce endothelial barrier leakinessin vitro most likely by stimulating intracellular reactive oxygen species (ROS) generation and altering the expression and conformation of endothelial junctional proteins, thus promoting intravasation and extravasation of the implanted 4T1 breast cancer cells and leading to cancer metastasis in female BALB/c nude micein vivo. In addition, smaller PtNPs (5 nm) are more potent than larger PtNPs (70 nm) in exerting the above effects. The study provides the first evidence that PtNPs can promote breast cancer metastasis by damaging endothelial barrier. The unexpected detrimental effects of PtNPs should be considered in future nanomedicine designs for the treatment of breast cancer.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Platinum nanoparticles promote breast cancer cell metastasis by disrupting endothelial barrier and inducing intravasation and extravasation

Show Author's information De-Ping Wang1,§Jing Shen1,§Chuan-Yue Qin1Yong-Mei Li1Li-Juan Gao1Jian Zheng1Yan-Lin Feng1Zi Yan1Xin Zhou1,2( )Ji-Min Cao1( )
Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
Department of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China

§ De-Ping Wang and Jing Shen contributed equally to this work.

Abstract

Breast cancer is a common malignancy in women with disappointing prognosis especially the triple-negative subtype. Recently, nanomedicine becomes a promising therapeutic strategy for breast cancer, such as platinum nanoparticles (PtNPs). Despite the promising anticancer effects of PtNPs, the safety of PtNPs remains to be fully evaluated. Herein, a series of cell and animal experiments demonstrate that PtNPs facilitate breast cancer metastasis by damaging the vascular endothelial barrier. PtNPs disrupt endothelial cell proliferation, migration and tube-like structure formation, destruct endothelial adhesions junctions and induce endothelial barrier leakinessin vitro most likely by stimulating intracellular reactive oxygen species (ROS) generation and altering the expression and conformation of endothelial junctional proteins, thus promoting intravasation and extravasation of the implanted 4T1 breast cancer cells and leading to cancer metastasis in female BALB/c nude micein vivo. In addition, smaller PtNPs (5 nm) are more potent than larger PtNPs (70 nm) in exerting the above effects. The study provides the first evidence that PtNPs can promote breast cancer metastasis by damaging endothelial barrier. The unexpected detrimental effects of PtNPs should be considered in future nanomedicine designs for the treatment of breast cancer.

Keywords: breast cancer, metastasis, platinum nanoparticle, endothelium, cell junction

References(53)

1

Bray, F.; Laversanne, M.; Weiderpass, E.; Soerjomataram, I. The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer 2021, 127, 3029–3030.

2

Sung, H.; Ferlay, J.; Siegel, R. L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249.

3

Qayoom, H.; Wani, N. A.; Alshehri, B.; Mir, M. A. An insight into the cancer stem cell survival pathways involved in chemoresistance in triple-negative breast cancer. Future Oncol. 2021, 17, 4185–4206.

4

Dong, X. F.; Wang, Y.; Huang, B. F.; Hu, G. N.; Shao, J. K.; Wang, Q.; Tang, C. H.; Wang, C. Q. Downregulated METTL14 expression correlates with breast cancer tumor grade and molecular classification. BioMed Res. Int. 2020, 2020, 8823270.

5

Gao, L. L.; Guo, Q. Q.; Li, X. M.; Yang, X.; Ni, H. W.; Wang, T.; Zhao, Q.; Liu, H.; Xing, Y. Y.; Xi, T. et al. MiR-873/PD-L1 axis regulates the stemness of breast cancer cells. eBioMedicine 2019, 41, 395–407.

6

Alven, S.; Aderibigbe, B. A. The therapeutic efficacy of dendrimer and micelle formulations for breast cancer treatment. Pharmaceutics 2020, 12, 1212.

7

Samadi, A.; Klingberg, H.; Jauffred, L.; Kjær, A.; Bendix, P. M.; Oddershede, L. B. Platinum nanoparticles: A non-toxic, effective and thermally stable alternative plasmonic material for cancer therapy and bioengineering. Nanoscale 2018, 10, 9097–9107.

8

Ma, Z. Y.; Zhang, Y. F.; Zhang, J.; Zhang, W. Y.; Foda, M. F.; Dai, X. X.; Han, H. Y. Ultrasmall peptide-coated platinum nanoparticles for precise NIR-II photothermal therapy by mitochondrial targeting. ACS Appl. Mater. Interfaces 2020, 12, 39434–39443.

9

Linic, S.; Aslam, U.; Boerigter, C.; Morabito, M. Photochemical transformations on plasmonic metal nanoparticles. Nat. Mater. 2015, 14, 567–576.

10

Charest, G.; Paquette, B.; Fortin, D.; Mathieu, D.; Sanche, L. Concomitant treatment of F98 glioma cells with new liposomal platinum compounds and ionizing radiation. J. Neuro-Oncol. 2010, 97, 187–193.

11

Usami, N.; Furusawa, Y.; Kobayashi, K.; Lacombe, S.; Reynaud-Angelin, A.; Sage, E.; Wu, T. D.; Croisy, A.; Guerquin-Kern, J. L.; Le Sech, C. Mammalian cells loaded with platinum-containing molecules are sensitized to fast atomic ions. Int. J. Radiat. Biol. 2008, 84, 603–611.

12

Fang, T. X.; Zhang, J.; Zuo, T. T.; Wu, G. Y.; Xu, Y. X.; Yang, Y.; Yang, J.; Shen, Q. Chemo-photothermal combination cancer therapy with ROS scavenging, extracellular matrix depletion, and tumor immune activation by telmisartan and diselenide-paclitaxel prodrug loaded nanoparticles. ACS Appl. Mater. Interfaces 2020, 12, 31292–31308.

13

Kutwin, M.; Sawosz, E.; Jaworski, S.; Hinzmann, M.; Wierzbicki, M.; Hotowy, A.; Grodzik, M.; Winnicka, A.; Chwalibog, A. Investigation of platinum nanoparticle properties against U87 glioblastoma multiforme. Arch. Med. Sci. 2017, 13, 1322–1334.

14

Kutwin, M.; Sawosz, E.; Jaworski, S.; Kurantowicz, N.; Strojny, B.; Chwalibog, A. Structural damage of chicken red blood cells exposed to platinum nanoparticles and cisplatin. Nanoscale Res. Lett. 2014, 9, 257.

15

Parfenyev, S. E.; Shabelnikov, S. V.; Pozdnyakov, D. Y.; Gnedina, O. O.; Adonin, L. S.; Barlev, N. A.; Mittenberg, A. G. Proteomic analysis of Zeb1 interactome in breast carcinoma cells. Molecules 2021, 26, 3143.

16

Suraj, J.; Kurpińska, A.; Zakrzewska, A.; Sternak, M.; Stojak, M.; Jasztal, A.; Walczak, M.; Chlopicki, S. Early and late endothelial response in breast cancer metastasis in mice: Simultaneous quantification of endothelial biomarkers using a mass spectrometry-based method. Dis. Model. Mech. 2019, 12, dmm036269.

17

Yang, L. D.; Joseph, S.; Sun, T. L.; Hoffmann, J.; Thevissen, S.; Offermanns, S.; Strilic, B. TAK1 regulates endothelial cell necroptosis and tumor metastasis. Cell Death Differ. 2019, 26, 1987–1997.

18

Fares, J.; Fares, M. Y.; Khachfe, H. H.; Salhab, H. A.; Fares, Y. Molecular principles of metastasis: A hallmark of cancer revisited. Signal Transduct. Target. Ther. 2020, 5, 28.

19

Hu, W.; Liu, C.; Bi, Z. Y.; Zhou, Q.; Zhang, H.; Li, L. L.; Zhang, J.; Zhu, W.; Song, Y. Y. Y.; Zhang, F. et al. Comprehensive landscape of extracellular vesicle-derived RNAs in cancer initiation, progression, metastasis and cancer immunology. Mol. Cancer 2020, 19, 102.

20

Peng, F.; Setyawati, M. I.; Tee, J. K.; Ding, X. G.; Wang, J. P.; Nga, M. E.; Ho, H. K.; Leong, D. T. Nanoparticles promote in vivo breast cancer cell intravasation and extravasation by inducing endothelial leakiness. Nat. Nanotechnol. 2019, 14, 279–286.

21

Wen, T.; Yang, A. Y.; Piao, L.; Hao, S. S.; Du, L. F.; Meng, J.; Liu, J.; Xu, H. Y. Comparative study of in vitro effects of different nanoparticles at non-cytotoxic concentration on the adherens junction of human vascular endothelial cells. Int. J. Nanomedicine 2019, 14, 4475–4489.

22

Bays, J. L.; DeMali, K. A. Vinculin in cell-cell and cell-matrix adhesions. Cell. Mol. Life Sci. 2017, 74, 2999–3009.

23

Wang, D. P.; Wang, Z. J.; Zhao, R.; Lin, C. X.; Sun, Q. Y.; Yan, C. P.; Zhou, X.; Cao, J. M. Silica nanomaterials induce organ injuries by Ca2+-ROS-initiated disruption of the endothelial barrier and triggering intravascular coagulation. Part. Fibre Toxicol. 2020, 17, 12.

24

Yang, Y.; Du, X. J.; Wang, Q.; Liu, J. W.; Zhang, E. G.; Sai, L. L.; Peng, C.; Lavin, M. F.; Yeo, A. J.; Yang, X. et al. Mechanism of cell death induced by silica nanoparticles in hepatocyte cells is by apoptosis. Int. J. Mol. Med. 2019, 44, 903–912.

25

Setyawati, M. I.; Tay, C. Y.; Bay, B. H.; Leong, D. T. Gold nanoparticles induced endothelial leakiness depends on particle size and endothelial cell origin. ACS Nano 2017, 11, 5020–5030.

26

Wang, J. P.; Zhang, L. Y.; Peng, F.; Shi, X. H.; Leong, D. T. Targeting endothelial cell junctions with negatively charged gold nanoparticles. Chem. Mater. 2018, 30, 3759–3767.

27

Gao, F.; Sabbineni, H.; Artham, S.; Somanath, P. R. Modulation of long-term endothelial-barrier integrity is conditional to the cross-talk between Akt and Src signaling. J. Cell. Mol. Med. 2017, 232, 2599–2609.

28

Zhang, D.; Bi, J. X.; Liang, Q. Y.; Wang, S. Y.; Zhang, L. J.; Han, F. Y.; Li, S. N.; Qiu, B. W.; Fan, X. D.; Chen, W. et al. VCAM1 promotes tumor cell invasion and metastasis by inducing EMT and transendothelial migration in colorectal cancer. Front. Oncol. 2020, 10, 1066.

29

Crowley, J. L.; Smith, T. C.; Fang, Z. Y.; Takizawa, N.; Luna, E. J. Supervillin reorganizes the actin cytoskeleton and increases invadopodial efficiency. Mol. Biol. Cell 2009, 20, 948–962.

30

Liu, D. M.; Iruthayanathan, M.; Homan, L. L.; Wang, Y. Q.; Yang, L. L.; Wang, Y.; Dillon, J. S. Dehydroepiandrosterone stimulates endothelial proliferation and angiogenesis through extracellular signal-regulated kinase 1/2-mediated mechanisms. Endocrinology 2008, 149, 889–898.

31

Jones, C. A.; London, N. R.; Chen, H. Y.; Park, K. W.; Sauvaget, D.; Stockton, R. A.; Wythe, J. D.; Suh, W.; Larrieu-Lahargue, F.; Mukouyama, Y. S. et al. Robo4 stabilizes the vascular network by inhibiting pathologic angiogenesis and endothelial hyperpermeability. Nat. Med. 2008, 14, 448–453.

32

Tsai, S. M.; Duran-Robles, E.; Goshia, T.; Mesina, M.; Garcia, C.; Young, J.; Sibal, A.; Chiu, M. H.; Chin, W. C. CeO2 nanoparticles attenuate airway mucus secretion induced by TiO2 nanoparticles. Sci. Total Environ. 2018, 631–632, 262–269.

33

Pagáčová, E.; Štefančíková, L.; Schmidt-Kaler, F.; Hildenbrand, G.; Vičar, T.; Depeš, D.; Lee, J. H.; Bestvater, F.; Lacombe, S.; Porcel, E. et al. Challenges and contradictions of metal nano-particle applications for radio-sensitivity enhancement in cancer therapy. Int. J. Mol. Sci. 2019, 20, 588.

34

Predoi, D.; Iconaru, S. L.; Predoi, M. V.; Stan, G. E.; Buton, N. Synthesis, characterization, and antimicrobial activity of magnesium-doped hydroxyapatite suspensions. Nanomaterials 2019, 9, 1295.

35

Gunes, S.; He, Z. L.; van Acken, D.; Malone, R.; Cullen, P. J.; Curtin, J. F. Platinum nanoparticles inhibit intracellular ROS generation and protect against cold atmospheric plasma-induced cytotoxicity. Nanomed. Nanotechnol. Biol. Med. 2021, 36, 102436.

36

Jawaid, P.; Rehman, M. U.; Zhao, Q. L.; Takeda, K.; Ishikawa, K.; Hori, M.; Shimizu, T.; Kondo, T. Helium-based cold atmospheric plasma-induced reactive oxygen species-mediated apoptotic pathway attenuated by platinum nanoparticles. J. Cell. Mol. Med. 2016, 20, 1737–1748.

37

Gurunathan, S.; Jeyaraj, M.; Kang, M. H.; Kim, J. H. Tangeretin-assisted platinum nanoparticles enhance the apoptotic properties of doxorubicin: Combination therapy for osteosarcoma treatment. Nanomaterials 2019, 9, 1089.

38

Lin, C. X.; Gu, J. L.; Cao, J. M. The acute toxic effects of platinum nanoparticles on ion channels, transmembrane potentials of cardiomyocytes in vitro and heart rhythm in vivo in mice. Int. J. Nanomedicine 2019, 14, 5595–5609.

39

Dejana, E.; Tournier-Lasserve, E.; Weinstein, B. M. The control of vascular integrity by endothelial cell junctions: Molecular basis and pathological implications. Dev. Cell 2009, 16, 209–221.

40

Guilluy, C.; Zhang, Z. G.; Bhende, P. M.; Sharek, L.; Wang, L.; Burridge, K.; Damania, B. Latent KSHV infection increases the vascular permeability of human endothelial cells. Blood 2011, 118, 5344–5354.

41

Osmanagic-Myers, S.; Rus, S.; Wolfram, M.; Brunner, D.; Goldmann, W. H.; Bonakdar, N.; Fischer, I.; Reipert, S.; Zuzuarregui, A.; Walko, G. et al. Plectin reinforces vascular integrity by mediating crosstalk between the vimentin and the actin networks. J. Cell Sci. 2015, 128, 4138–4150.

42

Szulcek, R.; Beckers, C. M. L.; Hodzic, J.; de Wit, J.; Chen, Z. L.; Grob, T.; Musters, R. J. P.; Minshall, R. D.; van Hinsbergh, V. W. M.; van Nieuw Amerongen, G. P. Localized RhoA GTPase activity regulates dynamics of endothelial monolayer integrity. Cardiovasc. Res. 2013, 99, 471–482.

43

Wenceslau, C. F.; McCarthy, C. G.; Webb, R. C. Formyl peptide receptor activation elicits endothelial cell contraction and vascular leakage. Front. Immunol. 2016, 7, 297.

44

Dong, Z.; Saikumar, P.; Weinberg, J. M.; Venkatachalam, M. A. Calcium in cell injury and death. Annu. Rev. Pathol. 2006, 1, 405–434.

45

Baliga, M. S.; Meleth, S.; Katiyar, S. K. Growth inhibitory and antimetastatic effect of green tea polyphenols on metastasis-specific mouse mammary carcinoma 4T1 cells in vitro and in vivo systems. Clin. Cancer Res. 2005, 11, 1918–1927.

46
Pulaski, B. A.; Ostrand-Rosenberg, S. Mouse 4T1 breast tumor model. Curr. Protoc. Immunol. , in press, DOI: 10.1002/0471142735.im2002s39.
47

Qian, B. Z.; Li, J. F.; Zhang, H.; Kitamura, T.; Zhang, J. H.; Campion, L. R.; Kaiser, E. A.; Snyder, L. A.; Pollard, J. W. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 2011, 475, 222–225.

48

Wang, D. H.; Wang, H. B.; Brown, J.; Daikoku, T.; Ning, W.; Shi, Q.; Richmond, A.; Strieter, R.; Dey, S. K.; DuBois, R. N. CXCL1 induced by prostaglandin E2 promotes angiogenesis in colorectal cancer. J. Exp. Med. 2006, 203, 941–951.

49

Conklin, M. W.; Keely, P. J. Why the stroma matters in breast cancer. Cell Adhes. Migr. 2012, 6, 249–260.

50

Shapiro, L.; Weis, W. I. Structure and biochemistry of cadherins and catenins. Cold Spring Harb. Perspect. Biol. 2009, 1, a003053.

51

Chervin-Pétinot, A.; Courçon, M.; Almagro, S.; Nicolas, A.; Grichine, A.; Grunwald, D.; Prandini, M. H.; Huber, P.; Gulino-Debrac, D. Epithelial protein lost in neoplasm (EPLIN) interacts with α-catenin and actin filaments in endothelial cells and stabilizes vascular capillary network in vitro. J. Biol. Chem. 2012, 289, 7556–7572.

52

Collins, R. J.; Jiang, W. G.; Hargest, R.; Mason, M. D.; Sanders, A. J. EPLIN: A fundamental actin regulator in cancer metastasis. Cancer Metastasis Rev. 2015, 34, 753–764.

53

Depciuch, J.; Stec, M.; Klebowski, B.; Maximenko, A.; Drzymała, E.; Baran, J.; Parlinska-Wojtan, M. Size effect of platinum nanoparticles in simulated anticancer photothermal therapy. Photodiagnosis Photodyn. Ther. 2020, 29, 101594.

File
12274_2022_4404_MOESM1_ESM.pdf (2.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 01 March 2022
Revised: 02 April 2022
Accepted: 06 April 2022
Published: 31 May 2022
Issue date: August 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This study was supported by the Key Medical Science and Technology Program of Shanxi Province (No. 2020XM01), Shanxi “1331” Project Quality and Efficiency Improvement Plan (No. 1331KFC), Applied Basic Research Program of Shanxi Province (Nos. 201801D221408 and 201901D211320), Supporting Project for Returned Overseas Researchers of Shanxi Province (No. 2020-081), and partially by the National Natural Science Foundation of China (Nos. 81801858, 22007063, and 82170523). The authors thank the Core Facility Center of Shanxi Medical University for providing TEM, flow cytometry and other technical services.

Return