Journal Home > Volume 15 , Issue 8

Nonpolar m-plane AlGaN offers the advantage of polarization-free multiple quantum wells (MQWs) for ultraviolet (UV) emission and can be achieved on the sidewalls of selective area grown GaN nanowires. We reveal that the growth of AlGaN on GaN nanowires by metal organic chemical vapor deposition (MOCVD) is driven by vapor-phase diffusion, and consequently puts a limit on the pitch of nanowire array due to shadowing effect. An insight into the difficulty of achieving metal-polar AlGaN nanowire by selective area growth (SAG) in MOCVD is also provided and can be attributed to the strong tendency to form pyramidal structure due to a very small growth rate of { 101¯1} semipolar planes compared to (0001) c-plane. The nonpolar m-plane sidewalls of GaN nanowires obtained via SAG provides an excellent platform for growth of nonpolar AlGaN MQWs. UV emission from m-plane AlxGa1−xN/AlyGa1−yN MQWs grown on sidewalls of dislocation-free GaN nanowire is demonstrated in the wavelength range of 318–343 nm.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Nonpolar AlxGa1−xN/AlyGa1−yN multiple quantum wells on GaN nanowire for UV emission

Show Author's information Sonachand Adhikari1,2( )Olivier Lee Cheong Lem3Felipe Kremer4Kaushal Vora3Frank Brink4Mykhaylo Lysevych3Hark Hoe Tan1,5( )Chennupati Jagadish1,5
Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
Semiconductor Device Fabrication Group, CSIR-Central Electronics Engineering Research Institute, Pilani, Rajasthan 333031, India
Australian National Fabrication Facility ACT Node, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
Centre for Advanced Microscopy, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
Australian Research Council Centre of Excellence for Transformative Meta-Optical Systems, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia

Abstract

Nonpolar m-plane AlGaN offers the advantage of polarization-free multiple quantum wells (MQWs) for ultraviolet (UV) emission and can be achieved on the sidewalls of selective area grown GaN nanowires. We reveal that the growth of AlGaN on GaN nanowires by metal organic chemical vapor deposition (MOCVD) is driven by vapor-phase diffusion, and consequently puts a limit on the pitch of nanowire array due to shadowing effect. An insight into the difficulty of achieving metal-polar AlGaN nanowire by selective area growth (SAG) in MOCVD is also provided and can be attributed to the strong tendency to form pyramidal structure due to a very small growth rate of { 101¯1} semipolar planes compared to (0001) c-plane. The nonpolar m-plane sidewalls of GaN nanowires obtained via SAG provides an excellent platform for growth of nonpolar AlGaN MQWs. UV emission from m-plane AlxGa1−xN/AlyGa1−yN MQWs grown on sidewalls of dislocation-free GaN nanowire is demonstrated in the wavelength range of 318–343 nm.

Keywords: nanowire, selective area growth, multiple quantum wells, metal organic chemical vapor deposition (MOCVD), nonpolar plane, AlGaN

References(73)

1

Kneissl, M.; Seong, T. Y.; Han, J.; Amano, H. The emergence and prospects of deep-ultraviolet light-emitting diode technologies. Nat. Photonics 2019, 13, 233–244.

2

Takano, T.; Mino, T.; Sakai, J.; Noguchi, N.; Tsubaki, K.; Hirayama, H. Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency. Appl. Phys. Express 2017, 10, 031002.

3

Narukawa, Y.; Ichikawa, M.; Sanga, D.; Sano, M.; Mukai, T. White light emitting diodes with super-high luminous efficacy. J. Phys. D:Appl. Phys. 2010, 43, 354002.

4

Miller, D. A. B.; Chemla, D. S.; Damen, T. C.; Gossard, A. C.; Wiegmann, W.; Wood, T. H.; Burrus, C. A. Band-edge electroabsorption in quantum well structures: The quantum-confined Stark effect. Phys. Rev. Lett. 1984, 53, 2173–2176.

5

Takeuchi, T.; Sota, S.; Katsuragawa, M.; Komori, M.; Takeuchi, H.; Amano, H. A. H.; Akasaki, I. A. I. Quantum-confined stark effect due to piezoelectric fields in GaInN strained quantum wells. Jpn. J. Appl. Phys. 1997, 36, L382–L385.

6

Waltereit, P.; Brandt, O.; Trampert, A.; Grahn, H. T.; Menniger, J.; Ramsteiner, M.; Reiche, M.; Ploog, K. H. Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes. Nature 2000, 406, 865–868.

7

Grandjean, N.; Massies, J.; Leroux, M. Self-limitation of AlGaN/GaN quantum well energy by built-in polarization field. Appl. Phys. Lett. 1999, 74, 2361–2363.

8

Grandjean, N.; Damilano, B.; Dalmasso, S.; Leroux, M.; Laügt, M.; Massies, J. Built-in electric-field effects in wurtzite AlGaN/GaN quantum wells. J. Appl. Phys. 1999, 86, 3714–3720.

9

Langer, R.; Simon, J.; Ortiz, V.; Pelekanos, N. T.; Barski, A.; André, R.; Godlewski, M. Giant electric fields in unstrained GaN single quantum wells. Appl. Phys. Lett. 1999, 74, 3827–3829.

10

Kajitani, R.; Kawasaki, K.; Takeuchi, M. Barrier-height and well-width dependence of photoluminescence from AlGaN-based quantum well structures for deep-UV emitters. Mater. Sci. Eng. :B 2007, 139, 186–191.

11

Craven, M. D.; Waltereit, P.; Speck, J. S.; DenBaars, S. P. Well-width dependence of photoluminescence emission from a-plane GaN/AlGaN multiple quantum wells. Appl. Phys. Lett. 2004, 84, 496–498.

12

Ban, K.; Yamamoto, J. I.; Takeda, K.; Ide, K.; Iwaya, M.; Takeuchi, T.; Kamiyama, S.; Akasaki, I.; Amano, H. Internal quantum efficiency of whole-composition-range AlGaN multiquantum wells. Appl. Phys. Express 2011, 4, 052101.

13

Hersee, S. D.; Sun, X. Y.; Wang, X. The controlled growth of GaN nanowires. Nano Lett. 2006, 6, 1808–1811.

14

Bergbauer, W.; Strassburg, M.; Kölper, C.; Linder, N.; Roder, C.; Lähnemann, J.; Trampert, A.; Fündling, S.; Li, S. F.; Wehmann, H. H. et al. Continuous-flux MOVPE growth of position-controlled N-face GaN nanorods and embedded InGaN quantum wells. Nanotechnology 2010, 21, 305201.

15

Coulon, P. M.; Alloing, B.; Brändli, V.; Vennéguès, P.; Leroux, M. Zúñiga-Pérez, J. Dislocation filtering and polarity in the selective area growth of GaN nanowires by continuous-flow metal organic vapor phase epitaxy. Appl. Phys. Express 2016, 9, 015502.

16

Colby, R.; Liang, Z. W.; Wildeson, I. H.; Ewoldt, D. A.; Sands, T. D.; García, R. E.; Stach, E. A. Dislocation filtering in GaN nanostructures. Nano Lett. 2010, 10, 1568–1573.

17

Hersee, S. D.; Rishinaramangalam, A. K.; Fairchild, M. N.; Zhang, L.; Varangis, P. Threading defect elimination in GaN nanowires. J. Mater. Res. 2011, 26, 2293–2298.

18

Djavid, M.; Mi, Z. T. Enhancing the light extraction efficiency of AlGaN deep ultraviolet light emitting diodes by using nanowire structures. Appl. Phys. Lett. 2016, 108, 051102.

19

Ooi, Y. K.; Liu, C.; Zhang, J. Analysis of polarization-dependent light extraction and effect of passivation layer for 230-nm AlGaN nanowire light-emitting diodes. IEEE Photon. J. 2017, 9, 4501812.

20

Jain, B.; Velpula, R. T.; Tumuna, M.; Bui, H. Q. T.; Jude, J.; Pham, T. T.; van le, T.; Hoang, A. V.; Wang, R. J.; Nguyen, H. P. T. Enhancing the light extraction efficiency of AlInN nanowire ultraviolet light-emitting diodes with photonic crystal structures. Opt. Express 2020, 28, 22908–22918.

21

Zhang, L.; Guo, Y. N.; Yan, J. C.; Wu, Q. Q.; Lu, Y.; Wu, Z. H.; Gu, W.; Wei, X. C.; Wang, J. X.; Li, J. M. Deep ultraviolet light-emitting diodes based on a well-ordered AlGaN nanorod array. Photonics Res. 2019, 7, B66–B72.

22

Siladie, A. M.; Jacopin, G.; Cros, A.; Garro, N.; Robin, E.; Caliste, D.; Pochet, P.; Donatini, F.; Pernot, J.; Daudin, B. Mg and in codoped p-type AlN nanowires for pn junction realization. Nano Lett. 2019, 19, 8357–8364.

23

Connie, A. T.; Zhao, S. R.; Sadaf, S. M.; Shih, I.; Mi, Z. T.; Du, X. Z.; Lin, J. Y.; Jiang, H. X. Optical and electrical properties of Mg-doped AlN nanowires grown by molecular beam epitaxy. Appl. Phys. Lett. 2015, 106, 213105.

24

Tran, N. H.; Le, B. H.; Zhao, S. R.; Mi, Z. T. On the mechanism of highly efficient p-type conduction of Mg-doped ultra-wide-bandgap AlN nanostructures. Appl. Phys. Lett. 2017, 110, 032102.

25

Zhao, S. R.; Lu, J. Y.; Hai, X.; Yin, X. AlGaN nanowires for ultraviolet light-emitting: Recent progress, challenges, and prospects. Micromachines 2020, 11, 125.

26

Ra, Y. H.; Kang, S.; Lee, C. R. Ultraviolet light-emitting diode using nonpolar AlGaN core–shell nanowire heterostructures. Adv. Opt. Mater. 2018, 6, 1701391.

27

Kim, J.; Choi, U.; Pyeon, J.; So, B.; Nam, O. Deep-ultraviolet AlGaN/AlN core–shell multiple quantum wells on AlN nanorods via lithography-free method. Sci. Rep. 2018, 8, 935.

28

Coulon, P. M.; Kusch, G.; Martin, R. W.; Shields, P. A. Deep UV emission from highly ordered AlGaN/AlN core–shell nanorods. ACS Appl. Mater. Interfaces 2018, 10, 33441–33449.

29

Grenier, V.; Finot, S.; Jacopin, G.; Bougerol, C.; Robin, E.; Mollard, N.; Gayral, B.; Monroy, E.; Eymery, J.; Durand, C. UV emission from GaN wires with m-plane core–shell GaN/AlGaN multiple quantum wells. ACS Appl. Mater. Interfaces 2020, 12, 44007–44016.

30

Seryogin, G.; Shalish, I.; Moberlychan, W.; Narayanamurti, V. Catalytic hydride vapour phase epitaxy growth of GaN nanowires. Nanotechnology 2005, 16, 2342–2345.

31

Tham, D.; Nam, C. Y.; Fischer, J. E. Defects in GaN nanowires. Adv. Funct. Mater. 2006, 16, 1197–1202.

32

Chen, X. J.; Perillat-Merceroz, G.; Sam-Giao, D.; Durand, C.; Eymery, J. Homoepitaxial growth of catalyst-free GaN wires on N-polar substrates. Appl. Phys. Lett. 2010, 97, 151909.

33

Chen, L.; Lin, W.; Wang, H. Q.; Li, J. C.; Kang, J. Y. Reversing abnormal hole localization in high-Al-content AlGaN quantum well to enhance deep ultraviolet emission by regulating the orbital state coupling. Light Sci. Appl. 2020, 9, 104.

34

Ertekin, E.; Greaney, P. A.; Chrzan, D. C.; Sands, T. D. Equilibrium limits of coherency in strained nanowire heterostructures. J. Appl. Phys. 2005, 97, 114325.

35

Landré, O.; Camacho, D.; Bougerol, C.; Niquet, Y. M.; Favre-Nicolin, V.; Renaud, G.; Renevier, H.; Daudin, B. Elastic strain relaxation in GaN/AlN nanowire superlattice. Phys. Rev. B 2010, 81, 153306.

36

Oto, T.; Mizuno, Y.; Yamano, K.; Yoshida, J.; Kishino, K. Column diameter dependence of the strain relaxation effect in GaN/AlGaN quantum wells on GaN nanocolumn arrays. Appl. Phys. Express 2019, 12, 125001.

37

Kuykendall, T.; Ulrich, P.; Aloni, S.; Yang, P. D. Complete composition tunability of InGaN nanowires using a combinatorial approach. Nat. Mater. 2007, 6, 951–956.

38

Khalilian, M.; Persson, A.; Lindgren, D.; Rosén, M.; Lenrick, F.; Colvin, J.; Ohlsson, B. J.; Timm, R.; Wallenberg, R.; Samuelson, L. et al. Coherently strained and dislocation-free architectured AlGaN/GaN submicron-sized structures. Nano Select 2022, 3, 471–484.

39

Nami, M.; Eller, R. F.; Okur, S.; Rishinaramangalam, A. K.; Liu, S.; Brener, I.; Feezell, D. F. Tailoring the morphology and luminescence of GaN/InGaN core–shell nanowires using bottom-up selective-area epitaxy. Nanotechnology 2017, 28, 025202.

40

Jindal, V.; Grandusky, J. R.; Tripathi, N.; Shahedipour-Sandvik, F.; LeBoeuf, S.; Balch, J.; Tolliver, T. Selective area heteroepitaxy of nano-AlGaN ultraviolet excitation sources for biofluorescence application. J. Mater. Res. 2007, 22, 838–844.

41

Fan, Z. Y.; Rong, G.; Newman, N.; Smith, D. J. Defect annihilation in AlN thin films by ultrahigh temperature processing. Appl. Phys. Lett. 2000, 76, 1839–1841.

42
Banal, R. G. ; Funato, M. ; Kawakami, Y. Surface diffusion during metalorganic vapor phase epitaxy of AlN. Phys. Status Solidi (C) 2009, 6, 599–602.
43

Iliopoulos, E.; Ludwig, K. F. Jr.; Moustakas, T. D.; Komninou, P.; Karakostas, T.; Nouet, G.; Chu, S. N. G. Epitaxial growth and self-organized superlattice structures in AlGaN films grown by plasma assisted molecular beam epitaxy. Mater. Sci. Eng. :B 2001, 87, 227–236.

44

Iliopoulos, E.; Moustakas, T. D. Growth kinetics of AlGaN films by plasma-assisted molecular-beam epitaxy. Appl. Phys. Lett. 2002, 81, 295–297.

45

Li, H.; Geelhaar, L.; Riechert, H.; Draxl, C. Computing equilibrium shapes of wurtzite crystals: The example of GaN. Phys. Rev. Lett. 2015, 115, 085503.

46

Zhang, J. Z.; Zhang, Y. O.; Tse, K.; Deng, B.; Xu, H.; Zhu, J. Y. New approaches for calculating absolute surface energies of wurtzite (0001)/( 0001¯): A study of ZnO and GaN. J. Appl. Phys. 2016, 119, 205302.

47

Calarco, R.; Meijers, R. J.; Debnath, R. K.; Stoica, T.; Sutter, E.; Lüth, H. Nucleation and growth of GaN nanowires on Si(111) performed by molecular beam epitaxy. Nano Lett. 2007, 7, 2248–2251.

48

Tchernycheva, M.; Sartel, C.; Cirlin, G.; Travers, L.; Patriarche, G.; Harmand, J. C.; Dang, L. S.; Renard, J.; Gayral, B.; Nevou, L. et al. Growth of GaN free-standing nanowires by plasma-assisted molecular beam epitaxy: Structural and optical characterization. Nanotechnology 2007, 18, 385306.

49

Wulff, G. XXV. Zur frage der geschwindigkeit des wachsthums und der auflösung der krystallflächen. Z. Kristallogr. -Cryst. Mater. 1901, 34, 449–530.

50

Herring, C. Some theorems on the free energies of crystal surfaces. Phys. Rev. 1951, 82, 87–93.

51

Kaminsky, W. WinXMorph: A computer program to draw crystal morphology, growth sectors and cross sections with export files in VRML V2.0 utf8-virtual reality format. J. Appl. Crystallogr. 2005, 38, 566–567.

52

Kaminsky, W. From CIF to virtual morphology using the WinXMorph program. J. Appl. Crystallogr. 2007, 40, 382–385.

53

Kato, T.; Honda, Y.; Kawaguchi, Y.; Yamaguchi, M.; Sawaki, N. Selective growth of GaN/AlGaN microstructures by metalorganic vapor phase epitaxy. Jpn. J. Appl. Phys. 2001, 40, 1896–1898.

54

Jindal, V.; Grandusky, J.; Jamil, M.; Tripathi, N.; Thiel, B.; Shahedipour-Sandvik, F.; Balch, J.; LeBoeuf, S. Effect of interfacial strain on the formation of AlGaN nanostructures by selective area heteroepitaxy. Phys. E:Low-Dimens. Syst. Nanostruct. 2008, 40, 478–483.

55

Boughaleb, S.; Martin, B.; Matei, C.; Templier, R.; Borowik, Ł.; Rochat, N.; Gil, B.; Dussaigne, A. Selective area growth of AlGaN nanopyramids by conventional and pulsed MOVPE. Nanotechnology 2021, 32, 195203.

56

Wu, Z. H.; Kawai, Y.; Fang, Y. Y.; Chen, C. Q.; Kondo, H.; Hori, M.; Honda, Y.; Yamaguchi, M.; Amano, H. Spontaneous formation of highly regular superlattice structure in InGaN epilayers grown by molecular beam epitaxy. Appl. Phys. Lett. 2011, 98, 141905.

57

Zheng, X. T.; Wang, T.; Wang, P.; Sun, X. X.; Wang, D.; Chen, Z. Y.; Quach, P.; Wang, Y. X.; Yang, X. L.; Xu, F. J. et al. Full-composition-graded InxGa1−xN films grown by molecular beam epitaxy. Appl. Phys. Lett. 2020, 117, 182101.

58

Strittmatter, A. ; Reissmann, L. ; Bimberg, D. ; Veit, P. ; Krost, A. Spontaneous superlattice formation in AlGaN layers grown by MOCVD on Si(111)-substrates. Phys. Status Solidi (B) 2002, 234, 722–725.

DOI
59

Pakula, K. ; Bożek, R. ; Baranowski, J. M. ; Jasinski, J. Spontaneous superlattice formation in MOVPE growth of AlGaN. Phys. Status Solidi (C) 2005, 2, 1073–1076.

60

Wang, T.; Liu, S. F.; Zheng, X. T.; Wang, P.; Wang, D.; Chen, Z. Y.; Wei, J. Q.; Rong, X.; Tao, R. C.; Guo, S. P. et al. Microstructure and dislocation evolution in composition gradient AlGaN grown by MOCVD. Superlattices Microstruct. 2021, 152, 106842.

61

Chichibu, S. F.; Shima, K.; Kojima, K.; Kangawa, Y. Self-formed compositional superlattices triggered by cation orderings in m-plane Al1−xInxN on GaN. Sci. Rep. 2020, 10, 18570.

62

El-Masry, N. A.; Behbehani, M. K.; LeBoeuf, S. F.; Aumer, M. E.; Roberts, J. C.; Bedair, S. M. Self-assembled AlInGaN quaternary superlattice structures. Appl. Phys. Lett. 2001, 79, 1616–1618.

63
Pierret, A. ; Bougerol, C. ; den Hertog, M. ; Gayral, B. ; Kociak, M. ; Renevier, H. ; Daudin, B. Structural and optical properties of AlxGa1−xN nanowires. Phys. Status Solidi (RRL) 2013, 7, 868–873.
64

Rigutti, L.; Teubert, J.; Jacopin, G.; Fortuna, F.; Tchernycheva, M.; De Luna Bugallo, A.; Julien, F. H.; Furtmayr, F.; Stutzmann, M.; Eickhoff, M. Origin of energy dispersion in AlxGa1−xN/GaN nanowire quantum discs with low Al content. Phys. Rev. B 2010, 82, 235308.

65

Ruterana, P.; De Saint Jores, G.; Laügt, M.; Omnes, F.; Bellet-Amalric, E. Evidence for multiple chemical ordering in AlGaN grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 2001, 78, 344–346.

66

Albrecht, M.; Lymperakis, L.; Neugebauer, J.; Northrup, J. E.; Kirste, L.; Leroux, M.; Grzegory, I.; Porowski, S.; Strunk, H. P. Chemically ordered AlxGa1−xN alloys: Spontaneous formation of natural quantum wells. Phys. Rev. B 2005, 71, 035314.

67

Behbehani, M. K.; Piner, E. L.; Liu, S. X.; El-Masry, N. A.; Bedair, S. M. Phase separation and ordering coexisting in InxGa1−xN grown by metal organic chemical vapor deposition. Appl. Phys. Lett. 1999, 75, 2202–2204.

68
Klinger, M. More features, more tools, more CrysTBox. J. Appl. Crystallogr. 2017, 50, 1226–1234.
69

Vashaei, Z.; Bayram, C.; Lavenus, P.; Razeghi, M. Photoluminescence characteristics of polar and nonpolar AlGaN/GaN superlattices. Appl. Phys. Lett. 2010, 97, 121918.

70

Zeng, K. C.; Li, J.; Lin, J. Y.; Jiang, H. X. Well-width dependence of the quantum efficiencies of GaN/AlxGa1−xN multiple quantum wells. Appl. Phys. Lett. 2000, 76, 3040–3042.

71
Garrett, G. A. ; Shen, H. ; Wraback, M. ; Imer, B. ; Haskell, B. ; Speck, J. S. ; Keller, S. ; Nakamura, S. ; DenBaars, S. P. Intensity dependent time-resolved photoluminescence studies of GaN/AlGaN multiple quantum wells of varying well width on laterally overgrown a-plane and planar c-plane GaN. Phys. Status Solidi (A) 2005, 202, 846–849.
72

Ko, T. S.; Lu, T. C.; Wang, T. C.; Lo, M. H.; Chen, J. R.; Gao, R. C.; Kuo, H. C.; Wang, S. C.; Shen, J. L. Optical characteristics of a-plane InGaN∕GaN multiple quantum wells with different well widths. Appl. Phys. Lett. 2007, 90, 181122.

73

Yun, F.; Reshchikov, M. A.; He, L.; King, T.; Morkoç, H.; Novak, S. W.; Wei, L. C. Energy band bowing parameter in AlxGa1−xN alloys. J. Appl. Phys. 2002, 92, 4837–4839.

File
12274_2022_4403_MOESM1_ESM.pdf (676.5 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 22 February 2022
Revised: 06 April 2022
Accepted: 07 April 2022
Published: 31 May 2022
Issue date: August 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

We acknowledge the Australian Research Council for financial support. S. A. acknowledges Jennifer Wong-Leung for discussions. S. A. also acknowledges James Cotsell for providing training and access to Disco dicing machine. This work used the ACT node of the NCRIS-enabled Australian National Fabrication Facility (ANFF-ACT).

Return