Journal Home > Volume 15 , Issue 8

Two-dimensional (2D) van der Waals (vdW) magnetic materials with reduced dimensionality often exhibit unexpected properties compared to their bulk counterparts. In particular, the mechanical flexibility of 2D structure, enhanced ferromagnetism at reduced layer thickness, as well as robust perpendicular magnetic anisotropy are quite appealing for constructing novel spintronic devices. The vdW vanadium diselenide (VSe2) is an attractive material whose bulk is paramagnetic while monolayer is ferromagnetic with a Curie temperature (Tc) above room temperature. To explore its possible device applications, a detailed investigation on the thickness-dependent magnetism and strain modulation behavior of VSe2 is highly demanded. In this article, the VSe2 nanoflakes were controllably prepared via chemical vapor deposition (CVD) method. The few-layer single VSe2 nanoflakes were found to exhibit magnetic domain structures at room temperature. Ambient magnetic force microscopy (MFM) phase images reveal a clear thickness-dependent magnetism and the MFM phase contrast is traceable for the nanoflakes of layer thickness below ~ 6 nm. Moreover, applying strain is found efficient in modulating the magnetic moment and coercive field of 2D VSe2 at room temperature. These results are helpful for understanding the ferromagnetism of high temperature 2D magnets and for constructing novel straintronic devices or flexible spintronic devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Thickness-dependent and strain-tunable magnetism in two-dimensional van der Waals VSe2

Show Author's information Wenjuan Ci1,§Huali Yang2,§Wuhong Xue1( )Ruilong Yang1Baohua Lv1Peng Wang1Run-Wei Li2Xiao-Hong Xu1( )
Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030031, China
CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China

§ Wenjuan Ci and Huali Yang contributed equally to this work.

Abstract

Two-dimensional (2D) van der Waals (vdW) magnetic materials with reduced dimensionality often exhibit unexpected properties compared to their bulk counterparts. In particular, the mechanical flexibility of 2D structure, enhanced ferromagnetism at reduced layer thickness, as well as robust perpendicular magnetic anisotropy are quite appealing for constructing novel spintronic devices. The vdW vanadium diselenide (VSe2) is an attractive material whose bulk is paramagnetic while monolayer is ferromagnetic with a Curie temperature (Tc) above room temperature. To explore its possible device applications, a detailed investigation on the thickness-dependent magnetism and strain modulation behavior of VSe2 is highly demanded. In this article, the VSe2 nanoflakes were controllably prepared via chemical vapor deposition (CVD) method. The few-layer single VSe2 nanoflakes were found to exhibit magnetic domain structures at room temperature. Ambient magnetic force microscopy (MFM) phase images reveal a clear thickness-dependent magnetism and the MFM phase contrast is traceable for the nanoflakes of layer thickness below ~ 6 nm. Moreover, applying strain is found efficient in modulating the magnetic moment and coercive field of 2D VSe2 at room temperature. These results are helpful for understanding the ferromagnetism of high temperature 2D magnets and for constructing novel straintronic devices or flexible spintronic devices.

Keywords: room-temperature ferromagnetism, thickness-dependent magnetism, strain-modulated magnetism, two-dimensional (2D) vanadium diselenide (VSe2)

References(42)

1

Zhang, Y. B.; Tan, Y. W.; Stormer, H. L.; Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 2005, 438, 201–204.

2

Qian, X. F.; Liu, J. W.; Fu, L.; Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 2014, 346, 1344–1347.

3

Zeng, H. L.; Dai, J. F.; Yao, W.; Xiao, D.; Cui, X. D. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 2012, 7, 490–493.

4

Shan, A. X.; Teng, X. A.; Zhang, Y.; Zhang, P. F.; Xu, Y. Y.; Liu, C. R.; Li, H.; Ye, H. Y.; Wang, R. M. Interfacial electronic structure modulation of Pt-MoS2 heterostructure for enhancing electrocatalytic hydrogen evolution reaction. Nano Energy 2022, 94, 106913.

5

Liu, B. X.; Sun, Y. H.; Wu, Y. H.; Liu, K.; Ye, H. Y.; Li, F. T.; Zhang, L. M.; Jiang, Y.; Wang, R. M. Enhanced photoresponse of TiO2/MoS2 heterostructure phototransistors by the coupling of interface charge transfer and photogating. Nano Res. 2020, 14, 982–991.

6

Cao, Y. D.; Sun, Y. H.; Shi, S. F.; Wang, R. M. Anisotropy of two-dimensional ReS2 and advances in its device application. Rare Met. 2021, 40, 3357–3374.

7

Wang, Z.; Sapkota, D.; Taniguchi, T.; Watanabe, K.; Mandrus, D.; Morpurgo, A. F. Tunneling spin valves based on Fe3GeTe2/hBN/Fe3GeTe2 van der Waals heterostructures. Nano Lett. 2018, 18, 4303–4308.

8

Huang, B.; Clark, G.; Klein, D. R.; MacNeill, D.; Navarro-Moratalla, E.; Seyler, K. L.; Wilson, N.; McGuire, M. A.; Cobden, D. H.; Xiao, D. et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 2018, 13, 544–548.

9

Li, H.; Ruan, S. C.; Zeng, Y. J. Intrinsic van der Waals magnetic materials from bulk to the 2D limit: New frontiers of spintronics. Adv. Mater. 2019, 31, 1900065.

10

Wang, H. Y.; Liu, Y. J.; Wu, P. C.; Hou, W. J.; Jiang, Y. H.; Li, X. H.; Pandey, C.; Chen, D. D.; Yang, Q.; Wang, H. T. et al. Above room-temperature ferromagnetism in wafer-scale two-dimensional van der Waals Fe3GeTe2 tailored by a topological insulator. ACS Nano 2020, 14, 10045–10053.

11

Lin, X. Y.; Yang, W.; Wang, K. L.; Zhao, W. S. Two-dimensional spintronics for low-power electronics. Nat. Electron. 2019, 2, 274–283.

12

Zhou, J. Q.; Qiao, J. F.; Duan, C. G.; Bournel, A.; Wang, K. L.; Zhao, W. S. Large tunneling magnetoresistance in VSe2/MoS2 magnetic tunnel junction. ACS Appl. Mater. Interfaces 2019, 11, 17647–17653.

13

Mermin, N. D.; Wagner, H. Absence of ferromagnetism or antiferromagnetism in one-or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 1966, 17, 1133–1136.

14

Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D. R.; Cheng, R.; Seyler, K. L.; Zhong, D.; Schmidgall, E.; McGuire, M. A.; Cobden, D. H. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270–273.

15

Gong, C.; Li, L.; Li, Z. L.; Ji, H. W.; Stern A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C. Z.; Wang, Y. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265–269.

16

Deng, Y. J.; Yu, Y. J.; Song, Y. C.; Zhang, J. Z.; Wang, N. Z.; Sun, Z. Y.; Yi, Y. F.; Wu, Y. Z.; Wu, S. W.; Zhu, J. Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 2018, 563, 94–99.

17

Zhang, Z. P.; Niu, J. J.; Yang, P. F.; Gong, Y.; Ji, Q. Q.; Shi, J. P.; Fang, Q. Y.; Jiang, S. L.; Li, H.; Zhou, X. B. et al. Van der Waals epitaxial growth of 2D metallic vanadium diselenide single crystals and their extra-high electrical conductivity. Adv. Mater. 2017, 29, 1702359.

18

Bonilla, M.; Kolekar, S.; Ma, Y. J.; Diaz, H. C.; Kalappattil, V.; Das, R.; Eggers, T.; Gutierrez, H. R.; Phan, M. H.; Batzill, M. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol. 2018, 13, 289–293.

19

Chu, J. W.; Zhang, Y.; Wen, Y.; Qiao, R. X.; Wu, C. C.; He, P.; Yin, L.; Cheng, R. Q.; Wang, F.; Wang, Z. X. et al. Sub-millimeter-scale growth of one-unit-cell-thick ferrimagnetic Cr2S3 nanosheets. Nano Lett. 2019, 19, 2154–2161.

20

Li, B.; Wan, Z.; Wang, C.; Chen, P.; Huang, B.; Cheng, X.; Qian, Q.; Li, J.; Zhang, Z. W.; Sun, G. Z. et al. Van der Waals epitaxial growth of air-stable CrSe2 nanosheets with thickness-tunable magnetic order. Nat. Mater. 2021, 20, 818–825.

21

Meng, L. J.; Zhou, Z.; Xu, M. Q.; Yang, S. Q.; Si, K. P.; Liu, L. X.; Wang, X. G.; Jiang, H. N.; Li, B. X.; Qin, P. X. et al. Anomalous thickness dependence of Curie temperature in air-stable two-dimensional ferromagnetic 1T-CrTe2 grown by chemical vapor deposition. Nat. Commun. 2021, 12, 809.

22

Sun, X. D.; Li, W. Y.; Wang, X.; Sui, Q.; Zhang, T. Y.; Wang, Z.; Liu, L.; Li, D.; Feng, S.; Zhong, S. Y. et al. Room temperature ferromagnetism in ultra-thin van der Waals crystals of 1T-CrTe2. Nano Res. 2020, 13, 3358–3363.

23

Zhang, Y.; Chu, J. W.; Yin, L.; Shifa, T. A.; Cheng, Z. Z.; Cheng, R. Q.; Wang, F.; Wen, Y.; Zhan, X. Y.; Wang, Z. X. et al. Ultrathin magnetic 2D single-crystal CrSe. Adv. Mater. 2019, 31, e1900056.

24

Zhou, H. Y.; Zhang, Y. G.; Zhao, W. S. Tunable tunneling magnetoresistance in van der Waals magnetic tunnel junctions with 1T-CrTe2 electrodes. ACS Appl. Mater. Interfaces 2021, 13, 1214–1221.

25

Burch, K. S.; Mandrus, D.; Park, J. G. Magnetism in two-dimensional van der Waals materials. Nature 2018, 563, 47–52.

26

Jiang, S. W.; Li, L. Z.; Wang, Z. F.; Mak, K. F.; Shan, J. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 2018, 13, 549–553.

27

Wang, Z.; Zhang, T. Y.; Ding, M.; Dong, B. J.; Li, Y. X.; Chen, M. L.; Li, X. X.; Huang, J. Q.; Wang, H. W.; Zhao, X. T. et al. Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor. Nat. Nanotechnol. 2018, 13, 554–559.

28

Park, S. Y.; Kim, D. S.; Liu, Y.; Hwang, J.; Kim, Y.; Kim, W.; Kim, J. Y.; Petrovic, C.; Hwang, C.; Mo, S. K. et al. Controlling the magnetic anisotropy of the van der Waals ferromagnet Fe3GeTe2 through hole doping. Nano Lett. 2020, 20, 95–100.

29

Jiang, S. W.; Shan, J.; Mak, K. F. Electric-field switching of two-dimensional van der Waals magnets. Nat. Mater. 2018, 17, 406–410.

30

Song, T. C.; Fei, Z. Y.; Yankowitz, M.; Lin, Z.; Jiang, Q. N.; Hwangbo, K.; Zhang, Q.; Sun, B. S.; Taniguchi, T.; Watanabe, K. et al. Switching 2D magnetic states via pressure tuning of layer stacking. Nat. Mater. 2019, 18, 1298–1302.

31

Li, T. X.; Jiang, S. W.; Sivadas, N.; Wang, Z. F.; Xu, Y.; Weber, D.; Goldberger, J. E.; Watanabe, K.; Taniguchi, T.; Fennie, C. J. et al. Pressure-controlled interlayer magnetism in atomically thin CrI3. Nat. Mater. 2019, 18, 1303–1308.

32

Wang, X. Q.; Li, Z. Y.; Zhang, M.; Hou, T.; Zhao, J. G.; Li, L.; Rahman, A.; Xu, Z. L.; Gong, J. B.; Chi, Z. H. et al. Pressure-induced modification of the anomalous Hall effect in layered Fe3GeTe2. Phys. Rev. B 2019, 100, 014407.

33

Thiel, L.; Wang, Z.; Tschudin, M. A.; Rohner, D.; Gutiérrez-Lezama, I.; Ubrig, N.; Gibertini, M.; Giannini, E.; Morpurgo, A. F.; Maletinsky, P. Probing magnetism in 2D materials at the nanoscale with single-spin microscopy. Science 2019, 364, 973–976.

34

Zhong, J. C.; Wang, M. S.; Liu, T.; Zhao, Y. H.; Xu, X.; Zhou, S. S.; Han, J. B.; Gan, L.; Zhai, T. Y. Strain-sensitive ferromagnetic two-dimensional Cr2Te3. Nano Res. 2022, 15, 1254–1259.

35

Wang, Y.; Wang, C.; Liang, S. J.; Ma, Z. C.; Xu, K.; Liu, X. W.; Zhang, L. L.; Admasu, A. S.; Cheong, S. W.; Wang, L. Z. et al. Strain-sensitive magnetization reversal of a van der Waals magnet. Adv. Mater. 2020, 32, 2004533.

36

Xu, K.; Chen, P. Z.; Li, X. L.; Wu, C. Z.; Guo, Y. Q.; Zhao, J. Y.; Wu, X. J.; Xie, Y. Ultrathin nanosheets of vanadium diselenide: A metallic two-dimensional material with ferromagnetic charge-density-wave behavior. Angew. Chem., Int. Ed. 2013, 52, 10477–10481.

37

Yu, W.; Li, J.; Herng, T. S.; Wang, Z. S.; Zhao, X. X.; Chi, X.; Fu, W.; Abdelwahab, I.; Zhou, J.; Dan, J. D. et al. Chemically exfoliated VSe2 monolayers with room-temperature ferromagnetism. Adv. Mater. 2019, 31, 1903779.

38

Liu, H. T.; Bao, L. H.; Zhou, Z.; Che, B. Y.; Zhang, R. Z.; Bian, C.; Ma, R. S.; Wu, L. M.; Yang, H. F.; Li, J. J. et al. Quasi-2D transport and weak antilocalization effect in few-layered VSe2. Nano Lett. 2019, 19, 4551–4559.

39

Liu, Z. L.; Wu, X.; Shao, Y.; Qi J.; Cao Y.; Huang, L.; Liu, C.; Wang, J. O.; Zheng, Q.; Zhu, Z. L. et al. Epitaxially grown monolayer VSe2: An air-stable magnetic two-dimensional material with low work function at edges. Sci. Bull. 2018, 63, 419–425.

40

Wong, P. K. J.; Zhang, W.; Bussolotti, F.; Yin, X. M.; Herng, T. S.; Zhang, L.; Huang, Y. L.; Vinai, G.; Krishnamurthi, S.; Bukhvalov, D. W. et al. Evidence of spin frustration in a vanadium diselenide monolayer magnet. Adv. Mater. 2019, 31, 1901185.

41

Wen, Y.; Liu, Z. H.; Zhang, Y.; Xia, C. X.; Zhai, B. X.; Zhang, X. H.; Zhai, G. H.; Shen, C.; He, P.; Cheng, R. Q. et al. Tunable room-temperature ferromagnetism in two-dimensional Cr2Te3. Nano Lett. 2020, 20, 3130–3139.

42

Ma, Y. D.; Dai, Y.; Guo, M.; Niu, C. W.; Zhu, Y. T.; Huang, B. B. Evidence of the existence of magnetism in pristine VX2 monolayers (X = S, Se) and their strain-induced tunable magnetic properties. ACS Nano 2012, 6, 1695–1701.

File
12274_2022_4400_MOESM1_ESM.pdf (2.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 17 February 2022
Revised: 01 April 2022
Accepted: 06 April 2022
Published: 10 May 2022
Issue date: August 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 61904099, 51871137, 12174237 and 52002232). H. L. Y. is supported by Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, Shanxi Normal University (No. MMMM-202004).

Return