AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Electron transfer in Cu/Cu2O generated by disproportionation promoting efficient CO2 photoreduction

Qian Zhu1,§Kainan Zhu1,§Minmin Cai1Yaowen Zhang1Zhiyu Shao1Mengpei Jiang1Xiyang Wang1Zhibin Geng1Xiaofeng Wu1Manrong Li2Keke Huang1( )Shouhua Feng1
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials College of Chemistry, Jilin University, Changchun 130012, China
Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China

§ Qian Zhu and Kainan Zhu contributed equally to this work.

Show Author Information

Graphical Abstract

By constructing Cu/Cu2O composite, the charge transfer between the two phases is realized. Density functional theory calculations prove that the amount of charge change of Cu in Cu/Cu2O has a linear relationship with the adsorption of the CO2 reduction intermediates, and further affects the Gibbs free energy of the reaction steps. Finally, the rate-determining step of CO2 photoreduction and the charge change on Cu form an inverse volcano curve.

Abstract

Constructing a high-efficiency composite material for CO2 photoreduction is a key step to the achievement of carbon neutralization, but a comprehensive understanding of the factors that dictate CO2 reduction activity remains elusive. Here, we constructed a series of Cu in situ combined on Cu2O (Cu/Cu2O-1, -2, -3) via an acid disproportionation method with various processing time. The optimal photocatalyst (Cu/Cu2O-2) affords CO at a rate of 10.43 μmol·g−1·h−1​​​​​​​, which is more than fourfold to that of pristine Cu2O. Electron transfer in the samples was detected by X-ray absorption spectroscopy (XAS) as well as X-ray photoelectron spectroscopy (XPS). Interestingly, the best photoreduction performance was not achieved by the sample possessing the most electron transfer (Cu/Cu2O-1) but by the one with moderate electron transfer (Cu/Cu2O-2). By virtue of density functional theory (DFT) calculations, a linear relationship between Bader charge variation (Δq) of the active sites and adsorption energy of CO2 reduction intermediates was discovered, wherein the moderate charge transfer corresponds to appropriate adsorption energy, which benefits CO2 photoreduction activity substantially. This work provides guidance for the construction of composite catalysts for efficient CO2 photoreduction in a perspective of the quantity of electron transfer.

Electronic Supplementary Material

Download File(s)
12274_2022_4397_MOESM1_ESM.pdf (2.5 MB)

References

1

Jiang, Z. F.; Sun, H. L.; Wang, T.; Wang, B.; Wei, W.; Li, H. M.; Yuan, S. Q.; An, T. C.; Zhao, H. J.; Yu, J. G. et al. Nature-based catalyst for visible-light-driven photocatalytic CO2 reduction. Energy Environ. Sci. 2018, 11, 2382–2389.

2

Ran, J. R.; Jaroniec, M.; Qiao, S. Z. Cocatalysts in semiconductor-based photocatalytic CO2 reduction: Achievements, challenges, and opportunities. Adv. Mater. 2018, 30, 1704649.

3

Chueh, W. C.; Falter, C.; Abbott, M.; Scipio, D.; Furler, P.; Haile, S. M.; Steinfeld, A. High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria. Science 2010, 330, 1797–1801.

4

Jiang, M. P.; Huang, K. K.; Liu, J. H.; Wang, D.; Wang, Y.; Wang, X.; Li, Z. D.; Wang, X. Y.; Geng, Z. B.; Hou, X. Y. et al. Magnetic-field-regulated TiO2{100} facets: A strategy for C–C coupling in CO2 photocatalytic conversion. Chem 2020, 6, 2335–2346.

5

Vijay, S.; Ju, W.; Brückner, S.; Tsang, S. C.; Strasser, P.; Chan, K. Unified mechanistic understanding of CO2 reduction to CO on transition metal and single atom catalysts. Nat. Catal. 2021, 4, 1024–1031.

6

Yang, J.; Liu, W. G.; Xu, M. Q.; Liu, X. Y.; Qi, H. F.; Zhang, L. L.; Yang, X. F.; Niu, S. S.; Zhou, D.; Liu, Y. F. et al. Dynamic behavior of single-atom catalysts in electrocatalysis: Identification of Cu-N3 as an active site for the oxygen reduction reaction. J. Am. Chem. Soc. 2021, 143, 14530–14539.

7

Li, X. D.; Sun, Y. F.; Xu, J. Q.; Shao, Y. J.; Wu, J.; Xu, X. L.; Pan, Y.; Ju, H. X.; Zhu, J. F.; Xie, Y. Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers. Nat. Energy 2019, 4, 690–699.

8

Zhang, H. B.; Wang, Y.; Zuo, S. W.; Zhou, W.; Zhang, J.; Lou, X. W. D. Isolated cobalt centers on W18O49 nanowires perform as a reaction switch for efficient CO2 photoreduction. J. Am. Chem. Soc. 2021, 143, 2173–2177.

9

Bo, Y. N.; Gao, C.; Xiong, Y. J. Recent advances in engineering active sites for photocatalytic CO2 reduction. Nanoscale 2020, 12, 12196–12209.

10

Cao, Y. H.; Guo, L.; Dan, M.; Doronkin, D. E.; Han, C. Q.; Rao, Z. Q.; Liu, Y.; Meng, J.; Huang, Z. A.; Zheng, K. B. et al. Modulating electron density of vacancy site by single Au atom for effective CO2 photoreduction. Nat. Commun. 2021, 12, 1675.

11

Rej, S.; Bisetto, M.; Naldoni, A.; Fornasiero, P. Well-defined Cu2O photocatalysts for solar fuels and chemicals. J. Mater. Chem. A 2021, 9, 5915–5951.

12

Zhang, S.; Zhao, Y. X.; Shi, R.; Zhou, C.; Waterhouse, G. I. N.; Wang, Z.; Weng, Y. X.; Zhang, T. R. Sub-3 nm ultrafine Cu2O for visible light driven nitrogen fixation. Angew. Chem., Int. Ed. 2021, 60, 2554–2560.

13

Wan, L. L.; Zhou, Q. X.; Wang, X.; Wood, T. E.; Wang, L.; Duchesne, P. N.; Guo, J. L.; Yan, X. L.; Xia, M. K.; Li, Y. F. et al. Cu2O nanocubes with mixed oxidation-state facets for (photo)catalytic hydrogenation of carbon dioxide. Nat. Catal. 2019, 2, 889–898.

14

Wu, Y. A.; McNulty, I.; Liu, C.; Lau, K. C.; Liu, Q.; Paulikas, A. P.; Sun, C. J.; Cai, Z. H.; Guest, J. R.; Ren, Y. et al. Facet-dependent active sites of a single Cu2O particle photocatalyst for CO2 reduction to methanol. Nat. Energy 2019, 4, 957–968.

15

Singh, S.; Punia, R.; Pant, K. K.; Biswas, P. Effect of work-function and morphology of heterostructure components on CO2 reduction photo-catalytic activity of MoS2-Cu2O heterostructure. Chem. Eng. J. 2022, 433, 132709.

16

Wang, W.; Deng, C. Y.; Xie, S. J.; Li, Y. F.; Zhang, W. Y.; Sheng, H.; Chen, C. C.; Zhao, J. C. Photocatalytic C–C coupling from carbon dioxide reduction on copper oxide with mixed-valence copper(I)/copper(II). J. Am. Chem. Soc. 2021, 143, 2984–2993.

17

Wu, H.; Kong, X. Y.; Wen, X. M.; Chai, S. P.; Lovell, E. C.; Tang, J. T.; Ng, Y. H. Metal-organic framework decorated cuprous oxide nanowires for long-lived charges applied in selective photocatalytic CO2 reduction to CH4. Angew. Chem., Int. Ed. 2021, 60, 8455–8459.

18

Xue, Z. H.; Zhang, S. N.; Lin, Y. X.; Su, H.; Zhai, G. Y.; Han, J. T.; Yu, Q. Y.; Li, X. H.; Antonietti, M.; Chen, J. S. Electrochemical reduction of N2 into NH3 by donor–acceptor couples of Ni and Au nanoparticles with a 67.8% faradaic efficiency. J. Am. Chem. Soc. 2019, 141, 14976–14980.

19

Zang, Y. P.; Niu, S. W.; Wu, Y. S.; Zheng, X. S.; Cai, J. Y.; Ye, J.; Xie, Y. F.; Liu, Y.; Zhou, J. B.; Zhu, J. F. et al. Tuning orbital orientation endows molybdenum disulfide with exceptional alkaline hydrogen evolution capability. Nat. Commun. 2019, 10, 1217.

20

Xiong, X. Y.; Mao, C. L.; Yang, Z. J.; Zhang, Q. H.; Waterhouse, G. I. N.; Gu, L.; Zhang, T. R. Photocatalytic CO2 reduction to CO over Ni single atoms supported on defect-rich zirconia. Adv. Energy Mater. 2020, 10, 2002928.

21

Chen, M. X.; Wan, S. P.; Zhong, L. X.; Liu, D. B.; Yang, H. B.; Li, C. C.; Huang, Z. Q.; Liu, C. T.; Chen, J.; Pan, H. G. et al. Dynamic restructuring of Cu-doped SnS2 nanoflowers for highly selective electrochemical CO2 reduction to formate. Angew. Chem., Int. Ed. 2021, 60, 26233–26237.

22

Cong, Y. G.; Geng, Z. B.; Zhu, Q.; Hou, H. W.; Wu, X. F.; Wang, X. Y.; Huang, K. K.; Feng, S. H. Cation-exchange-induced metal and alloy dual-exsolution in perovskite ferrite oxides boosting the performance of Li-O2 battery. Angew. Chem., Int. Ed. 2021, 60, 23380–23387.

23

Li, W. D.; Zhao, Y. X.; Liu, Y.; Sun, M. Z.; Waterhouse, G. I. N.; Huang, B. L.; Zhang, K.; Zhang, T. R.; Lu, S. Y. Exploiting Ru-induced lattice strain in CoRu nanoalloys for robust bifunctional hydrogen production. Angew. Chem., Int. Ed. 2021, 60, 3290–3298.

24

Grimaud, A.; Diaz-Morales, O.; Han, B. H.; Hong, W. T.; Lee, Y. L.; Giordano, L.; Stoerzinger, K. A.; Koper, M. T. M.; Shao-Horn, Y. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 2017, 9, 457–465.

25

Fang, X. Z.; Shang, Q. C.; Wang, Y.; Jiao, L.; Yao, T.; Li, Y. F.; Zhang, Q.; Luo, Y.; Jiang, H. L. Single Pt atoms confined into a metal-organic framework for efficient photocatalysis. Adv. Mater. 2018, 30, 1705112.

26

Lu, X. Y.; Xie, J.; Chen, X. B.; Li, X. Engineering MPx (M = Fe, Co or Ni) interface electron transfer channels for boosting photocatalytic H2 evolution over g-C3N4/MoS2 layered heterojunctions. Appl. Catal. B:Environ. 2019, 252, 250–259.

27

Sa, Y. J.; Kim, J. H.; Joo, S. H. Active edge-site-rich carbon nanocatalysts with enhanced electron transfer for efficient electrochemical hydrogen peroxide production. Angew. Chem., Int. Ed. 2019, 58, 1100–1105.

28

Li, X.; Jiang, H. P.; Ma, C. C.; Zhu, Z.; Song, X. H.; Wang, H. O.; Huo, P. W.; Li, X. Y. Local surface plasma resonance effect enhanced Z-scheme ZnO/Au/g-C3N4 film photocatalyst for reduction of CO2 to CO. Appl. Catal. B: Environ. 2021, 283, 119638.

29

Yan, X. C.; Jia, Y.; Yao, X. D. Defective structures in metal compounds for energy-related electrocatalysis. Small Struct. 2021, 2, 2000067.

30

Chang, X. X.; Wang, T.; Zhao, Z. J.; Yang, P. P.; Greeley, J.; Mu, R. T.; Zhang, G.; Gong, Z. M.; Luo, Z. B.; Chen, J. et al. Tuning Cu/Cu2O interfaces for the reduction of carbon dioxide to methanol in aqueous solutions. Angew. Chem., Int. Ed. 2018, 57, 15415–15419.

31

Ravichandiran, C.; Sakthivelu, A.; Kumar, K. D. A.; Davidprabu, R.; Valanarasu, S.; Kathalingam, A.; Ganesh, V.; Shkir, M.; Algarni, H.; AlFaify, S. Influence of rare earth material (Sm3+) doping on the properties of electrodeposited Cu2O films for optoelectronics. J. Mater. Sci. Mater. Electron. 2019, 30, 2530–2537.

32

Li, H. F.; Liu, T. F.; Wei, P. F.; Lin, L.; Gao, D. F.; Wang, G. X.; Bao, X. H. High-rate CO2 electroreduction to C2+ products over a copper-copper iodide catalyst. Angew. Chem., Int. Ed. 2021, 60, 14329–14333.

33

Chanda, K.; Rej, S.; Huang, M. H. Facet-dependent catalytic activity of Cu2O nanocrystals in the one-pot synthesis of 1, 2, 3-triazoles by multicomponent click reactions. Chem. -Eur. J. 2013, 19, 16036–16043.

34

Ikuno, T.; Zheng, J.; Vjunov, A.; Sanchez-Sanchez, M.; Ortuño, M. A.; Pahls, D. R.; Fulton, J. L.; Camaioni, D. M.; Li, Z. Y.; Ray, D. et al. Methane oxidation to methanol catalyzed by Cu-oxo clusters stabilized in NU-1000 metal-organic framework. J. Am. Chem. Soc. 2017, 139, 10294–10301.

35

Zhang, W.; Huang, C. Q.; Zhu, J. X.; Zhou, Q. C.; Yu, R. H.; Wang, Y. L.; An, P. F.; Zhang, J.; Qiu, M.; Zhou, L. et al. Dynamic restructuring of coordinatively unsaturated copper paddle wheel clusters to boost electrochemical CO2 reduction to hydrocarbons. Angew. Chem., Int. Ed. 2021, 61, e202112116.

36

Zhang, Z. Y.; Wang, Z. L.; An, K.; Wang, J. M.; Zhang, S. R.; Song, P. F.; Bando, Y.; Yamauchi, Y.; Liu, Y. Ti3+ tuning the ratio of Cu+/Cu0 in the ultrafine Cu nanoparticles for boosting the hydrogenation reaction. Small 2021, 17, 2008052.

37

Li, M.; Hua, B.; Wang, L. C.; Sugar, J. D.; Wu, W.; Ding, Y.; Li, J.; Ding, D. Switching of metal-oxygen hybridization for selective CO2 electrohydrogenation under mild temperature and pressure. Nat. Catal. 2021, 4, 274–283.

38

Medford, A. J.; Vojvodic, A.; Hummelshøj, J. S.; Voss, J.; Abild-Pedersen, F.; Studt, F.; Bligaard, T.; Nilsson, A.; Nørskov, J. K. From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J. Catal. 2015, 328, 36–42.

39

Voiry, D.; Shin, H. S.; Loh, K. P.; Chhowalla, M. Low-dimensional catalysts for hydrogen evolution and CO2 reduction. Nat. Rev. Chem. 2018, 2, 0105.

40

Greeley, J.; Nørskov, J. K.; Mavrikakis, M. Electronic structure and catalysis on metal surfaces. Annu. Rev. Phys. Chem. 2002, 53, 319–348.

41

Chen, Z. Y.; Song, Y.; Cai, J. Y.; Zheng, X. S.; Han, D. D.; Wu, Y. S.; Zang, Y. P.; Niu, S. W.; Liu, Y.; Zhu, J. F. et al. Tailoring the d-band centers enables Co4N nanosheets to be highly active for hydrogen evolution catalysis. Angew. Chem., Int. Ed. 2018, 57, 5076–5080.

42

Zhang, J. Y.; Qian, J. M.; Ran, J. Q.; Xi, P. X.; Yang, L. J.; Gao, D. Q. Engineering lower coordination atoms onto NiO/Co3O4 heterointerfaces for boosting oxygen evolution reactions. ACS Catal. 2020, 10, 12376–12384.

43

Xiao, M. L.; Gao, L. Q.; Wang, Y.; Wang, X.; Zhu, J. B.; Jin, Z.; Liu, C. P.; Chen, H. Q.; Li, G. R.; Ge, J. J. et al. Engineering energy level of metal center: Ru single-atom site for efficient and durable oxygen reduction catalysis. J. Am. Chem. Soc. 2019, 141, 19800–19806.

Nano Research
Pages 7099-7106
Cite this article:
Zhu Q, Zhu K, Cai M, et al. Electron transfer in Cu/Cu2O generated by disproportionation promoting efficient CO2 photoreduction. Nano Research, 2022, 15(8): 7099-7106. https://doi.org/10.1007/s12274-022-4397-0
Topics:

833

Views

20

Crossref

20

Web of Science

22

Scopus

1

CSCD

Altmetrics

Received: 12 March 2022
Revised: 03 April 2022
Accepted: 05 April 2022
Published: 31 May 2022
© Tsinghua University Press 2022
Return