Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Metal-organic frameworks (MOFs) derived magnetic carbon-based nanocomposites have drawn widespread attentions due to the well distributed nanocrystals in carbon matrix. Dynamically observing the formation process is urgently needed. Herein, taking zeolitic imidazolate framework (ZIF)-67 as an example, the pyrolysis process is investigated by in-situ transmission electron microscopy (TEM) assisted with ex-situ characterizations. Co nanocrystals are evenly distributed in carbon at the initial stage of carbonization. By increasing pyrolysis temperature, the nanocrystals grow bigger and migrate to carbon surface. The carbon texture transfers from amorphous to crystalline at 600 °C, and thoroughly converts at 800 °C. In-situ heating TEM shows that more tiny Co nanocrystals move out from the carbon texture by increasing temperature from 700 to 800 °C. At 1,000 °C, some escaped tiny Co nanocrystals are volatilized and disappeared. The residual escaped Co nanocrystals catalyze the formation of carbon nanotubes (CNTs). Due to the synergistic effect between Co and carbon as well as porous structure, the nanocomposites show high-efficient microwave absorption performance, which can be tuned by pyrolysis temperature, heating rate, and mass fraction. When the mass fraction is 30 wt.%, the nanocomposites obtained at 600 or 700 °C display remarkable microwave absorption with optimal reflection loss (RL) smaller than −70 dB and effective absorption band larger than 4.9 GHz. Combining the in-situ and ex-situ techniques, some key findings were observed: (1) graphitization of carbon; (2) volatilization of Co nanocrystals; (3) formation process of CNTs by Co catalyst. These findings are helpful to understand the formation of MOFs derived carbon-based composites and expand their practical applications, especially for microwave absorption.
Yuan, S.; Feng, L.; Wang, K. C.; Pang, J. D.; Bosch, M.; Lollar, C.; Sun, Y. J.; Qin, J. S.; Yang, X. Y.; Zhang, P. et al. Stable metal-organic frameworks: Design, synthesis, and applications. Adv. Mater. 2018, 30, 1704303.
Safaei, M.; Foroughi, M. M.; Ebrahimpoor, N.; Jahani, S.; Omidi, A.; Khatami, M. A review on metal-organic frameworks: Synthesis and applications. TrAC Trends Anal. Chem. 2019, 118, 401–425.
Chueh, C. C.; Chen, C. I.; Su, Y. A.; Konnerth, H.; Gu, Y. J.; Kung, C. W.; Wu, K. C. W. Harnessing MOF materials in photovoltaic devices: Recent advances, challenges, and perspectives. J. Mater. Chem. A 2019, 7, 17079–17095.
Ouyang, J.; He, Z. L.; Zhang, Y.; Yang, H. M.; Zhao, Q. H. Trimetallic FeCoNi@C nanocomposite hollow spheres derived from metal-organic frameworks with superior electromagnetic wave absorption ability. ACS Appl. Mater. Interfaces 2019, 11, 39304–39314.
Gu, W. H.; Lv, J.; Quan, B.; Liang, X. H.; Zhang, B. S.; Ji, G. B. Achieving MOF-derived one-dimensional porous ZnO/C nanofiber with lightweight and enhanced microwave response by an electrospinning method. J. Alloys Compd. 2019, 806, 983–991.
Yan, J.; Huang, Y.; Han, X. P.; Gao, X. G.; Liu, P. B. Metal organic framework (ZIF-67)-derived hollow CoS2/N-doped carbon nanotube composites for extraordinary electromagnetic wave absorption. Compos. Part B:Eng. 2019, 163, 67–76.
Ren, S. S.; Duan, X. D.; Lei, M. Y.; Liang, S.; Zhang, M. D.; Zheng, H. G. Energetic MOF-derived cobalt/iron nitrides embedded into N, S-codoped carbon nanotubes as superior bifunctional oxygen catalysts for Zn-air batteries. Appl. Surf. Sci. 2021, 569, 151030.
Xu, X. Q.; Ran, F. T.; Fan, Z. M.; Cheng, Z. J.; Lv, T.; Shao, L.; Xie, Z. M.; Liu, Y. Y. Acidified bimetallic MOFs constructed Co/N co-doped low dimensional hybrid carbon networks for high-efficiency microwave absorption. Carbon 2021, 171, 211–220.
Liang, Z. B.; Qu, C.; Guo, W. H.; Zou, R. Q.; Xu, Q. Pristine metal-organic frameworks and their composites for energy storage and conversion. Adv. Mater. 2018, 30, 1702891.
Lin, J.; Reddy, R. C. K.; Zeng, C. H.; Lin, X. M.; Zeb, A.; Su, C. Y. Metal-organic frameworks and their derivatives as electrode materials for potassium ion batteries: A review. Coord. Chem. Rev. 2021, 446, 214118.
Hao, M. J.; Qiu, M. Q.; Yang, H.; Hu, B. W.; Wang, X. X. Recent advances on preparation and environmental applications of MOF-derived carbons in catalysis. Sci. Total Environ. 2021, 760, 143333.
Mamba, G.; Gangashe, G.; Moss, L.; Hariganesh, S.; Thakur, S.; Vadivel, S.; Mishra, A. K.; Vilakati, G. D.; Muthuraj, V.; Nkambule, T. T. I. State of the art on the photocatalytic applications of graphene based nanostructures: From elimination of hazardous pollutants to disinfection and fuel generation. J. Environ. Chem. Eng. 2020, 8, 103505.
Liu, W. B.; Zhou, J. B.; Liu, D.; Liu, S.; Liu, X. J.; Xiao, S.; Feng, C. J.; Leng, C. H. Fe-MOF by ligand selective pyrolysis for fenton-like process and photocatalysis: Accelerating effect of oxygen vacancy. J. Taiwan Inst. Chem. Eng. 2021, 127, 327–333.
Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067–2080.
Huang, M. Q.; Wang, L.; Pei, K.; You, W. B.; Yu, X. F.; Wu, Z. C.; Che, R. C. Multidimension-controllable synthesis of MOF-derived Co@N-doped carbon composite with magnetic-dielectric synergy toward strong microwave absorption. Small 2020, 16, 2000158.
Zhang, Z. W.; Cai, Z. H.; Wang, Z. Y.; Peng, Y. L.; Xia, L.; Ma, S. P.; Yin, Z. Z.; Huang, Y. A review on metal-organic framework-derived porous carbon-based novel microwave absorption materials. Nano-Micro Lett. 2021, 13, 56.
Li, B. Y.; Chrzanowski, M.; Zhang, Y. M.; Ma, S. Q. Applications of metal-organic frameworks featuring multi-functional sites. Coord. Chem. Rev. 2016, 307, 106–129.
Wu, G. L.; Cheng, Y. H.; Yang, Z. H.; Jia, Z. R.; Wu, H. J.; Yang, L. J.; Li, H. L.; Guo, P. Z.; Lv, H. L. Design of carbon sphere/magnetic quantum dots with tunable phase compositions and boost dielectric loss behavior. Chem. Eng. J. 2018, 333, 519–528.
Wang, B. C.; Zhang, C.; Mu, C. P.; Yang, R. L.; Xiang, J. Y.; Song, J. F.; Wen, F. S.; Liu, Z. Y. Enhanced electromagnetic wave absorption properties of NiCO2 nanoparticles interspersed with carbon nanotubes. J. Magn. Magn. Mater. 2019, 471, 185–191.
Kuang, B. Y.; Song, W. L.; Ning, M. Q.; Li, J. B.; Zhao, Z. J.; Guo, D. Y.; Cao, M. S.; Jin, H. B. Chemical reduction dependent dielectric properties and dielectric loss mechanism of reduced graphene oxide. Carbon 2018, 127, 209–217.
Sun, G. B.; Wu, H.; Liao, Q. L.; Zhang, Y. Enhanced microwave absorption performance of highly dispersed CoNi nanostructures arrayed on graphene. Nano Res. 2018, 11, 2689–2704.
Qiao, M. T.; Lei, X. F.; Ma, Y.; Tian, L. D.; He, X. W.; Su, K. H.; Zhang, Q. Y. Application of yolk–shell Fe3O4@N-doped carbon nanochains as highly effective microwave-absorption material. Nano Res. 2018, 11, 1500–1519.
Qiang, R.; Du, Y. C.; Chen, D. T.; Ma, W. J.; Wang, Y.; Xu, P.; Ma, J.; Zhao, H. T.; Han, X. J. Electromagnetic functionalized Co/C composites by in situ pyrolysis of metal-organic frameworks (ZIF-67). J. Alloys Compd. 2016, 681, 384–393.
Wu, Z. C.; Hu, W.; Huang, T.; Lan, P.; Tian, K.; Xie, F. F.; Li, L. Hierarchically porous carbons with controlled structures for efficient microwave absorption. J. Mater. Chem. C 2018, 6, 8839–8845.
Shu, J. C.; Yang, X. Y.; Zhang, X. R.; Huang, X. Y.; Cao, M. S.; Li, L.; Yang, H. J.; Cao, W. Q. Tailoring MOF-based materials to tune electromagnetic property for great microwave absorbers and devices. Carbon 2020, 162, 157–171.
Lü, Y. Y.; Wang, Y. T.; Li, H. L.; Lin, Y.; Jiang, Z. Y.; Xie, Z. X.; Kuang, Q.; Zheng, L. S. MOF-derived porous Co/C nanocomposites with excellent electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces 2015, 7, 13604–13611.
Wu, R. B.; Qian, X. K.; Rui, X. H.; Liu, H.; Yadian, B. L.; Zhou, K.; Wei, J.; Yan, Q. Y.; Feng, X. Q.; Long, Y. et al. Zeolitic imidazolate framework 67-derived high symmetric porous Co3O4 hollow dodecahedra with highly enhanced lithium storage capability. Small 2014, 10, 1932–1938.
Liu, C.; Qiao, J.; Zhang, X.; Xu, D. M.; Wu, N. N.; Lv, L. F.; Liu, W.; Liu, J. R. Bimetallic MOF-derived porous CoNi/C nanocomposites with ultra-wide band microwave absorption properties. New J. Chem. 2019, 43, 16546–16554.
Xu, H. L.; Yin, X. W.; Fan, X. M.; Tang, Z. M.; Hou, Z. X.; Li, M. H.; Li, X. L.; Zhang, L. T.; Cheng, L. F. Constructing a tunable heterogeneous interface in bimetallic metal-organic frameworks derived porous carbon for excellent microwave absorption performance. Carbon 2019, 148, 421–429.
Xiao, X. Y.; Zhu, W. J.; Tan, Z.; Tian, W.; Guo, Y.; Wang, H.; Fu, J. N.; Jian, X. Ultra-small Co/CNTs nanohybrid from metal organic framework with highly efficient microwave absorption. Compos. Part B:Eng. 2018, 152, 316–323.
Nicolson, A. M.; Ross, G. F. Measurement of the intrinsic properties of materials by time-domain techniques. IEEE Trans. Instrum. Meas. 1970, 19, 377–382.
Wang, Z. L.; Ke, X. X.; Zhou, K. L.; Xu, X. L.; Jin, Y. H.; Wang, H.; Sui, M. L. Engineering the structure of ZIF-derived catalysts by revealing the critical role of temperature for enhanced oxygen reduction reaction. J. Mater. Chem. A 2021, 9, 18515–18525.
Chen, G. Y.; He, S.; Shi, G. B.; Ma, Y. S.; Ruan, C. C.; Jin, X.; Chen, Q. L.; Liu, X. Y.; Dai, H. M.; Chen, X. F. et al. In-situ immobilization of ZIF-67 on wood aerogel for effective removal of tetracycline from water. Chem. Eng. J. 2021, 423, 130184.
Qian, J. F.; Sun, F. A.; Qin, L. Z. Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. Mater. Lett. 2012, 82, 220–223.
Al Rsheed, A.; Aldawood, S.; Aldossary, O. M. The size and shape effects on the melting point of nanoparticles based on the lennard-jones potential function. Nanomaterials 2021, 11, 2916.
Pawlow, P. Über die Abhängigkeit des Schmelzpunktes von der Oberflächenenergie eines festen Körpers (Zusatz.). Z. Phys. Chem. 1909, 65U, 545–548.
Li, X. H.; Wang, J. J.; Liu, X.; Liu, L. M.; Cha, D.; Zheng, X. L.; Yousef, A. A.; Song, K. P.; Zhu, Y. H.; Zhang, D. L. et al. Direct imaging of tunable crystal surface structures of MOF MIL-101 using high-resolution electron microscopy. J. Am. Chem. Soc. 2019, 141, 12021–12028.
Zhu, Y. H.; Ciston, J.; Zheng, B.; Miao, X. H.; Czarnik, C.; Pan, Y. C.; Sougrat, R.; Lai, Z. P.; Hsiung, C. E.; Yao, K. X. et al. Unravelling surface and interfacial structures of a metal-organic framework by transmission electron microscopy. Nat. Mater. 2017, 16, 532–536.
Zhang, D. L.; Zhu, Y. H.; Liu, L. M.; Ying, X. R.; Hsiung, C. E.; Sougrat, R.; Li, K.; Han, Y. Atomic-resolution transmission electron microscopy of electron beam-sensitive crystalline materials. Science 2018, 359, 675–679.
Li, Z. X.; Li, X. H.; Zong, Y.; Tan, G. G.; Sun, Y.; Lan, Y. Y.; He, M.; Ren, Z. Y.; Zheng, X. L. Solvothermal synthesis of nitrogen-doped graphene decorated by superparamagnetic Fe3O4 nanoparticles and their applications as enhanced synergistic microwave absorbers. Carbon 2017, 115, 493–502.
Wang, Y. J.; Sun, Y.; Zong, Y.; Zhu, T. G.; Zhang, L. X.; Li, X. H.; Xing, H. N.; Zheng, X. L. Carbon nanofibers supported by FeCo nanocrystals as difunctional magnetic/dielectric composites with broadband microwave absorption performance. J. Alloys Compd. 2020, 824, 153980.
Xu, H. L.; Yin, X. W.; Zhu, M.; Li, M. H.; Zhang, H.; Wei, H. J.; Zhang, L. T.; Cheng, L. F. Constructing hollow graphene nano-spheres confined in porous amorphous carbon particles for achieving full X band microwave absorption. Carbon 2019, 142, 346–353.
Wang, L.; Du, Z.; Bai, X. Y.; Lin, Y. Constructing macroporous C/Co composites with tunable interfacial polarization toward ultra-broadband microwave absorption. J. Colloid Interface Sci. 2021, 591, 76–84.
Feng, J.; Zong, Y.; Sun, Y.; Zhang, Y.; Yang, X.; Long, G. K.; Wang, Y.; Li, X. H.; Zheng, X. L. Optimization of porous FeNi3/N-GN composites with superior microwave absorption performance. Chem. Eng. J. 2018, 345, 441–451.
Yang, Z. H.; Lv, H. L.; Wu, R. B. Rational construction of graphene oxide with MOF-derived porous NiFe@C nanocubes for high-performance microwave attenuation. Nano Res. 2016, 9, 3671–3682.
Zhang, W. D.; Zhang, X.; Zhu, Q.; Zheng, Y.; Liotta, L. F.; Wu, H. J. High-efficiency and wide-bandwidth microwave absorbers based on MoS2-coated carbon fiber. J. Colloid Interface Sci. 2021, 586, 457–468.
Chen, H. H.; Ma, W. L.; Huang, Z. Y.; Zhang, Y.; Huang, Y.; Chen, Y. S. Graphene-based materials toward microwave and terahertz absorbing stealth technologies. Adv. Opt. Mater. 2019, 7, 1801318.
Wang, Y. L.; Yang, S. H.; Wang, H. Y.; Wang, G. S.; Sun, X. B.; Yin, P. G. Hollow porous CoNi/C composite nanomaterials derived from MOFs for efficient and lightweight electromagnetic wave absorber. Carbon 2020, 167, 485–494.
Cui, X. Q.; Liu, W.; Gu, W. H.; Liang, X.; Ji, G. B. Two-dimensional MoS2 modified using CoFe2O4 nanoparticles with enhanced microwave response in the X and Ku band. Inorg. Chem. Front. 2019, 6, 590–597.
Gao, S.; Yang, S. H.; Wang, H. Y.; Wang, G. S.; Yin, P. G.; Zhang, X. J. CoNi alloy with tunable magnetism encapsulated by N-doped carbon nanosheets toward high-performance microwave attenuation. Compos. Part B:Eng. 2021, 215, 108781.
Liu, X. F.; Hao, C. V.; He, L. H.; Yang, C.; Chen, Y. B.; Jiang, C. B.; Yu, R. H. Yolk–shell structured Co-C/Void/Co9S8 composites with a tunable cavity for ultrabroadband and efficient low-frequency microwave absorption. Nano Res. 2018, 11, 4169–4182.