Journal Home > Volume 15 , Issue 8

Atomic-layered hexagonal boron nitride (hBN) is expected to be the best two-dimensional (2D) anti-oxidation layer on metals for its incomparable impermeability, insulativity, and stability, as well as the progressive bottom-up growth techniques to ensure fast coating on metal surface in large area. However, its real anti-oxidation ability in practice is found to be unsatisfactory and nonuniform, and the main obstacle to achieving ideal anti-oxidation performance lies in unclear anti-oxidation behavior at special interface between 2D hBN and three-dimensional (3D) metals. Herein, system of monolayer hBN grown on copper (Cu) foils with various lattice orientations was grown to investigate the anti-oxidation behavior of different interlayer configurations. By using structural characterizations together with analysis of topography, we surprisingly found that stronger interlayer coupling led to worse anti-oxidation performance owing to fast diffusion of O2 through higher hBN corrugations generated at the commensurate hBN/Cu(111) configuration. In view of this, we developed the approach of cyclic reannealing that can effectively flatten corrugations and steps, and therefore improve the anti-oxidation performance to a great extent. This work provides a more in-depth understanding of anti-oxidation behavior of 2D materials grown on 3D metals, and a practical method to pave the way for its large-scale applications in future.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Abnormal anti-oxidation behavior of hexagonal boron nitride grown on copper

Show Author's information Li Wang1,2,§( )Jiajie Qi1,§Shuai Zhang3,§Mingchao Ding2Wei Wei4Jinhuan Wang1,5Zhihong Zhang1Ruixi Qiao6Zhibin Zhang1Zehui Li1Kehai Liu7Ying Fu7Hao Hong1Can Liu1Muhong Wu6Wenlong Wang2Jun He8Yi Cui4Qunyang Li3( )Xuedong Bai2,9( )Kaihui Liu1,6( )
State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Department of Engineering Mechanics, State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing 100871, China
Songshan Lake Materials Laboratory, Institute of Physics, Chinese Academy of Sciences, Dongguan 523808, China
CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

§ Li Wang, Jiajie Qi, and Shuai Zhang contributed equally to this work.

Abstract

Atomic-layered hexagonal boron nitride (hBN) is expected to be the best two-dimensional (2D) anti-oxidation layer on metals for its incomparable impermeability, insulativity, and stability, as well as the progressive bottom-up growth techniques to ensure fast coating on metal surface in large area. However, its real anti-oxidation ability in practice is found to be unsatisfactory and nonuniform, and the main obstacle to achieving ideal anti-oxidation performance lies in unclear anti-oxidation behavior at special interface between 2D hBN and three-dimensional (3D) metals. Herein, system of monolayer hBN grown on copper (Cu) foils with various lattice orientations was grown to investigate the anti-oxidation behavior of different interlayer configurations. By using structural characterizations together with analysis of topography, we surprisingly found that stronger interlayer coupling led to worse anti-oxidation performance owing to fast diffusion of O2 through higher hBN corrugations generated at the commensurate hBN/Cu(111) configuration. In view of this, we developed the approach of cyclic reannealing that can effectively flatten corrugations and steps, and therefore improve the anti-oxidation performance to a great extent. This work provides a more in-depth understanding of anti-oxidation behavior of 2D materials grown on 3D metals, and a practical method to pave the way for its large-scale applications in future.

Keywords: hexagonal boron nitride, anti-oxidation of metals, nanoscale corrugation, cyclic reannealing method

References(38)

1

Pryor, M. J. Cathodic protection of iron. Nature 1956, 178, 1245–1246.

2

Su, Y.; Kravets, V. G.; Wong, S. L.; Waters, J.; Geim, A. K.; Nair, R. R. Impermeable barrier films and protective coatings based on reduced graphene oxide. Nat. Commun. 2014, 5, 4843.

3

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

4

Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722–726.

5

Hu, S.; Lozada-Hidalgo, M.; Wang, F. C.; Mishchenko, A.; Schedin, F.; Nair, R. R.; Hill, E. W.; Boukhvalov, D. W.; Katsnelson, M. I.; Dryfe, R. A. W. et al. Proton transport through one-atom-thick crystals. Nature 2014, 516, 227–230.

6

Cai, Q. R.; Scullion, D.; Gan, W.; Falin, A.; Zhang, S. Y.; Watanabe, K.; Taniguchi, T.; Chen, Y.; Santos, E. J. G.; Li, L. H. High thermal conductivity of high-quality monolayer boron nitride and its thermal expansion. Sci. Adv. 2019, 5, eaav0129.

7

Kubota, Y.; Watanabe, K.; Tsuda, O.; Taniguchi, T. Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 2007, 317, 932–934.

8

Cassabois, G.; Valvin, P.; Gil, B. Hexagonal boron nitride is an indirect bandgap semiconductor. Nat. Photonics 2016, 10, 262–266.

9

Li, L. H.; Chen, Y. Atomically thin boron nitride: Unique properties and applications. Adv. Funct. Mater. 2016, 26, 2594–2608.

10

Lu, G. Y.; Wu, T. R.; Yuan, Q. H.; Wang, H. S.; Wang, H. M.; Ding, F.; Xie, X. M.; Jiang, M. H. Synthesis of large single-crystal hexagonal boron nitride grains on Cu-Ni alloy. Nat. Commun. 2015, 6, 6160.

11

Lee, J. S.; Choi, S. H.; Yun, S. J.; Kim, Y. I.; Boandoh, S.; Park, J. H.; Shin, B. G.; Ko, H.; Lee, S. H.; Kim, Y. M. et al. Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain formation. Science 2018, 362, 817–821.

12

Wang, L.; Xu, X. Z.; Zhang, L. N.; Qiao, R. X.; Wu, M. H.; Wang, Z. C.; Zhang, S.; Liang, J.; Zhang, Z. H.; Zhang, Z. B. et al. Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Nature 2019, 570, 91–95.

13

Chen, T. A.; Chuu, C. P.; Tseng, C. C.; Wen, C. K.; Wong, H. S. P.; Pan, S. Y.; Li, R. T.; Chao, T. A.; Chueh, W. C.; Zhang, Y. F. et al. Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111). Nature 2020, 579, 219–223.

14

Liu, C.; Wang, L.; Qi, J. J.; Liu, K. H. Designed growth of large-size 2D single crystals. Adv. Mater. 2020, 32, 2000046.

15

Husain, E.; Narayanan, T. N.; Taha-Tijerina, J. J.; Vinod, S.; Vajtai, R.; Ajayan, P. M. Marine corrosion protective coatings of hexagonal boron nitride thin films on stainless steel. ACS Appl. Mater. Interfaces 2013, 5, 4129–4135.

16

Liu, Z.; Gong, Y. J.; Zhou, W.; Ma, L. L.; Yu, J. J.; Idrobo, J. C.; Jung, J.; MacDonald, A. H.; Vajtai, R.; Lou, J. et al. Ultrathin high-temperature oxidation-resistant coatings of hexagonal boron nitride. Nat. Commun. 2013, 4, 2541.

17

Jiang, L. L.; Xiao, N.; Wang, B. R.; Grustan-Gutierrez, E.; Jing, X.; Babor, P.; Kolíbal, M.; Lu, G. Y.; Wu, T. R.; Wang, H. M. et al. High-resolution characterization of hexagonal boron nitride coatings exposed to aqueous and air oxidative environments. Nano Res. 2017, 10, 2046–2055.

18

Khan, M. H.; Jamali, S. S.; Lyalin, A.; Molino, P. J.; Jiang, L.; Liu, H. K.; Taketsugu, T.; Huang, Z. G. Atomically thin hexagonal boron nitride nanofilm for Cu protection: The importance of film perfection. Adv. Mater. 2017, 29, 1603937.

19

Chilkoor, G.; Karanam, S. P.; Star, S.; Shrestha, N.; Sani, R. K.; Upadhyayula, V. K. K.; Ghoshal, D.; Koratkar, N. A.; Meyyappan, M.; Gadhamshetty, V. Hexagonal boron nitride: The thinnest insulating barrier to microbial corrosion. ACS Nano 2018, 12, 2242–2252.

20

Chilkoor, G.; Jawaharraj, K.; Vemuri, B.; Kutana, A.; Tripathi, M.; Kota, D.; Arif, T.; Filleter, T.; Dalton, A. B.; Yakobson, B. I. et al. Hexagonal boron nitride for sulfur corrosion inhibition. ACS Nano 2020, 14, 14809–14819.

21

Liu, G. Z.; Wang, J.; Ge, Y. H.; Wang, Y. J.; Lu, S. Q.; Zhao, Y.; Tang, Y.; Soomro, A. M.; Hong, Q. M.; Yang, X. D. et al. Cu nanowires passivated with hexagonal boron nitride: An ultrastable, selectively transparent conductor. ACS Nano 2020, 14, 6761–6773.

22

Ma, C. X.; Park, J.; Liu, L.; Kim, Y. S.; Yoon, M.; Baddorf, A. P.; Gu, G.; Li, A. P. Interplay between intercalated oxygen superstructures and monolayer h-BN on Cu(100). Phys. Rev. B 2016, 94, 064106.

23

Xu, X. Z.; Yi, D.; Wang, Z. C.; Yu, J. C.; Zhang, Z. H.; Qiao, R. X.; Sun, Z. H.; Hu, Z. H.; Gao, P.; Peng, H. L. et al. Greatly enhanced anticorrosion of Cu by commensurate graphene coating. Adv. Mater. 2018, 30, 1702944.

24

Li, J. D.; Li, Y.; Yin, J.; Ren, X. B.; Liu, X. F.; Jin, C. H.; Guo, W. L. Growth of polar hexagonal boron nitride monolayer on nonpolar copper with unique orientation. Small 2016, 12, 3645–3650.

25

Zhang, Z. B.; Xu, X. Z.; Zhang, Z. H.; Wu, M. H.; Wang, J. H.; Liu, C.; Shang, N. Z.; Wang, J. X.; Gao, P.; Yu, D. P. et al. Identification of copper surface index by optical contrast. Adv. Mater. Interfaces 2018, 5, 1800377.

26

Yin, X. L.; Li, Y. L.; Ke, F.; Lin, C. F.; Zhao, H. B.; Gan, L.; Luo, Z. T.; Zhao, R. G.; Heinz, T. F.; Hu, Z. H. Evolution of the Raman spectrum of graphene grown on copper upon oxidation of the substrate. Nano Res. 2014, 7, 1613–1622.

27

Galbiati, M.; Stoot, A. C.; Mackenzie, D. M. A.; Bøggild, P.; Camilli, L. Real-time oxide evolution of copper protected by graphene and boron nitride barriers. Sci. Rep. 2017, 7, 39770.

28

Roth, S.; Matsui, F.; Greber, T.; Osterwalder, J. Chemical vapor deposition and characterization of aligned and incommensurate graphene/hexagonal boron nitride heterostack on Cu(111). Nano Lett. 2013, 13, 2668–2675.

29

Shin, H. C.; Jang, Y.; Kim, T. H.; Lee, J. H.; Oh, D. H.; Ahn, S. J.; Lee, J. H.; Moon, Y.; Park, J. H.; Yoo, S. J. et al. Epitaxial growth of a single-crystal hybridized boron nitride and graphene layer on a wide-band gap semiconductor. J. Am. Chem. Soc. 2015, 137, 6897–6905.

30

Woods, C. R.; Britnell, L.; Eckmann, A.; Ma, R. S.; Lu, J. C.; Guo, H. M.; Lin, X.; Yu, G. L.; Cao, Y.; Gorbachev, R. V. et al. Commensurate-incommensurate transition in graphene on hexagonal boron nitride. Nat. Phys. 2014, 10, 451–456.

31

Corso, M.; Auwärter, W.; Muntwiler, M.; Tamai, A.; Greber, T.; Osterwalder, J. Boron nitride nanomesh. Science 2004, 303, 217–220.

32

Laskowski, R.; Blaha, P.; Gallauner, T.; Schwarz, K. Single-layer model of the hexagonal boron nitride nanomesh on the Rh(111) surface. Phys. Rev. Lett. 2007, 98, 106802.

33

Preobrajenski, A. B.; Vinogradov, A. S.; Ng, M. L.; Ćavar, E.; Westerström, R.; Mikkelsen, A.; Lundgren, E.; Mårtensson, N. Influence of chemical interaction at the lattice-mismatched h-BN/Rh(111) and h-BN/Pt(111) interfaces on the overlayer morphology. Phys. Rev. B 2007, 75, 245412.

34

Joshi, S.; Ecija, D.; Koitz, R.; Iannuzzi, M.; Seitsonen, A. P.; Hutter, J.; Sachdev, H.; Vijayaraghavan, S.; Bischoff, F.; Seufert, K. et al. Boron nitride on Cu(111): An electronically corrugated monolayer. Nano Lett. 2012, 12, 5821–5828.

35

Schwarz, M.; Riss, A.; Garnica, M.; Ducke, J.; Deimel, P. S.; Duncan, D. A.; Thakur, P. K.; Lee, T. L.; Seitsonen, A. P.; Barth, J. V. et al. Corrugation in the weakly interacting hexagonal-BN/Cu(111) system: Structure determination by combining noncontact atomic force microscopy and X-ray standing waves. ACS Nano 2017, 11, 9151–9161.

36

Vallejos-Burgos, F.; Coudert, F. X.; Kaneko, K. Air separation with graphene mediated by nanowindow-rim concerted motion. Nat. Commun. 2018, 9, 1812.

37

Lin, J. J.; Tay, R. Y.; Li, H. L.; Jing, L.; Tsang, S. H.; Wang, H.; Zhu, M. M.; McCulloch, D. G.; Teo, E. H. T. Smoothening of wrinkles in CVD-grown hexagonal boron nitride films. Nanoscale 2018, 10, 16243–16251.

38

Yi, D.; Luo, D.; Wang, Z. J.; Dong, J. C.; Zhang, X.; Willinger, M. G.; Ruoff, R. S.; Ding, F. What drives metal-surface step bunching in graphene chemical vapor deposition. Phys. Rev. Lett. 2018, 120, 246101.

File
12274_2022_4388_MOESM1_ESM.pdf (2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 20 December 2021
Revised: 15 March 2022
Accepted: 05 April 2022
Published: 31 May 2022
Issue date: August 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the Guangdong Major Project of Basic and Applied Basic Research (2021B0301030002), the National Natural Science Foundation of China (Nos. 52025023, 51991342, 52021006, 11888101, 12025203, and 12104493), the Key Research & Development Program of Guangdong Province (Nos. 2020B010189001, 2019B010931001, and 2018B030327001), the Strategic Priority Research Program of Chinese Academy of Sciences (Nos. XDB33000000 and XDB33030200), Beijing Natural Science Foundation (No. JQ19004), Natural Science Foundation of Jiangsu Province (No. BK20170426), the Initiative Program of State Key Laboratory of Tribology (No. SKLT2019B02), the National Key R&D Program of China (No. 2018YFA0703700), Program from Chinese Academy of Sciences (No. E0K5231B11), and the Pearl River Talent Recruitment Program of Guangdong Province (No. 2019ZT08C321). The authors are grateful for the support from the Electron Microscopy Laboratory in Peking University for the use of electron microscope, and the Vacuum Interconnected Nanotech Workstation (NANO-X) of Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences.

Return