Journal Home > Volume 15 , Issue 8

Because of profound applications of two-dimensional molybdenum disulfide (MoS2) and its heterostructures in electronics, its thermal stability has been spurred substantial interest. We employ a precision muffle furnace at a series of increasing temperatures up to 340 °C to study the oxidation behavior of continuous MoS2 films by either directly growing mono- and few-layer MoS2 on SiO2/Si substrate, or by mechanically transferring monolayer MoS2 or hexagonal boron nitride (h-BN) onto monolayer MoS2 substrate. Results show that monolayer MoS2 can withstand high temperature at 340 °C with less oxidation while the few-layer MoS2 films are completely oxidized just at 280 °C, resulting from the growth-induced tensile strain in few-layer MoS2. When the tensile strain of films is released by transfer method, the stacked few-layer MoS2 films exhibit superior thermal stability and typical layer-by-layer oxidation behavior at similarly high temperature. Counterintuitively, for the MoS2/h-BN heterostructure, the h-BN film itself stacked on top is not damaged and forms many bubbles at 340 °C, whereas the underlying monolayer MoS2 film is oxidized completely. By comprehensively using various experimental characterization and molecular dynamics calculations, such anomalous oxidation behavior of MoS2/h-BN heterostructure is mainly due to the increased tensile strain in MoS2 film at elevated temperature.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Anomalous enhancement oxidation of few-layer MoS2 and MoS2/h-BN heterostructure

Show Author's information Siming Ren1( )Yanbin Shi1Chaozhi Zhang1Mingjun Cui2Jibin Pu1( )
Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
Key Laboratory of Impact and Safety Engineering, Ministry of Education of China, School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, China

Abstract

Because of profound applications of two-dimensional molybdenum disulfide (MoS2) and its heterostructures in electronics, its thermal stability has been spurred substantial interest. We employ a precision muffle furnace at a series of increasing temperatures up to 340 °C to study the oxidation behavior of continuous MoS2 films by either directly growing mono- and few-layer MoS2 on SiO2/Si substrate, or by mechanically transferring monolayer MoS2 or hexagonal boron nitride (h-BN) onto monolayer MoS2 substrate. Results show that monolayer MoS2 can withstand high temperature at 340 °C with less oxidation while the few-layer MoS2 films are completely oxidized just at 280 °C, resulting from the growth-induced tensile strain in few-layer MoS2. When the tensile strain of films is released by transfer method, the stacked few-layer MoS2 films exhibit superior thermal stability and typical layer-by-layer oxidation behavior at similarly high temperature. Counterintuitively, for the MoS2/h-BN heterostructure, the h-BN film itself stacked on top is not damaged and forms many bubbles at 340 °C, whereas the underlying monolayer MoS2 film is oxidized completely. By comprehensively using various experimental characterization and molecular dynamics calculations, such anomalous oxidation behavior of MoS2/h-BN heterostructure is mainly due to the increased tensile strain in MoS2 film at elevated temperature.

Keywords: molybdenum disulfide, heterostructure, hexagonal boron nitride, tensile strain, enhancement oxidation

References(55)

1

Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

2

Sangwan, V. K.; Lee, H. S.; Bergeron, H.; Balla, I.; Beck, M. E.; Chen, K. S.; Hersam, M. C. Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature 2018, 554, 500–504.

3

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

4

Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

5

Qiu, H.; Pan, L. J.; Yao, Z. N.; Li, J. J.; Shi, Y.; Wang, X. R. Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances. Appl. Phys. Lett. 2012, 100, 123104.

6

Tongay, S.; Zhou, J.; Ataca, C.; Liu, J.; Kang, J. S.; Matthews, T. S.; You, L.; Li, J. B.; Grossman, J. C.; Wu, J. Q. Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano Lett. 2013, 13, 2831–2836.

7

Lee, G. H.; Yu, Y. J.; Cui, X.; Petrone, N.; Lee, C. H.; Choi, M. S.; Lee, D. Y.; Lee, C.; Yoo, W. J.; Watanabe, K. et al. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride–graphene heterostructures. ACS Nano 2013, 7, 7931–7936.

8

Budania, P.; Baine, P.; Montgomery, J.; McGeough, C.; Cafolla, T.; Modreanu, M.; McNeill, D.; Mitchell, N.; Hughes, G.; Hurley, P. Long-term stability of mechanically exfoliated MoS2 flakes. MRS Commun. 2017, 7, 813–818.

9

Femi-Oyetoro, J.; Yao, K.; Hathaway, E.; Jiang, Y.; Ojo, I.; Squires, B.; Neogi, A.; Cui, J. B.; Philipose, U.; Gadiyaram, N. K. et al. Structural stability of bilayer MoS2 in ambient air. Adv. Mater. Interfaces 2021, 8, 2101188.

10

Yalon, E.; McClellan, C. J.; Smithe, K. K. H.; Rojo, M. M.; Xu, R. L.; Suryavanshi, S. V.; Gabourie, A. J.; Neumann, C. M.; Xiong, F.; Farimani, A. B. et al. Energy dissipation in monolayer MoS2 electronics. Nano Lett. 2017, 17, 3429–3433.

11

Park, S.; Garcia-Esparza, A. T.; Abroshan, H.; Abraham, B.; Vinson, J.; Gallo, A.; Nordlund, D.; Park, J.; Kim, T. R.; Vallez, L. et al. Operando study of thermal oxidation of monolayer MoS2. Adv. Sci. 2021, 8, 2002768.

12

Lu, X.; Utama, M. I. B.; Zhang, J.; Zhao, Y. Y.; Xiong, Q. H. Layer-by-layer thinning of MoS2 by thermal annealing. Nanoscale 2013, 5, 8904–8908.

13

Wu, J.; Li, H.; Yin, Z. Y.; Li, H.; Liu, J. Q.; Cao, X. H.; Zhang, Q.; Zhang, H. Layer thinning and etching of mechanically exfoliated MoS2 nanosheets by thermal annealing in air. Small 2013, 9, 3314–3319.

14

Yoon, A.; Kim, J. H.; Yoon, J.; Lee, Y.; Lee, Z. van der Waals epitaxial formation of atomic layered α-MoO3 on MoS2 by oxidation. ACS Appl. Mater. Interfaces 2020, 12, 22029–22036.

15

Lin, Y. K.; Chen, R. S.; Chou, T. C.; Lee, Y. H.; Chen, Y. F.; Chen, K. H.; Chen, L. C. Thickness-dependent binding energy shift in few-layer MoS2 grown by chemical vapor deposition. ACS Appl. Mater. Interfaces 2016, 8, 22637–22646.

16

Zhou, H. Q.; Yu, F.; Liu, Y. Y.; Zou, X. L.; Cong, C. X.; Qiu, C. Y.; Yu, T.; Yan, Z.; Shen, X. N.; Sun, L. F. et al. Thickness-dependent patterning of MoS2 sheets with well-oriented triangular pits by heating in air. Nano Res. 2013, 6, 703–711.

17

Spychalski, W. L.; Pisarek, M.; Szoszkiewicz, R. Microscale insight into oxidation of single MoS2 crystals in air. J. Phys. Chem. C 2017, 121, 26027–26033.

18

Yamamoto, M.; Einstein, T. L.; Fuhrer, M. S.; Cullen, W. G. Anisotropic etching of atomically thin MoS2. J. Phys. Chem. C 2013, 117, 25643–25649.

19

Ryu, Y.; Kim, W.; Koo, S.; Kang, H.; Watanabe, K.; Taniguchi, T.; Ryu, S. Interface-confined doubly anisotropic oxidation of two-dimensional MoS2. Nano Lett. 2017, 17, 7267–7273.

20

Lee, Y. H.; Zhang, X. Q.; Zhang, W. J.; Chang, M. T.; Lin, C. T.; Chang, K. D.; Yu, Y. C.; Wang, J. T. W.; Chang, C. S.; Li, L. J. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 2012, 24, 2320–2325.

21

Ly, T. H.; Chiu, M. H.; Li, M. Y.; Zhao, J.; Perello, D. J.; Cichocka, M. O.; Oh, H. M.; Chae, S. H.; Jeong, H. Y.; Yao, F. et al. Observing grain boundaries in CVD-grown monolayer transition metal dichalcogenides. ACS Nano 2014, 8, 11401–11408.

22

Gao, J.; Li, B. C.; Tan, J. W.; Chow, P.; Lu, T. M.; Koratkar, N. Aging of transition metal dichalcogenide monolayers. ACS Nano 2016, 10, 2628–2635.

23

Ionescu, R.; George, A.; Ruiz, I.; Favors, Z.; Mutlu, Z.; Liu, C.; Ahmed, K.; Wu, R.; Jeong, J. S.; Zavala, L. et al. Oxygen etching of thick MoS2 films. Chem. Commun. 2014, 50, 11226–11229.

24

Lee, G. H.; Cui, X.; Kim, Y. D.; Arefe, G.; Zhang, X.; Lee, C. H.; Ye, F.; Watanabe, K.; Taniguchi, T.; Kim, P. et al. Highly stable, dual-gated MoS2 transistors encapsulated by hexagonal boron nitride with gate-controllable contact, resistance, and threshold voltage. ACS Nano 2015, 9, 7019–7026.

25

Yao, K.; Femi-Oyetoro, J. D.; Yao, S.; Jiang, Y.; El Bouanani, L.; Jones, D. C.; Ecton, P. A.; Philipose, U.; El Bouanani, M.; Rout, B. et al. Rapid ambient degradation of monolayer MoS2 after heating in air. 2D Mater. 2020, 7, 015024.

26

Şar, H.; Özden, A.; Demiroğlu, İ.; Sevik, C.; Perkgoz, N. K.; Ay, F. Long-term stability control of CVD-grown monolayer MoS2. Phys. Status Solidi RRL 2019, 13, 1800687.

27

Rao, R.; Islam, A. E.; Campbell, P. M.; Vogel, E. M.; Maruyama, B. In situ thermal oxidation kinetics in few layer MoS2. 2D Mater. 2017, 4, 025058.

28

Lin, T. Z.; Kang, B. T.; Jeon, M.; Huffman, C.; Jeon, J.; Lee, S.; Han, W.; Lee, J.; Lee, S.; Yeom, G. et al. Controlled layer-by-layer etching of MoS2. ACS Appl. Mater. Interfaces 2015, 7, 15892–15897.

29

Ren, S. M.; Cui, M. J.; Pu, J. B.; Xue, Q. J.; Wang, L. P. Multilayer regulation of atomic boron nitride films to improve oxidation and corrosion resistance of Cu. ACS Appl. Mater. Interfaces 2017, 9, 27152–27165.

30

Dumcenco, D.; Ovchinnikov, D.; Marinov, K.; Lazić, P.; Gibertini, M.; Marzari, N.; Sanchez, O. L.; Kung, Y. C.; Krasnozhon, D.; Chen, M. W. et al. Large-area epitaxial monolayer MoS2. ACS Nano 2015, 9, 4611–4620.

31

Liang, T.; Phillpot, S. R.; Sinnott, S. B. Parametrization of a reactive many-body potential for Mo–S systems. Phys. Rev. B 2009, 79, 245110.

32

Kınacı, A.; Haskins, J. B.; Sevik, C. Çağın, T. Thermal conductivity of BN-C nanostructures. Phys. Rev. B 2012, 86, 115410.

33

Dong, X.; Yan, C.; Tomer, D.; Li, C. H.; Li, L. Spiral growth of few-layer MoS2 by chemical vapor deposition. Appl. Phys. Lett. 2016, 109, 051604.

34

Wang, S. S.; Rong, Y. M.; Fan, Y.; Pacios, M.; Bhaskaran, H.; He, K.; Warner, J. H. Shape evolution of monolayer MoS2 crystals grown by chemical vapor deposition. Chem. Mater. 2014, 26, 6371–6379.

35

Lee, C.; Yan, H.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695–2700.

36

Peña, T.; Chowdhury, S. A.; Azizimanesh, A.; Sewaket, A.; Askari, H.; Wu, S. M. Strain engineering 2D MoS2 with thin film stress capping layers. 2D Mater. 2021, 8, 045001.

37

Ren, S. M.; Li, H.; Cui, M. J.; Wang, L. P.; Pu, J. B. Functional regulation of Pb-Ti/MoS2 composite coatings for environmentally adaptive solid lubrication. Appl. Surf. Sci. 2017, 401, 362–372.

38

Lanzillo, N. A.; Birdwell, A. G.; Amani, M.; Crowne, F. J.; Shah, P. B.; Najmaei, S.; Liu, Z.; Ajayan, P. M.; Lou, J.; Dubey, M. et al. Temperature-dependent phonon shifts in monolayer MoS2. Appl. Phys. Lett. 2013, 103, 093102.

39

Panasci, S. E.; Schilirò, E.; Greco, G.; Cannas, M.; Gelardi, F. M.; Agnello, S.; Roccaforte, F.; Giannazzo, F. Strain, doping, and electronic transport of large area monolayer MoS2 exfoliated on gold and transferred to an insulating substrate. ACS Appl. Mater. Interfaces 2021, 13, 31248–31259.

40

Lloyd, D.; Liu, X. H.; Christopher, J. W.; Cantley, L.; Wadehra, A.; Kim, B. L.; Goldberg, B. B.; Swan, A. K.; Bunch, J. S. Band gap engineering with ultralarge biaxial strains in suspended monolayer MoS2. Nano Lett. 2016, 16, 5836–5841.

41

Sarkar, S.; Maity, I.; Pradeepa, H. L.; Nayak, G.; Marty, L.; Renard, J.; Coraux, J.; Bendiab, N.; Bouchiat, V.; Das, S. et al. Anharmonicity in Raman-active phonon modes in atomically thin MoS2. Phys. Rev. B 2020, 101, 205302.

42

Sahoo, S.; Gaur, A. P. S.; Ahmadi, M.; Guinel, M. J. F.; Katiyar, R. S. Temperature-dependent Raman studies and thermal conductivity of few-layer MoS2. J. Phys. Chem. C 2013, 117, 9042–9047.

43

Hou, C.; Deng, J. W.; Guan, J. X.; Yang, Q. R.; Yu, Z. H.; Lu, Y. L.; Xu, Z. H.; Yao, Z. F.; Zheng, J. R. Photoluminescence of monolayer MoS2 modulated by water/O2/laser irradiation. Phys. Chem. Chem. Phys. 2021, 23, 24579–24588.

44

Castellanos-Gomez, A.; Barkelid, M.; Goossens, A. M.; Calado, V. E.; Van Der Zant, H. S. J.; Steele, G. A. Laser-thinning of MoS2: On demand generation of a single-layer semiconductor. Nano Lett. 2012, 12, 3187–3192.

45

Hussain, S.; Xu, R.; Xu, K. Q.; Lei, L.; Meng, L.; Zheng, Z. Y.; Xing, S. Y.; Guo, J. F.; Dong, H. Y.; Liaqat, A. et al. Strain-induced hierarchical ripples in MoS2 layers investigated by atomic force microscopy. Appl. Phys. Lett. 2020, 117, 153102.

46

Liu, Z.; Amani, M.; Najmaei, S.; Xu, Q.; Zou, X. L.; Zhou, W.; Yu, T.; Qiu, C. Y.; Birdwell, A. G.; Crowne, F. J. et al. Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition. Nat. Commun. 2014, 5, 5246.

47

Sim, D. M.; Kim, M.; Yim, S.; Choi, M. J.; Choi, J.; Yoo, S.; Jung, Y. S. Controlled doping of vacancy-containing few-layer MoS2 via highly stable thiol-based molecular chemisorption. ACS Nano 2015, 9, 12115–12123.

48

Zabel, J.; Nair, R. R.; Ott, A.; Georgiou, T.; Geim, A. K.; Novoselov, K. S.; Casiraghi, C. Raman spectroscopy of graphene and bilayer under biaxial strain: Bubbles and balloons. Nano Lett. 2012, 12, 617–621.

49

Roy, S. S.; Arnold, M. S. Improving graphene diffusion barriers via stacking multiple layers and grain size engineering. Adv. Funct. Mater. 2013, 23, 3638–3644.

50

Liu, Z.; Gong, Y. J.; Zhou, W.; Ma, L. L.; Yu, J. J.; Idrobo, J. C.; Jung, J.; MacDonald, A. H.; Vajtai, R.; Lou, J. et al. Ultrathin high-temperature oxidation-resistant coatings of hexagonal boron nitride. Nat. Commun. 2013, 4, 2541.

51

Dai, Z. Y.; Wang, Z. W.; He, X.; Zhang, X. X.; Alshareef, H. N. Large-area chemical vapor deposited MoS2 with transparent conducting oxide contacts toward fully transparent 2D electronics. Adv. Funct. Mater. 2017, 27, 1703119.

52

Yan, A. M.; Velasco, J. Jr.; Kahn, S.; Watanabe, K.; Taniguchi, T.; Wang, F.; Crommie, M. F.; Zettl, A. Direct growth of single- and few-layer MoS2 on h-BN with preferred relative rotation angles. Nano Lett. 2015, 15, 6324–6331.

53

Sevik, C. Assessment on lattice thermal properties of two-dimensional honeycomb structures: Graphene, h-BN, h-MoS2, and h-MoSe2. Phys. Rev. B 2014, 89, 035422.

54

Castellanos-Gomez, A.; Roldán, R.; Cappelluti, E.; Buscema, M.; Guinea, F.; Van Der Zant, H. S. J.; Steele, G. A. Local strain engineering in atomically thin MoS2. Nano Lett. 2013, 13, 5361–5366.

55

Guo, Y.; Li, B.; Huang, Y.; Du, S.; Sun, C.; Luo, H. L.; Liu, B. L.; Zhou, X. J.; Yang, J. L.; Li, J. J. et al. Direct bandgap engineering with local biaxial strain in few-layer MoS2 bubbles. Nano Res. 2020, 13, 2072–2078.

File
12274_2022_4384_MOESM1_ESM.pdf (1.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 20 January 2022
Revised: 15 March 2022
Accepted: 01 April 2022
Published: 23 May 2022
Issue date: August 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 52005489), Ningbo 3315 Innovation Team (No. 2020A-03-C), the China Postdoctoral Science Fund (Nos. 2021T140685 and 2019M662126), and the Natural Science Foundation of Zhejiang Province (No. LR20E050001).

Return