Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Designing bifunctional oxygen electrocatalysts with high activity, lasting stability, and low-cost for rechargeable zinc-air batteries (RZABs) is a tough challenge. Herein, an advanced electrocatalyst is prepared by anchoring atomically dispersed Co atoms on N-doped graphene-like hierarchically porous carbon nanosheets (SA-Co-N4-GCs) and thereby forming Co-N4-C architecture. Its unique structure with excellent conductivity, large surface area, and three dimensional (3D) interconnected hierarchically porous architecture exposes not only more Co-N4 active sites to accelerate the kinetics of both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), but also provides an efficient charge/mass transport environment to reduce diffusion barrier. Consequently, SA-Co-N4-GCs exhibits excellent ORR/OER bifunctional activities and durability, surpassing noble-metal catalysts. Liquid RZABs using SA-Co-N4-GCs cathodes display a high open-circuit voltage of 1.51 V, a remarkable power density of 149.3 mW·cm−2, as well as excellent stability and rechargeability with faint increase in polarization even at a large depth of charge–discharge cycle with 16 h per cycle over an entire 600 h long-term test. Moreover, flexible quasi-solid-state RZABs with SA-Co-N4-GCs cathodes also deliver a considerable power density of 124.5 mW·cm−2, which is even higher than that of liquid batteries using noble-metal catalysts. This work has thrown new insight into development of high-performance and low-cost electrocatalysts for energy conversion and storage.
Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.
Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.
Yuan, X. H.; Ma, F. X.; Zuo, L. Q.; Wang, J.; Yu, N. F.; Chen, Y. H.; Zhu, Y. S.; Huang, Q. H.; Holze, R.; Wu, Y. P. et al. Latest advances in high-voltage and high-energy-density aqueous rechargeable batteries. Electrochem. Energy Rev. 2021, 4, 1–34.
Peng, X. H.; Wang, C.; Liu, Y. H.; Fang, W. W.; Zhu, Y. S.; Fu, L. J.; Ye, J. L.; Liu, L. L.; Wu, Y. P. Critical advances in re-engineering the cathode-electrolyte interface in alkali metal-oxygen batteries. Energy Mater. 2021, 1, 100011.
Lee, J. S.; Kim, S. T.; Cao, R. G.; Choi, N. S.; Liu, M. L.; Lee, K. T.; Cho, J. Metal-air batteries with high energy density: Li-air versus Zn-air. Adv. Energy Mater. 2011, 1, 34–50.
Fu, J.; Liang, R. L.; Liu, G. H.; Yu, A. P.; Bai, Z. Y.; Yang, L.; Chen, Z. W. Recent progress in electrically rechargeable zinc-air batteries. Adv. Mater. 2019, 31, 1805230.
Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.
Huang, Y. Y.; Wang, Y. Q.; Tang, C.; Wang, J.; Zhang, Q.; Wang, Y. B.; Zhang, J. T. Atomic modulation and structure design of carbons for bifunctional electrocatalysis in metal-air batteries. Adv. Mater. 2019, 31, 1803800.
Niu, Y. L.; Teng, X.; Gong, S. Q.; Xu, M. Z.; Sun, S. G.; Chen, Z. F. Engineering two-phase bifunctional oxygen electrocatalysts with tunable and synergetic components for flexible Zn-air batteries. Nano-Micro Lett. 2021, 13, 126.
Qiao, Z.; Hwang, S.; Li, X.; Wang, C. Y.; Samarakoon, W.; Karakalos, S.; Li, D. G.; Chen, M. J.; He, Y. H.; Wang, M. Y. et al. 3D porous graphitic nanocarbon for enhancing the performance and durability of Pt catalysts: A balance between graphitization and hierarchical porosity. Energy Environ. Sci. 2019, 12, 2830–2841.
Zhou, T. P.; Zhang, N.; Wu, C. Z.; Xie, Y. Surface/interface nanoengineering for rechargeable Zn-air batteries. Energy Environ. Sci. 2020, 13, 1132–1153.
Meng, Z. H.; Chen, N.; Cai, S. C.; Wu, J. W.; Wang, R.; Tian, T.; Tang, H. L. Rational design of hierarchically porous Fe-N-doped carbon as efficient electrocatalyst for oxygen reduction reaction and Zn-air batteries. Nano Res. 2021, 14, 4768–4775.
Zhao, C. X.; Liu, J. N.; Wang, J.; Ren, D.; Li, B. Q.; Zhang, Q. Recent advances of noble-metal-free bifunctional oxygen reduction and evolution electrocatalysts. Chem. Soc. Rev. 2021, 50, 7745–7778.
Ren, S. S.; Duan, X. D.; Liang, S.; Zhang, M. D.; Zheng, H. G. Bifunctional electrocatalysts for Zn-air batteries: Recent developments and future perspectives. J. Mater. Chem. A 2020, 8, 6144–6182.
Yu, N. F.; Wu, C.; Huang, W.; Chen, Y. H.; Ruan, D. Q.; Bao, K. L.; Chen, H.; Zhang, Y.; Zhu, Y. S.; Huang, Q. H. et al. Highly efficient Co3O4/Co@NCs bifunctional oxygen electrocatalysts for long life rechargeable Zn-air batteries. Nano Energy 2020, 77, 105200.
Kundu, A.; Mallick, S.; Ghora, S.; Raj, C. R. Advanced oxygen electrocatalyst for air-breathing electrode in Zn-air batteries. ACS Appl. Mater. Interfaces 2021, 13, 40172–40199.
Xiao, M. L.; Xing, Z. H.; Jin, Z.; Liu, C. P.; Ge, J. J; Zhu, J. B.; Wang, Y.; Zhao, X.; Chen, Z. W. Preferentially engineering FeN4 edge sites onto graphitic nanosheets for highly active and durable oxygen electrocatalysis in rechargeable Zn-air batteries. Adv. Mater. 2020, 32, 2004900.
Zitolo, A.; Goellner, V.; Armel, V.; Sougrati, M. T.; Mineva, T.; Stievano, L.; Fonda, E.; Jaouen, F. Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials. Nat. Mater. 2015, 14, 937–942.
Gong, X. F.; Zhu, J. B.; Li, J. Z.; Gao, R.; Zhou, Q. Y.; Zhang, Z.; Dou, H. Z.; Zhao, L.; Sui, X.; Cai, J. J. et al. Self-templated hierarchically porous carbon nanorods embedded with atomic Fe-N4 active sites as efficient oxygen reduction electrocatalysts in Zn-air batteries. Adv. Funct. Mater. 2021, 31, 2008085.
Zhang, Z. Y.; Zhao, X. X.; Xi, S. B.; Zhang, L. L.; Chen, Z. X.; Zeng, Z. P.; Huang, M.; Yang, H. B.; Liu, B.; Pennycook, S. J. et al. Atomically dispersed cobalt trifunctional electrocatalysts with tailored coordination environment for flexible rechargeable Zn-air battery and self-driven water splitting. Adv. Energy Mater. 2020, 10, 2002896.
Hu, B. T.; Huang, A. J.; Zhang, X. J.; Chen, Z.; Tu, R. Y.; Zhu, W.; Zhuang, Z. B.; Chen, C.; Peng, Q.; Li, Y. D. Atomic Co/Ni dual sites with N/P-coordination as bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries. Nano Res. 2021, 14, 3482–3488.
Yang, C.; Cheng, Z. H.; Divitini, G.; Qian, C.; Hou, B.; Liao, Y. Z. A Ni or Co single atom anchored conjugated microporous polymer for high-performance photocatalytic hydrogen evolution. J. Mater. Chem. A 2021, 9, 19894–19900.
Chen, J. Y.; Li, H.; Fan, C.; Meng, Q. W.; Tang, Y. W.; Qiu, X. Y.; Fu, G. T.; Ma, T. Y. Dual Single-atomic Ni-N4 and Fe-N4 sites constructing janus hollow graphene for selective oxygen electrocatalysis. Adv. Mater. 2020, 32, 2003134.
Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.
Cheng, N. C.; Zhang, L.; Doyle-Davis, K.; Sun, X. L. Single-atom catalysts: From design to application. Electrochem. Energy Rev. 2019, 2, 539–573.
Yan, H.; Su, C. L.; He, J.; Chen, W. Single-atom catalysts and their applications in organic chemistry. J. Mater. Chem. A 2018, 6, 8793–8814.
Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. 2021, 14, 2418–2423.
Shi, C. W.; Liu, Y. H.; Qi, R. Y.; Li, J. T.; Zhu, J. X.; Yu, R. H.; Li, S. D.; Hong, X. F.; Wu, J. S.; Xi, S. B. et al. Hierarchical N-doped carbon spheres anchored with cobalt nanocrystals and single atoms for oxygen reduction reaction. Nano Energy 2021, 87, 106153.
Lei, Z.; Tan, Y. Y.; Zhang, Z. Y.; Wu, W.; Cheng, N. C.; Chen, R. Z.; Mu, S. C.; Sun, X. L. Defects enriched hollow porous Co-N-doped carbons embedded with ultrafine CoFe/Co nanoparticles as bifunctional oxygen electrocatalyst for rechargeable flexible solid zinc-air batteries. Nano Res. 2021, 14, 868–878.
Ji, D. X.; Fan, L.; Li, L. L.; Peng, S. J.; Yu, D. S.; Song, J. N.; Ramakrishna, S.; Guo, S. J. Atomically transition metals on self-supported porous carbon flake arrays as binder-free air cathode for wearable zinc-air batteries. Adv. Mater. 2019, 31, 1808267.
Zhao, R. P.; Chen, J. Y.; Chen, Z. J.; Jiang, X.; Fu, G. T.; Tang, Y. W.; Jin, W.; Lee, J. M.; Huang, S. M. Atomically dispersed CoN4/B, N-C nanotubes boost oxygen reduction in rechargeable Zn-air Batteries. ACS Appl. Energy Mater. 2020, 3, 4539–4548.
Han, Y. H.; Wang, Z. Y.; Xu, R. R.; Zhang, W.; Chen, W. X.; Zheng, L. R.; Zhang, J.; Luo, J.; Wu, K. L.; Zhu, Y. Q. et al. Ordered porous nitrogen-doped carbon matrix with atomically dispersed cobalt sites as an efficient catalyst for dehydrogenation and transfer hydrogenation of N-heterocycles. Angew. Chem., Int. Ed. 2018, 57, 11262–11266.
Ren, J. H.; Wang, Z. Y.; Xu, P.; Wang, C.; Gao, F.; Zhao, D. C.; Liu, S. P.; Yang, H.; Wang, D.; Niu, C. M. et al. Porous Co2VO4 nanodisk as a high-energy and fast-charging anode for lithium-ion batteries. Nano-Micro Lett. 2022, 14, 5.
Wang, W.; Chen, W. H.; Miao, P. Y.; Luo, J.; Wei, Z. D.; Chen, S. L. NaCl crystallites as dual-functional and water-removable templates to synthesize a three-dimensional graphene-like macroporous Fe-N-C catalyst. ACS Catal. 2017, 7, 6144–6149.
Yu, J.; Chen, G.; Sunarso, J.; Zhu, Y. L.; Ran, R.; Zhu, Z. H.; Zhou, W.; Shao, Z. P. Cobalt oxide and cobalt-graphitic carbon core–shell based catalysts with remarkably high oxygen reduction reaction activity. Adv. Sci. 2016, 3, 1600060.
Liu, Z. J.; Zhao, Z. H.; Wang, Y. Y.; Dou, S.; Yan, D. F.; Liu, D. D.; Xia, Z. H.; Wang, S. Y. In situ exfoliated, edge-rich, oxygen-functionalized graphene from carbon fibers for oxygen electrocatalysis. Adv. Mater. 2017, 29, 1606207.
Jin, Q. Y.; Ren, B. W.; Chen, J. P.; Cui, H.; Wang, C. X. A facile method to conduct 3D self-supporting Co-FeCo/N-doped graphene-like carbon bifunctional electrocatalysts for flexible solid-state zinc air battery. Appl. Catal. B:Environ. 2019, 256, 117887.
Lai, W. H.; Wang, H.; Zheng, L. R.; Jiang, Q.; Yan, Z. C.; Wang, L.; Yoshikawa, H.; Matsumura, D.; Sun, Q.; Wang, Y. X. et al. General synthesis of single-atom catalysts for hydrogen evolution reactions and room-temperature Na-S batteries. Angew. Chem., Int. Ed. 2020, 59, 22171–22178.
Yang, H. Z.; Shang, L.; Zhang, Q. H.; Shi, R.; Waterhouse, G. I. N.; Gu, L.; Zhang, T. R. A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts. Nat. Commun. 2019, 10, 4585.
Ōya, A.; Ōtani, S. Catalytic graphitization of carbons by various metals. Carbon 1979, 17, 131–137.
Sadezky, A.; Muckenhuber, H.; Grothe, H.; Niessner, R.; Pöschl, U. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon 2005, 43, 1731–1742.
Cheng, J. B.; Yuan, W. J.; Zhang, A. N.; Zhao, H. B.; Wang, Y. Z. Porous CoNi nanoalloy@N-doped carbon nanotube composite clusters with ultra-strong microwave absorption at a low filler loading. J. Mater. Chem. C 2020, 8, 13712–13722.
Zhang, L. J.; Su, Z. X.; Jiang, F. L.; Yang, L. L.; Qian, J. J.; Zhou, Y. F.; Li, W. M.; Hong, M. C. Highly graphitized nitrogen-doped porous carbon nanopolyhedra derived from ZIF-8 nanocrystals as efficient electrocatalysts for oxygen reduction reactions. Nanoscale 2014, 6, 6590–6602.
Jiang, Y.; Deng, Y. P.; Fu, J.; Lee, D. U.; Liang, R. L.; Cano, Z. P.; Liu, Y. S.; Bai, Z. Y.; Hwang, S.; Yang, L. et al. Interpenetrating triphase cobalt-based nanocomposites as efficient bifunctional oxygen electrocatalysts for long-lasting rechargeable Zn-air batteries. Adv. Energy Mater. 2018, 8, 1702900.
Jiang, Y.; Deng, Y. P.; Liang, R. L.; Fu, J.; Luo, D.; Liu, G. H.; Li, J. D.; Zhang, Z.; Hu, Y. F.; Chen, Z. W. Multidimensional ordered bifunctional air electrode enables flash reactants shuttling for high‐energy flexible Zn-air batteries. Adv. Energy Mater. 2019, 9, 1900911.
Jing, H. Y.; Liu, W.; Zhao, Z. Y.; Zhang, J. W.; Zhu, C.; Shi, Y. T.; Wang, D. S.; Li, Y. D. Electronics and coordination engineering of atomic cobalt trapped by oxygen-driven defects for efficient cathode in solar cells. Nano Energy 2021, 89, 106365.
Ravel, B.; Newville, M.
Pei, J. J.; Wang, T.; Sui, R.; Zhang, X. J.; Zhou, D. N.; Qin, F. J.; Zhao, X.; Liu, Q. H.; Yan, W. S.; Dong, J. C. et al. N-Bridged Co-N-Ni: New bimetallic sites for promoting electrochemical CO2 reduction. Energy Environ. Sci. 2021, 14, 3019–3028.
Zhang, Z. P.; Sun, J. T.; Wang, F.; Dai, L. M. Efficient oxygen reduction reaction (ORR) catalysts based on single iron atoms dispersed on a hierarchically structured porous carbon framework. Angew. Chem., Int. Ed. 2018, 57, 9038–9043.
Niu, Y. L.; Teng, X.; Gong, S. Q.; Liu, X.; Xu, M. Z.; Chen, Z. F. Boosting oxygen electrocatalysis for flexible zinc-air batteries by interfacing iron group metals and manganese oxide in porous carbon nanowires. Energy Storage Mater. 2021, 43, 42–52.
Davari, E.; Johnson, A. D.; Mittal, A.; Xiong, M.; Ivey, D. G. Manganese-cobalt mixed oxide film as a bifunctional catalyst for rechargeable zinc-air batteries. Electrochim. Acta 2016, 211, 735–743.
Amiinu, I. S.; Liu, X. B.; Pu, Z. H.; Li, W. Q.; Li, Q. D.; Zhang, J.; Tang, H. L.; Zhang, H. N.; Mu, S. C. From 3D ZIF nanocrystals to Co-Nx/C nanorod array electrocatalysts for ORR, OER, and Zn-air batteries. Adv. Funct. Mater. 2018, 28, 1704638.
Li, B.; Geng, D. S.; Lee, X. S.; Ge, X. M.; Chai, J. W.; Wang, Z. J.; Zhang, J.; Liu, Z. L.; Hor, T. S. A.; Zong, Y. Eggplant-derived microporous carbon sheets: Towards mass production of efficient bifunctional oxygen electrocatalysts at low cost for rechargeable Zn-air batteries. Chem. Commun. 2015, 51, 8841–8844.
Li, B.; Chen, Y.; Ge, X. M.; Chai, J. W.; Zhang, X.; Hor, T. S. A.; Du, G. J.; Liu, Z. L.; Zhang, H.; Zong, Y. Mussel-inspired one-pot synthesis of transition metal and nitrogen co-doped carbon (M/N-C) as efficient oxygen catalysts for Zn-air batteries. Nanoscale 2016, 8, 5067–5075.
Zheng, X. J.; Cao, X. C.; Sun, Z. H.; Zeng, K.; Yan, J.; Strasser, P.; Chen, X.; Sun, S. H.; Yang, R. Z. Indiscrete metal/metal-N-C synergic active sites for efficient and durable oxygen electrocatalysis toward advanced Zn-air batteries. Appl. Catal. B:Environ. 2020, 272, 118967.
Roy, B.; Shebin, K. J.; Sampath, S. Pyrite-type cobalt phosphosulphide bifunctional catalyst for aqueous and gel-based rechargeable zinc-air batteries. J. Power Sources 2020, 450, 227661.
Balamurugan, J.; Nguyen, T. T.; Kim, N. H.; Kim, D. H.; Lee, J. H. Novel core–shell CuMo-oxynitride@N-doped graphene nanohybrid as multifunctional catalysts for rechargeable zinc-air batteries and water splitting. Nano Energy 2021, 85, 105987.
Fu, G. T.; Cui, Z. M.; Chen, Y. F.; Li, Y. T.; Tang, Y. W.; Goodenough, J. B. Ni3Fe-N doped carbon sheets as a bifunctional electrocatalyst for air cathodes. Adv. Energy Mater. 2017, 7, 1601172.
Li, Y. G.; Gong, M.; Liang, Y. Y.; Feng, J.; Kim, J. E.; Wang, H. L.; Hong, G. S.; Zhang, B.; Dai, H. J. Advanced zinc-air batteries based on high-performance hybrid electrocatalysts. Nat. Commun. 2013, 4, 1805.
Wang, Z.; Zhu, C.; Tan, H.; Liu, J.; Xu, L. L.; Zhang, Y. Q.; Liu, Y. P.; Zou, X. X.; Liu, Z.; Lu, X. H. Understanding the synergistic effects of cobalt single atoms and small nanoparticles: Enhancing oxygen reduction reaction catalytic activity and stability for zinc‐air batteries. Adv. Funct. Mater. 2021, 31, 2104735.
Zhang, Y. G.; Deng, Y. P.; Wang, J. Y.; Jiang, Y.; Cui, G. L.; Shui, L. L.; Yu, A. P.; Wang, X.; Chen, Z. W. Recent progress on flexible Zn-air batteries. Energy Storage Mater. 2021, 35, 538–549.
Wei, L. C.; Qiu, L. J.; Liu, Y. Y.; Zhang, J. M.; Yuan, D. S.; Wang, L. Mn-doped Co-N-C dodecahedron as a bifunctional electrocatalyst for highly efficient Zn-air batteries. ACS Sustainable Chem. Eng. 2019, 7, 14180–14188.