AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Efficient oxygen electrocatalysts with highly-exposed Co-N4 active sites on N-doped graphene-like hierarchically porous carbon nanosheets enhancing the performance of rechargeable Zn-air batteries

Nengfei Yu1( )Hui Chen1Jingbiao Kuang1Kailin Bao1Wei Yan2Jilei Ye1( )Zhongtang Yang1Qinghong Huang1Yuping Wu1( )Shigang Sun2( )
School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China
State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Collaborative innovation center of Chemistry for Energy Materials, Xiamen University, Xiamen 361005, China
Show Author Information

Graphical Abstract

Atomically dispersed Co-N4 is anchored on N-doped graphene-like hierarchically porous carbon nanosheets (SA-Co-N4-GCs) where high exposed Co-N4 active sites and three dimensional (3D) interconnected hierarchically porous carbon provide efficient reactive sites and charge/mass transport environment. As a result, the rechargeable zinc-air batteries based on SA-Co-N4-GCs air electrodes exhibit superior charge–discharge performance and ultra-stable cyclability with no increase in polarization, even in the depth charging and discharging operation with 16 h per cycle over 600 h at 10 mA·cm−2.

Abstract

Designing bifunctional oxygen electrocatalysts with high activity, lasting stability, and low-cost for rechargeable zinc-air batteries (RZABs) is a tough challenge. Herein, an advanced electrocatalyst is prepared by anchoring atomically dispersed Co atoms on N-doped graphene-like hierarchically porous carbon nanosheets (SA-Co-N4-GCs) and thereby forming Co-N4-C architecture. Its unique structure with excellent conductivity, large surface area, and three dimensional (3D) interconnected hierarchically porous architecture exposes not only more Co-N4 active sites to accelerate the kinetics of both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), but also provides an efficient charge/mass transport environment to reduce diffusion barrier. Consequently, SA-Co-N4-GCs exhibits excellent ORR/OER bifunctional activities and durability, surpassing noble-metal catalysts. Liquid RZABs using SA-Co-N4-GCs cathodes display a high open-circuit voltage of 1.51 V, a remarkable power density of 149.3 mW·cm−2, as well as excellent stability and rechargeability with faint increase in polarization even at a large depth of charge–discharge cycle with 16 h per cycle over an entire 600 h long-term test. Moreover, flexible quasi-solid-state RZABs with SA-Co-N4-GCs cathodes also deliver a considerable power density of 124.5 mW·cm−2, which is even higher than that of liquid batteries using noble-metal catalysts. This work has thrown new insight into development of high-performance and low-cost electrocatalysts for energy conversion and storage.

Electronic Supplementary Material

Download File(s)
12274_2022_4382_MOESM1_ESM.pdf (1.9 MB)

References

1

Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

2

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

3

Yuan, X. H.; Ma, F. X.; Zuo, L. Q.; Wang, J.; Yu, N. F.; Chen, Y. H.; Zhu, Y. S.; Huang, Q. H.; Holze, R.; Wu, Y. P. et al. Latest advances in high-voltage and high-energy-density aqueous rechargeable batteries. Electrochem. Energy Rev. 2021, 4, 1–34.

4

Peng, X. H.; Wang, C.; Liu, Y. H.; Fang, W. W.; Zhu, Y. S.; Fu, L. J.; Ye, J. L.; Liu, L. L.; Wu, Y. P. Critical advances in re-engineering the cathode-electrolyte interface in alkali metal-oxygen batteries. Energy Mater. 2021, 1, 100011.

5

Lee, J. S.; Kim, S. T.; Cao, R. G.; Choi, N. S.; Liu, M. L.; Lee, K. T.; Cho, J. Metal-air batteries with high energy density: Li-air versus Zn-air. Adv. Energy Mater. 2011, 1, 34–50.

6

Fu, J.; Liang, R. L.; Liu, G. H.; Yu, A. P.; Bai, Z. Y.; Yang, L.; Chen, Z. W. Recent progress in electrically rechargeable zinc-air batteries. Adv. Mater. 2019, 31, 1805230.

7

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

8

Huang, Y. Y.; Wang, Y. Q.; Tang, C.; Wang, J.; Zhang, Q.; Wang, Y. B.; Zhang, J. T. Atomic modulation and structure design of carbons for bifunctional electrocatalysis in metal-air batteries. Adv. Mater. 2019, 31, 1803800.

9
Jing, H. Y. ; Zhu, P. ; Zheng, X. B. ; Zhang, Z. D. ; Wang, D. S. ; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. , in press, https://doi.org/10.1016/j.apmate.2021.10.004.
10

Niu, Y. L.; Teng, X.; Gong, S. Q.; Xu, M. Z.; Sun, S. G.; Chen, Z. F. Engineering two-phase bifunctional oxygen electrocatalysts with tunable and synergetic components for flexible Zn-air batteries. Nano-Micro Lett. 2021, 13, 126.

11

Qiao, Z.; Hwang, S.; Li, X.; Wang, C. Y.; Samarakoon, W.; Karakalos, S.; Li, D. G.; Chen, M. J.; He, Y. H.; Wang, M. Y. et al. 3D porous graphitic nanocarbon for enhancing the performance and durability of Pt catalysts: A balance between graphitization and hierarchical porosity. Energy Environ. Sci. 2019, 12, 2830–2841.

12

Zhou, T. P.; Zhang, N.; Wu, C. Z.; Xie, Y. Surface/interface nanoengineering for rechargeable Zn-air batteries. Energy Environ. Sci. 2020, 13, 1132–1153.

13

Meng, Z. H.; Chen, N.; Cai, S. C.; Wu, J. W.; Wang, R.; Tian, T.; Tang, H. L. Rational design of hierarchically porous Fe-N-doped carbon as efficient electrocatalyst for oxygen reduction reaction and Zn-air batteries. Nano Res. 2021, 14, 4768–4775.

14

Zhao, C. X.; Liu, J. N.; Wang, J.; Ren, D.; Li, B. Q.; Zhang, Q. Recent advances of noble-metal-free bifunctional oxygen reduction and evolution electrocatalysts. Chem. Soc. Rev. 2021, 50, 7745–7778.

15

Ren, S. S.; Duan, X. D.; Liang, S.; Zhang, M. D.; Zheng, H. G. Bifunctional electrocatalysts for Zn-air batteries: Recent developments and future perspectives. J. Mater. Chem. A 2020, 8, 6144–6182.

16

Yu, N. F.; Wu, C.; Huang, W.; Chen, Y. H.; Ruan, D. Q.; Bao, K. L.; Chen, H.; Zhang, Y.; Zhu, Y. S.; Huang, Q. H. et al. Highly efficient Co3O4/Co@NCs bifunctional oxygen electrocatalysts for long life rechargeable Zn-air batteries. Nano Energy 2020, 77, 105200.

17

Kundu, A.; Mallick, S.; Ghora, S.; Raj, C. R. Advanced oxygen electrocatalyst for air-breathing electrode in Zn-air batteries. ACS Appl. Mater. Interfaces 2021, 13, 40172–40199.

18

Xiao, M. L.; Xing, Z. H.; Jin, Z.; Liu, C. P.; Ge, J. J; Zhu, J. B.; Wang, Y.; Zhao, X.; Chen, Z. W. Preferentially engineering FeN4 edge sites onto graphitic nanosheets for highly active and durable oxygen electrocatalysis in rechargeable Zn-air batteries. Adv. Mater. 2020, 32, 2004900.

19

Zitolo, A.; Goellner, V.; Armel, V.; Sougrati, M. T.; Mineva, T.; Stievano, L.; Fonda, E.; Jaouen, F. Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials. Nat. Mater. 2015, 14, 937–942.

20

Gong, X. F.; Zhu, J. B.; Li, J. Z.; Gao, R.; Zhou, Q. Y.; Zhang, Z.; Dou, H. Z.; Zhao, L.; Sui, X.; Cai, J. J. et al. Self-templated hierarchically porous carbon nanorods embedded with atomic Fe-N4 active sites as efficient oxygen reduction electrocatalysts in Zn-air batteries. Adv. Funct. Mater. 2021, 31, 2008085.

21

Zhang, Z. Y.; Zhao, X. X.; Xi, S. B.; Zhang, L. L.; Chen, Z. X.; Zeng, Z. P.; Huang, M.; Yang, H. B.; Liu, B.; Pennycook, S. J. et al. Atomically dispersed cobalt trifunctional electrocatalysts with tailored coordination environment for flexible rechargeable Zn-air battery and self-driven water splitting. Adv. Energy Mater. 2020, 10, 2002896.

22

Hu, B. T.; Huang, A. J.; Zhang, X. J.; Chen, Z.; Tu, R. Y.; Zhu, W.; Zhuang, Z. B.; Chen, C.; Peng, Q.; Li, Y. D. Atomic Co/Ni dual sites with N/P-coordination as bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries. Nano Res. 2021, 14, 3482–3488.

23

Yang, C.; Cheng, Z. H.; Divitini, G.; Qian, C.; Hou, B.; Liao, Y. Z. A Ni or Co single atom anchored conjugated microporous polymer for high-performance photocatalytic hydrogen evolution. J. Mater. Chem. A 2021, 9, 19894–19900.

24

Chen, J. Y.; Li, H.; Fan, C.; Meng, Q. W.; Tang, Y. W.; Qiu, X. Y.; Fu, G. T.; Ma, T. Y. Dual Single-atomic Ni-N4 and Fe-N4 sites constructing janus hollow graphene for selective oxygen electrocatalysis. Adv. Mater. 2020, 32, 2003134.

25

Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.

26

Cheng, N. C.; Zhang, L.; Doyle-Davis, K.; Sun, X. L. Single-atom catalysts: From design to application. Electrochem. Energy Rev. 2019, 2, 539–573.

27

Yan, H.; Su, C. L.; He, J.; Chen, W. Single-atom catalysts and their applications in organic chemistry. J. Mater. Chem. A 2018, 6, 8793–8814.

28

Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. 2021, 14, 2418–2423.

29

Shi, C. W.; Liu, Y. H.; Qi, R. Y.; Li, J. T.; Zhu, J. X.; Yu, R. H.; Li, S. D.; Hong, X. F.; Wu, J. S.; Xi, S. B. et al. Hierarchical N-doped carbon spheres anchored with cobalt nanocrystals and single atoms for oxygen reduction reaction. Nano Energy 2021, 87, 106153.

30

Lei, Z.; Tan, Y. Y.; Zhang, Z. Y.; Wu, W.; Cheng, N. C.; Chen, R. Z.; Mu, S. C.; Sun, X. L. Defects enriched hollow porous Co-N-doped carbons embedded with ultrafine CoFe/Co nanoparticles as bifunctional oxygen electrocatalyst for rechargeable flexible solid zinc-air batteries. Nano Res. 2021, 14, 868–878.

31

Ji, D. X.; Fan, L.; Li, L. L.; Peng, S. J.; Yu, D. S.; Song, J. N.; Ramakrishna, S.; Guo, S. J. Atomically transition metals on self-supported porous carbon flake arrays as binder-free air cathode for wearable zinc-air batteries. Adv. Mater. 2019, 31, 1808267.

32

Zhao, R. P.; Chen, J. Y.; Chen, Z. J.; Jiang, X.; Fu, G. T.; Tang, Y. W.; Jin, W.; Lee, J. M.; Huang, S. M. Atomically dispersed CoN4/B, N-C nanotubes boost oxygen reduction in rechargeable Zn-air Batteries. ACS Appl. Energy Mater. 2020, 3, 4539–4548.

33

Han, Y. H.; Wang, Z. Y.; Xu, R. R.; Zhang, W.; Chen, W. X.; Zheng, L. R.; Zhang, J.; Luo, J.; Wu, K. L.; Zhu, Y. Q. et al. Ordered porous nitrogen-doped carbon matrix with atomically dispersed cobalt sites as an efficient catalyst for dehydrogenation and transfer hydrogenation of N-heterocycles. Angew. Chem., Int. Ed. 2018, 57, 11262–11266.

34

Ren, J. H.; Wang, Z. Y.; Xu, P.; Wang, C.; Gao, F.; Zhao, D. C.; Liu, S. P.; Yang, H.; Wang, D.; Niu, C. M. et al. Porous Co2VO4 nanodisk as a high-energy and fast-charging anode for lithium-ion batteries. Nano-Micro Lett. 2022, 14, 5.

35

Wang, W.; Chen, W. H.; Miao, P. Y.; Luo, J.; Wei, Z. D.; Chen, S. L. NaCl crystallites as dual-functional and water-removable templates to synthesize a three-dimensional graphene-like macroporous Fe-N-C catalyst. ACS Catal. 2017, 7, 6144–6149.

36

Yu, J.; Chen, G.; Sunarso, J.; Zhu, Y. L.; Ran, R.; Zhu, Z. H.; Zhou, W.; Shao, Z. P. Cobalt oxide and cobalt-graphitic carbon core–shell based catalysts with remarkably high oxygen reduction reaction activity. Adv. Sci. 2016, 3, 1600060.

37

Liu, Z. J.; Zhao, Z. H.; Wang, Y. Y.; Dou, S.; Yan, D. F.; Liu, D. D.; Xia, Z. H.; Wang, S. Y. In situ exfoliated, edge-rich, oxygen-functionalized graphene from carbon fibers for oxygen electrocatalysis. Adv. Mater. 2017, 29, 1606207.

38

Jin, Q. Y.; Ren, B. W.; Chen, J. P.; Cui, H.; Wang, C. X. A facile method to conduct 3D self-supporting Co-FeCo/N-doped graphene-like carbon bifunctional electrocatalysts for flexible solid-state zinc air battery. Appl. Catal. B:Environ. 2019, 256, 117887.

39

Lai, W. H.; Wang, H.; Zheng, L. R.; Jiang, Q.; Yan, Z. C.; Wang, L.; Yoshikawa, H.; Matsumura, D.; Sun, Q.; Wang, Y. X. et al. General synthesis of single-atom catalysts for hydrogen evolution reactions and room-temperature Na-S batteries. Angew. Chem., Int. Ed. 2020, 59, 22171–22178.

40

Yang, H. Z.; Shang, L.; Zhang, Q. H.; Shi, R.; Waterhouse, G. I. N.; Gu, L.; Zhang, T. R. A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts. Nat. Commun. 2019, 10, 4585.

41

Ōya, A.; Ōtani, S. Catalytic graphitization of carbons by various metals. Carbon 1979, 17, 131–137.

42

Sadezky, A.; Muckenhuber, H.; Grothe, H.; Niessner, R.; Pöschl, U. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon 2005, 43, 1731–1742.

43

Cheng, J. B.; Yuan, W. J.; Zhang, A. N.; Zhao, H. B.; Wang, Y. Z. Porous CoNi nanoalloy@N-doped carbon nanotube composite clusters with ultra-strong microwave absorption at a low filler loading. J. Mater. Chem. C 2020, 8, 13712–13722.

44

Zhang, L. J.; Su, Z. X.; Jiang, F. L.; Yang, L. L.; Qian, J. J.; Zhou, Y. F.; Li, W. M.; Hong, M. C. Highly graphitized nitrogen-doped porous carbon nanopolyhedra derived from ZIF-8 nanocrystals as efficient electrocatalysts for oxygen reduction reactions. Nanoscale 2014, 6, 6590–6602.

45

Jiang, Y.; Deng, Y. P.; Fu, J.; Lee, D. U.; Liang, R. L.; Cano, Z. P.; Liu, Y. S.; Bai, Z. Y.; Hwang, S.; Yang, L. et al. Interpenetrating triphase cobalt-based nanocomposites as efficient bifunctional oxygen electrocatalysts for long-lasting rechargeable Zn-air batteries. Adv. Energy Mater. 2018, 8, 1702900.

46

Jiang, Y.; Deng, Y. P.; Liang, R. L.; Fu, J.; Luo, D.; Liu, G. H.; Li, J. D.; Zhang, Z.; Hu, Y. F.; Chen, Z. W. Multidimensional ordered bifunctional air electrode enables flash reactants shuttling for high‐energy flexible Zn-air batteries. Adv. Energy Mater. 2019, 9, 1900911.

47

Jing, H. Y.; Liu, W.; Zhao, Z. Y.; Zhang, J. W.; Zhu, C.; Shi, Y. T.; Wang, D. S.; Li, Y. D. Electronics and coordination engineering of atomic cobalt trapped by oxygen-driven defects for efficient cathode in solar cells. Nano Energy 2021, 89, 106365.

48
ATHENAARTEMIS, HEPHAESTUS: Data analysis  for  X-ray  absorption  spectroscopy  using IFEFFIT J. Synchrotron Radiat. 2005 12 537 541 10.1107/S0909049505012719

Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 2005, 12, 537–541.

49

Pei, J. J.; Wang, T.; Sui, R.; Zhang, X. J.; Zhou, D. N.; Qin, F. J.; Zhao, X.; Liu, Q. H.; Yan, W. S.; Dong, J. C. et al. N-Bridged Co-N-Ni: New bimetallic sites for promoting electrochemical CO2 reduction. Energy Environ. Sci. 2021, 14, 3019–3028.

50

Zhang, Z. P.; Sun, J. T.; Wang, F.; Dai, L. M. Efficient oxygen reduction reaction (ORR) catalysts based on single iron atoms dispersed on a hierarchically structured porous carbon framework. Angew. Chem., Int. Ed. 2018, 57, 9038–9043.

51

Niu, Y. L.; Teng, X.; Gong, S. Q.; Liu, X.; Xu, M. Z.; Chen, Z. F. Boosting oxygen electrocatalysis for flexible zinc-air batteries by interfacing iron group metals and manganese oxide in porous carbon nanowires. Energy Storage Mater. 2021, 43, 42–52.

52

Davari, E.; Johnson, A. D.; Mittal, A.; Xiong, M.; Ivey, D. G. Manganese-cobalt mixed oxide film as a bifunctional catalyst for rechargeable zinc-air batteries. Electrochim. Acta 2016, 211, 735–743.

53

Amiinu, I. S.; Liu, X. B.; Pu, Z. H.; Li, W. Q.; Li, Q. D.; Zhang, J.; Tang, H. L.; Zhang, H. N.; Mu, S. C. From 3D ZIF nanocrystals to Co-Nx/C nanorod array electrocatalysts for ORR, OER, and Zn-air batteries. Adv. Funct. Mater. 2018, 28, 1704638.

54

Li, B.; Geng, D. S.; Lee, X. S.; Ge, X. M.; Chai, J. W.; Wang, Z. J.; Zhang, J.; Liu, Z. L.; Hor, T. S. A.; Zong, Y. Eggplant-derived microporous carbon sheets: Towards mass production of efficient bifunctional oxygen electrocatalysts at low cost for rechargeable Zn-air batteries. Chem. Commun. 2015, 51, 8841–8844.

55

Li, B.; Chen, Y.; Ge, X. M.; Chai, J. W.; Zhang, X.; Hor, T. S. A.; Du, G. J.; Liu, Z. L.; Zhang, H.; Zong, Y. Mussel-inspired one-pot synthesis of transition metal and nitrogen co-doped carbon (M/N-C) as efficient oxygen catalysts for Zn-air batteries. Nanoscale 2016, 8, 5067–5075.

56

Zheng, X. J.; Cao, X. C.; Sun, Z. H.; Zeng, K.; Yan, J.; Strasser, P.; Chen, X.; Sun, S. H.; Yang, R. Z. Indiscrete metal/metal-N-C synergic active sites for efficient and durable oxygen electrocatalysis toward advanced Zn-air batteries. Appl. Catal. B:Environ. 2020, 272, 118967.

57

Roy, B.; Shebin, K. J.; Sampath, S. Pyrite-type cobalt phosphosulphide bifunctional catalyst for aqueous and gel-based rechargeable zinc-air batteries. J. Power Sources 2020, 450, 227661.

58

Balamurugan, J.; Nguyen, T. T.; Kim, N. H.; Kim, D. H.; Lee, J. H. Novel core–shell CuMo-oxynitride@N-doped graphene nanohybrid as multifunctional catalysts for rechargeable zinc-air batteries and water splitting. Nano Energy 2021, 85, 105987.

59

Fu, G. T.; Cui, Z. M.; Chen, Y. F.; Li, Y. T.; Tang, Y. W.; Goodenough, J. B. Ni3Fe-N doped carbon sheets as a bifunctional electrocatalyst for air cathodes. Adv. Energy Mater. 2017, 7, 1601172.

60

Li, Y. G.; Gong, M.; Liang, Y. Y.; Feng, J.; Kim, J. E.; Wang, H. L.; Hong, G. S.; Zhang, B.; Dai, H. J. Advanced zinc-air batteries based on high-performance hybrid electrocatalysts. Nat. Commun. 2013, 4, 1805.

61

Wang, Z.; Zhu, C.; Tan, H.; Liu, J.; Xu, L. L.; Zhang, Y. Q.; Liu, Y. P.; Zou, X. X.; Liu, Z.; Lu, X. H. Understanding the synergistic effects of cobalt single atoms and small nanoparticles: Enhancing oxygen reduction reaction catalytic activity and stability for zinc‐air batteries. Adv. Funct. Mater. 2021, 31, 2104735.

62

Zhang, Y. G.; Deng, Y. P.; Wang, J. Y.; Jiang, Y.; Cui, G. L.; Shui, L. L.; Yu, A. P.; Wang, X.; Chen, Z. W. Recent progress on flexible Zn-air batteries. Energy Storage Mater. 2021, 35, 538–549.

63

Wei, L. C.; Qiu, L. J.; Liu, Y. Y.; Zhang, J. M.; Yuan, D. S.; Wang, L. Mn-doped Co-N-C dodecahedron as a bifunctional electrocatalyst for highly efficient Zn-air batteries. ACS Sustainable Chem. Eng. 2019, 7, 14180–14188.

Nano Research
Pages 7209-7219
Cite this article:
Yu N, Chen H, Kuang J, et al. Efficient oxygen electrocatalysts with highly-exposed Co-N4 active sites on N-doped graphene-like hierarchically porous carbon nanosheets enhancing the performance of rechargeable Zn-air batteries. Nano Research, 2022, 15(8): 7209-7219. https://doi.org/10.1007/s12274-022-4382-7
Topics:

1143

Views

61

Crossref

57

Web of Science

60

Scopus

4

CSCD

Altmetrics

Received: 08 March 2022
Revised: 31 March 2022
Accepted: 31 March 2022
Published: 17 May 2022
© Tsinghua University Press 2022
Return