Journal Home > Volume 15 , Issue 8

Electrolysis of seawater offers a highly promising and sustainable route to attain carbon-neutral hydrogen energy without demanding on high-purity water resource. However, it is severely limited by the undesirable chlorine oxidation reaction (ClOR) on the anode and the releasing toxic chlorine species, inducing anode corrosion and multiple pollutions to reduce the efficiency and sustainability of this technology. The effective way is to limit the overpotential of oxygen evolution reaction (OER) below 480 mV and thus suppress the ClOR. Herein, we demonstrate that nitrogen-doped carbon dots strongly coupled NiFe layered double hydroxide nanosheet arrays on Ni foam (N-CDs/NiFe-LDH/NF) can efficiently facilitate OER with an ultralow overpotential of 260 mV to deliver the geometric current density of 100 mA·cm−2 and a Tafel slope of as low as 43.4 mV·dec−1 in 1.0 M KOH. More importantly, the N-CDs/NiFe-LDH/NF electrode at 100 mA·cm−2 shows overpotentials of 285 and 273 mV, respectively, by utilizing 1.0 M KOH with 0.5 M NaCl and 1.0 M KOH with 1.0 M NaCl as the simulated seawater, well avoid triggering ClOR. Notably, despite the complex environment of real seawater, N-CDs/NiFe-LDH/NF still effectively promotes alkaline seawater (1.0 M KOH + seawater) electrolysis with a lifetime longer than 50 and 20 h, respectively, in 1.0 M KOH and alkaline seawater electrolytes. The investigation result reveals that M–N–C bonding generated between N-CDs and NiFe-LDH intrinsically optimizes the charge transfer efficiency, further promoting the OER kinetics.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

N-doped carbon dots coupled NiFe-LDH hybrids for robust electrocatalytic alkaline water and seawater oxidation

Show Author's information Peng DingHaoqiang SongJiangwei Chang( )Siyu Lu( )
Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450000, China

Abstract

Electrolysis of seawater offers a highly promising and sustainable route to attain carbon-neutral hydrogen energy without demanding on high-purity water resource. However, it is severely limited by the undesirable chlorine oxidation reaction (ClOR) on the anode and the releasing toxic chlorine species, inducing anode corrosion and multiple pollutions to reduce the efficiency and sustainability of this technology. The effective way is to limit the overpotential of oxygen evolution reaction (OER) below 480 mV and thus suppress the ClOR. Herein, we demonstrate that nitrogen-doped carbon dots strongly coupled NiFe layered double hydroxide nanosheet arrays on Ni foam (N-CDs/NiFe-LDH/NF) can efficiently facilitate OER with an ultralow overpotential of 260 mV to deliver the geometric current density of 100 mA·cm−2 and a Tafel slope of as low as 43.4 mV·dec−1 in 1.0 M KOH. More importantly, the N-CDs/NiFe-LDH/NF electrode at 100 mA·cm−2 shows overpotentials of 285 and 273 mV, respectively, by utilizing 1.0 M KOH with 0.5 M NaCl and 1.0 M KOH with 1.0 M NaCl as the simulated seawater, well avoid triggering ClOR. Notably, despite the complex environment of real seawater, N-CDs/NiFe-LDH/NF still effectively promotes alkaline seawater (1.0 M KOH + seawater) electrolysis with a lifetime longer than 50 and 20 h, respectively, in 1.0 M KOH and alkaline seawater electrolytes. The investigation result reveals that M–N–C bonding generated between N-CDs and NiFe-LDH intrinsically optimizes the charge transfer efficiency, further promoting the OER kinetics.

Keywords: electrocatalysis, seawater oxidation, oxygen evolution reaction (OER), N-doped carbon dots, chlorine oxidation reaction (ClOR)

References(54)

1

Zhou, D. J.; Li, P. S.; Lin, X.; McKinley, A.; Kuang, Y.; Liu, W.; Lin, W. F.; Sun, X. M.; Duan, X. Layered double hydroxide-based electrocatalysts for the oxygen evolution reaction: Identification and tailoring of active sites, and superaerophobic nanoarray electrode assembly. Chem. Soc. Rev. 2021, 50, 8790–8817.

2

Shi, Z. P.; Wang, Y.; Li, J.; Wang, X.; Wang, Y. B.; Li, Y.; Xu, W. L.; Jiang, Z.; Liu, C. P.; Xing W. et al. Confined Ir single sites with triggered lattice oxygen redox: Toward boosted and sustained water oxidation catalysis. Joule 2021, 5, 2164–2176.

3

Zhang, N.; Chai, Y. Lattice oxygen redox chemistry in solid-state electrocatalysts for water oxidation. Energy Environ. Sci. 2021, 14, 4647–4671.

4

Wang, J.; Kim, S. J.; Liu, J. P.; Gao, Y.; Choi, S.; Han, J.; Shin, H.; Jo, S.; Kim, J.; Ciucci, F. et al. Redirecting dynamic surface restructuring of a layered transition metal oxide catalyst for superior water oxidation. Nat. Catal. 2021, 4, 212–222.

5

Chang, J. W.; Yu, C.; Song, X. D.; Tan, X. Y.; Ding, Y. W.; Zhao, Z. B.; Qiu, J. S. A C-S-C linkage-triggered ultrahigh nitrogen-doped carbon and the identification of active site in triiodide reduction. Angew. Chem., Int. Ed. 2021, 60, 3587–3595.

6

Souza, A. S.; Bezerra, L. S.; Cardoso, E. S. F.; Fortunato, G. V.; Maia, G. Nickel pyrophosphate combined with graphene nanoribbon used as efficient catalyst for OER. J. Mater. Chem. A 2021, 9, 11255–11267.

7

Tang, T. M.; Zhang, Q. Q.; Bai, X.; Wang, Z. L.; Guan, J. P. Enhanced oxygen evolution activity on mesoporous cobalt-iron oxides. Chem. Commun. 2021, 57, 11843–11846.

8

Fan, Y. X.; Zhang, X. D.; Zhang, Y. J.; Xie, X.; Ding, J.; Cai, J. L.; Li, B. J.; Lv, H. L.; Liu, L. Y.; Zhu, M. M. et al. Decoration of Ru/RuO2 hybrid nanoparticles on MoO2 plane as bifunctional electrocatalyst for overall water splitting. J. Colloid Interface Sci. 2021, 604, 508–516.

9

Bahadur, A.; Hussain, W.; Iqbal, S.; Ullah, F.; Shoaib, M.; Liu, G. C.; Feng, K. J. A morphology controlled surface sulfurized CoMn2O4 microspike electrocatalyst for water splitting with excellent OER rate for binder-free electrocatalytic oxygen evolution. J. Mater. Chem. A 2021, 9, 12255–12264.

10

Chen, Y. Y.; Xu, Y.; Niu, S.; Yan, J.; Wu, Y. Y.; Du, F. K.; Zhao, Y. Z.; Zhu, Z. R.; Jiang, Z. J.; Tan, X. C. A highly efficient Fe-Ni-S/NF hybrid electrode for promoting oxygen evolution performance. Chem. Commun. 2021, 57, 4572–4575.

11

Song, H. Q.; Wu, M.; Tang, Z. Y.; Tse, J. S.; Yang, B.; Lu, S. Y. Single atom ruthenium-doped CoP/CDs nanosheets via splicing of carbon-dots for robust hydrogen production. Angew. Chem., Int. Ed. 2021, 60, 7234–7244.

12

Zhang, F. H.; Yu, L.; Wu, L. B.; Luo, D.; Ren, Z. F. Rational design of oxygen evolution reaction catalysts for seawater electrolysis. Trends Chem. 2021, 3, 485–498.

13

Chang, J. F.; Wang, G. Z.; Yang, Z. Z.; Li, B. Y.; Wang, Q.; Kuliiev, R.; Orlovskaya, N.; Gu, M.; Du, Y. G.; Wang, G. F. et al. Dual-doping and synergism toward high-performance seawater electrolysis. Adv. Mater. 2021, 33, 2101425.

14

Yu, L.; Wu, L. B.; McElhenny, B.; Song, S. W.; Luo, D.; Zhang, F. H.; Yu, Y.; Chen, S.; Ren, Z. F. Ultrafast room-temperature synthesis of porous S-doped Ni/Fe (oxy) hydroxide electrodes for oxygen evolution catalysis in seawater splitting. Energy Environ. Sci. 2020, 13, 3439–3446.

15

Yu, Z. Y.; Duan, Y.; Feng, X. Y.; Yu, X. X.; Gao, M. R.; Yu, S. H. Clean and affordable hydrogen fuel from alkaline water splitting: Past, recent progress, and future prospects. Adv. Mater. 2021, 33, 2007100.

16

Xiang, K.; Song, Z. X.; Wu, D.; Deng, X. H.; Wang, X. W.; You, W.; Peng, Z. K.; Wang, L.; Luo, J. L.; Fu, X. Z. Bifunctional Pt-Co3O4 electrocatalysts for simultaneous generation of hydrogen and formate via energy-saving alkaline seawater/methanol co-electrolysis. J. Mater. Chem. A 2021, 9, 6316–6324.

17

Hu, Y. M.; Liu, W. J.; Jiang, K.; Xu, L.; Guan, M. L.; Bao, J.; Ji, H. B.; Li, H. M. Constructing a CeO2−x@CoFe-layered double hydroxide heterostructure as an improved electrocatalyst for highly efficient water oxidation. Inorg. Chem. Front. 2020, 7, 4461–4468.

18

Chen, H. J.; Zou, Y. H.; Li, J.; Zhang, K. W.; Xia, Y. Z.; Hui, B.; Yang, D. J. Wood aerogel-derived sandwich-like layered nanoelectrodes for alkaline overall seawater electrosplitting. Appl. Catal. B:Environ. 2021, 293, 120215.

19

Zhou, L.; Zhang, C.; Zhang, Y. Q.; Li, Z. H.; Shao, M. F. Host modification of layered double hydroxide electrocatalyst to boost the thermodynamic and kinetic activity of oxygen evolution reaction. Adv. Funct. Mater. 2021, 31, 2009743.

20

Dresp, S.; Dionigi, F.; Klingenhof, M.; Merzdorf, T.; Schmies, H.; Drnec, J.; Poulain, A.; Strasser, P. Molecular understanding of the impact of saline contaminants and alkaline pH on NiFe layered double hydroxide oxygen evolution catalysts. ACS Catal. 2021, 11, 6800–6809.

21

Chen, W.; Wu, B. B.; Wang, Y. Y.; Zhou, W.; Li, Y. Y.; Liu, T. Y.; Xie, C.; Xu, L. T.; Du, S. Q.; Song, M. L. et al. Deciphering the alternating synergy between interlayer Pt single-atom and NiFe layered double hydroxide for overall water splitting. Energy Environ. Sci. 2021, 14, 6428–6440.

22

Peng, L. S.; Yang, N.; Yang, Y. Q.; Wang, Q.; Xie, X. Y.; Sun-Waterhouse, D.; Shang, L.; Zhang, T. R.; Waterhouse, G. I. N. Atomic cation-vacancy engineering of NiFe-layered double hydroxides for improved activity and stability towards the oxygen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 24612–24619.

23

Ding, P.; Meng, C. Q.; Liang, J.; Li, T. S.; Wang, Y.; Liu, Q.; Luo, Y. L.; Cui, G. W.; Asiri, A. M.; Lu, S. Y. et al. NiFe layered-double-hydroxide nanosheet arrays on graphite felt: A 3D electrocatalyst for highly efficient water oxidation in alkaline media. Inorg. Chem. 2021, 60, 12703–12708.

24

Chen W. Z.; Zhang M.; Liu Y.; Yao X.; Liu P. Y.; Liu Z. L.; He J. L.; Wang Y. Q. Super-hydrophilic MgO/NiCo2S4 heterostructure for high-efficient oxygen evolution reaction in neutral electrolytes. Appl. Catal. B: Environ. 2022, 312–121432.

25

Ji, X. X.; Lin, Y. H.; Zeng, J.; Ren, Z. H.; Lin, Z. J.; Mu, Y. B.; Qiu, Y. J.; Yu, J. Graphene/MoS2/FeCoNi (OH)x and graphene/MoS2/FeCoNiPx multilayer-stacked vertical nanosheets on carbon fibers for highly efficient overall water splitting. Nat. Commun. 2021, 12, 1380.

26

Liu, H.; Liu, Z. H.; Wang, Y.; Zhang, J. Q.; Yang, Z. X.; Hu, H.; Zhao, Q. S.; Ning, H.; Zhi, L. J.; Wu, M. B. Carbon dots-oriented synthesis of fungus-like CoP microspheres as a bifunctional electrocatalyst for efficient overall water splitting. Carbon 2021, 182, 327–334.

27

Yang, M. X.; Feng, T. L.; Chen, Y. X.; Liu, J. J.; Zhao, X. H.; Yang, B. Synchronously integration of Co, Fe dual-metal doping in Ru@C and CDs for boosted water splitting performances in alkaline media. Appl. Catal. B:Environ. 2020, 267, 118657.

28

Chang, J. W.; Song, X. D.; Yu, C.; Huang, H. W.; Hong, J. F.; Ding, Y. W.; Huang, H. L.; Yu, J. H.; Tan, X. Y.; Zhao, Z. B. et al. Gravity field-mediated synthesis of carbon-conjugated quantum dots with tunable defective density for enhanced triiodide reduction. Nano Energy 2020, 69, 104377.

29

Yu, J. K.; Song, H. Q.; Li, X.; Tang, L.; Tang, Z. Y.; Yang, B.; Lu, S. Y. Computational studies on carbon dots electrocatalysis: A review. Adv. Funct. Mater. 2021, 31, 2107196.

30

Song, H. Q.; Cheng, Y. J.; Li, B. J.; Fan, Y. P.; Liu, B. Z.; Tang, Z. Y.; Lu, S. Y. Carbon dots and RuP2 nanohybrid as an efficient bifunctional catalyst for electrochemical hydrogen evolution reaction and hydrolysis of ammonia borane. ACS Sustainable Chem. Eng. 2020, 8, 3995–4002.

31

Gu, X. Q.; Chen, Z. M.; Li, Y.; Wu, J.; Wang, X.; Huang, H.; Liu, Y.; Dong, B.; Shao, M. W.; Kang, Z. H. Polyaniline/carbon dots composite as a highly efficient metal-free dual-functional photoassisted electrocatalyst for overall water splitting. ACS Appl. Mater. Interfaces 2021, 13, 24814–24823.

32

Liu, Y. H.; Ge, R. Y.; Chen, Y. Y.; Huang, M. Q.; Zhu, R. J.; Li, W. X.; Liu, Y.; Feng, L. Y.; Che, R. C. Urchin-like cobalt hydroxide coupled with N-doped carbon dots hybrid for enhanced electrocatalytic water oxidation. Chem. Eng. J. 2021, 420, 127598.

33

Feng, T. L.; Zeng, Q. S.; Lu, S. Y.; Yang, M. X.; Tao, S. Y.; Chen, Y. X.; Zhao, Y.; Yang, B. Morphological and interfacial engineering of cobalt-based electrocatalysts by carbon dots for enhanced water splitting. ACS Sustainable Chem. Eng. 2019, 7, 7047–7057.

34

Wang, L.; Wen, Y. Z.; Ji, Y. J.; Cao, H. J.; Li, S. Y.; He, S. S.; Bai, H. P.; Liu, G. J.; Zhang, L. S.; Bao, H. L. et al. The 3d–5d orbital repulsion of transition metals in oxyhydroxide catalysts facilitates water oxidation. J. Mater. Chem. A 2019, 7, 14455–14461.

35
Wang, Z. P. ; Zhang, J. H. ; Yu, Q. Y. ; Yang, H. Y. ; Chen, X. ; Yuan, X. ; Huang, K. ; Xiong, X. L. Synthesis of 3D CoO nanowires supported NiFe layered double hydroxide using an atmospheric pressure microplasma for high-performance oxygen evolution reaction. Chem. Eng. J. 2021, 410, 128366.
36

Chang, J. W.; Song, X. D.; Yu, C.; Yu, J. H.; Ding, Y. W.; Yao, C.; Zhao, Z. B.; Qiu, J. S. Hydrogen-bonding triggered assembly to configure hollow carbon nanosheets for highly efficient Tri-iodide reduction. Adv. Funct. Mater. 2020, 30, 2006270.

37

Sun, C. B.; Ding, J.; Wang, H. Z.; Liu, J.; Han, X. P.; Deng, Y. D.; Zhong, C.; Hu, W. B. Cobalt sulfides constructed heterogeneous interfaces decorated on N, S-codoped carbon nanosheets as a highly efficient bifunctional oxygen electrocatalyst. J. Mater. Chem. A 2021, 9, 13926–13935.

38

Wang, W.; Liu, Y. C.; Li, J.; Luo, J.; Fu, L.; Chen, S. L. NiFe LDH nanodots anchored on 3D macro/mesoporous carbon as a high-performance ORR/OER bifunctional electrocatalyst. J. Mater. Chem. A 2018, 6, 14299–14306.

39

Wang, Q.; Shang, L.; Shi, R.; Zhang, X.; Zhao, Y. F.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. NiFe layered double hydroxide nanoparticles on Co, N-codoped carbon nanoframes as efficient bifunctional catalysts for rechargeable zinc-air batteries. Adv. Energy Mater. 2017, 7, 1700467.

40

Li, W. M.; Chen, S. H.; Zhong, M. X.; Wang, C.; Lu, X. F. Synergistic coupling of NiFe layered double hydroxides with Co-C nanofibers for high-efficiency oxygen evolution reaction. Chem. Eng. J. 2021, 415, 128879.

41

Ni, Y. M.; Yao, L. H.; Wang, Y.; Liu, B.; Cao, M. H.; Hu, C. W. Construction of hierarchically porous graphitized carbon-supported NiFe layered double hydroxides with a core–shell structure as an enhanced electrocatalyst for the oxygen evolution reaction. Nanoscale 2017, 9, 11596–11604.

42

Liu, X. J.; Li, S. Z.; Akinwolemiwa, B.; Hu, D.; Wu, T.; Peng, C. Low-crystalline transition metal oxide/hydroxide on MWCNT by Fenton-reaction-inspired green synthesis for lithium ion battery and OER electrocatalysis. Electrochim. Acta 2021, 387, 138559.

43

Lei, H.; Wang, Z. L.; Yang, F.; Huang, X. Q.; Liu, J. H.; Liang, Y. Y.; Xie, J. P.; Javed, M. S.; Lu, X. H.; Tan, S. Z. et al. NiFe nanoparticles embedded N-doped carbon nanotubes as high-efficient electrocatalysts for wearable solid-state Zn-air batteries. Nano Energy 2020, 68, 104293.

44

Xie, X. Y.; Shang, L.; Shi, R.; Waterhouse, G. I. N.; Zhao, J. Q.; Zhang, T. R. Tubular assemblies of N-doped carbon nanotubes loaded with NiFe alloy nanoparticles as efficient bifunctional catalysts for rechargeable zinc-air batteries. Nanoscale 2020, 12, 13129–13136.

45

Li, Y. M.; He, H. Y.; Fu, W.; Mu, C. Z.; Tang, X. Z.; Liu, Z.; Chi. D. Z.; Hu, X. In-grown structure of NiFe mixed metal oxides and CNT hybrid catalysts for oxygen evolution reaction. Chem. Commun. 2016, 52, 1439–1442.

46

Niu, Y. L.; Teng, X.; Gong, S. Q.; Chen, Z. F. A bimetallic alloy anchored on biomass-derived porous N-doped carbon fibers as a self-supporting bifunctional oxygen electrocatalyst for flexible Zn-air batteries. J. Mater. Chem. A 2020, 8, 13725–13734.

47

Yue, X. Y.; Song, C. S.; Yan, Z. Y.; Shen, X. P.; Ke, W. T.; Ji, Z. Y.; Zhu, G. X.; Yuan, A. H.; Zhu, J.; Li, B. L. Reduced graphene oxide supported nitrogen-doped porous carbon-coated NiFe alloy composite with excellent electrocatalytic activity for oxygen evolution reaction. Appl. Surf. Sci. 2019, 493, 963–974.

48

Yi, L. Y.; Niu, Y. L.; Feng, B. M.; Zhao, M.; Hu, W. H. Simultaneous phase transformation and doping via a unique photochemical-electrochemical strategy to achieve a highly active Fe-doped Ni oxyhydroxide oxygen evolution catalyst. J. Mater. Chem. A 2021, 9, 4213–4220.

49

Qiao, H. Y.; Yang, Y.; Dai, X. P.; Zhao, H. H.; Yong, J. X.; Yu, L.; Luan, X. B.; Cui, M. L.; Zhang, X.; Huang, X. L. Amorphous (Fe) Ni-MOF-derived hollow (bi) metal/oxide@N-graphene polyhedron as effectively bifunctional catalysts in overall alkaline water splitting. Electrochim. Acta 2019, 318, 430–439.

50

Zhu, X. L.; Tang, C.; Wang, H. F.; Zhang, Q.; Yang, C. H.; Wei, F. Dual-sized NiFe layered double hydroxides in situ grown on oxygen-decorated self-dispersal nanocarbon as enhanced water oxidation catalysts. J. Mater. Chem. A 2015, 3, 24540–24546.

51

Du, L.; Luo, L. L.; Feng, Z. X.; Engelhard, M.; Xie, X. H.; Han, B. H.; Sun, J. M.; Zhang, J. H.; Yin, G. P.; Wang, C. M. et al. Nitrogen-doped graphitized carbon shell encapsulated NiFe nanoparticles: A highly durable oxygen evolution catalyst. Nano Energy 2017, 39, 245–252.

52

Chen, R.; Hung, S. F.; Zhou, D. J.; Gao, J. J.; Yang, C. J.; Tao, H. B.; Yang, H. B.; Zhang, L. P.; Zhang, L. L.; Xiong, Q. H. et al. Layered structure causes bulk NiFe layered double hydroxide unstable in alkaline oxygen evolution reaction. Adv. Mater. 2019, 31, 1903909.

53

Zhou, Y.; Zhang, W. B.; Hu, J. L.; Li, D.; Yin, X.; Gao, Q. S. Inherent oxygen vacancies boost surface reconstruction of ultrathin Ni-Fe layered-double-hydroxides toward efficient electrocatalytic oxygen evolution. ACS Sustainable Chem. Eng. 2021, 9, 7390–7399.

54

Wang, X. H.; Ling, Y.; Wu, B.; Li, B. L.; Li, X. L.; Lei, J. L.; Li, N. B.; Luo, H. Q. Doping modification, defects construction, and surface engineering: Design of cost-effective high-performance electrocatalysts and their application in alkaline seawater splitting. Nano Energy 2021, 87, 106160.

File
12274_2022_4377_MOESM1_ESM.pdf (2.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 08 February 2022
Revised: 12 March 2022
Accepted: 30 March 2022
Published: 31 May 2022
Issue date: August 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 52122308, 21905253, and 51973200), and the Natural Science Foundation of Henan (No. 202300410372).

Return