Journal Home > Volume 15 , Issue 8

Advanced energy and sensor devices with novel applications (e.g., mobile equipment, electric vehicles, and medical-healthcare systems) are one of the important foundations of modern intelligent life. However, there are still some scientific issues that seriously hinder the further development of devices, including unsustainability, high material cost, complex fabrication process, safety issues, and unsatisfactory performance. Nanocellulose has aroused tremendous attention in recent decades, because of its abundant resources, renewability, degradability, low-cost, and unique physical/chemical properties. These merits make nanocellulose as matrix materials to fabricate advanced functional composites for use in energy-related fields extremely competitive. Here, we comprehensively discuss the recent progress of nanocellulose for emerging energy storage/harvesting and sensor applications. The preparation methodologies of nanocellulose combined with conductive materials are firstly highlighted, including carbon materials, conductive polymers, metal/metal oxide nanoparticles, metal-organic frameworks (MOFs), and covalent organic frameworks (COFs). We then focus on the nanocellulose-based advanced materials for the application in the areas of supercapacitors, lithium-ion batteries, solar cells, triboelectric nanogenerators, moisture-enabled electric generators, and sensors. Lastly, the future research directions of nanocellulose-based functional materials in energy-related devices are presented.


menu
Abstract
Full text
Outline
About this article

Nanocellulose-based functional materials for advanced energy and sensor applications

Show Author's information Lumin Chen1Somia Yassin Hussain Abdalkarim1Houyong Yu1,2( )Xiang Chen1Dongping Tang1Yingzhan Li1Kam Chiu Tam2
The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

Abstract

Advanced energy and sensor devices with novel applications (e.g., mobile equipment, electric vehicles, and medical-healthcare systems) are one of the important foundations of modern intelligent life. However, there are still some scientific issues that seriously hinder the further development of devices, including unsustainability, high material cost, complex fabrication process, safety issues, and unsatisfactory performance. Nanocellulose has aroused tremendous attention in recent decades, because of its abundant resources, renewability, degradability, low-cost, and unique physical/chemical properties. These merits make nanocellulose as matrix materials to fabricate advanced functional composites for use in energy-related fields extremely competitive. Here, we comprehensively discuss the recent progress of nanocellulose for emerging energy storage/harvesting and sensor applications. The preparation methodologies of nanocellulose combined with conductive materials are firstly highlighted, including carbon materials, conductive polymers, metal/metal oxide nanoparticles, metal-organic frameworks (MOFs), and covalent organic frameworks (COFs). We then focus on the nanocellulose-based advanced materials for the application in the areas of supercapacitors, lithium-ion batteries, solar cells, triboelectric nanogenerators, moisture-enabled electric generators, and sensors. Lastly, the future research directions of nanocellulose-based functional materials in energy-related devices are presented.

Keywords: lithium-ion batteries, solar cells, sensors, supercapacitors, nanocellulose, conductive composites, nanogenerators

References(176)

1

Ma, L. N.; Bi, Z. J.; Xue, Y.; Zhang, W.; Huang, Q. Y.; Zhang, L. X.; Huang, Y. D. Bacterial cellulose: An encouraging eco-friendly nano-candidate for energy storage and energy conversion. J. Mater. Chem. A 2020, 8, 5812–5842.

2

Tang, X. F.; Liu, D.; Wang, Y. J.; Cui, L. F.; Ignaszak, A.; Yu, Y.; Zhang, J. J. Research advances in biomass-derived nanostructured carbons and their composite materials for electrochemical energy technologies. Prog. Mater. Sci. 2021, 118, 100770.

3

Krishnamoorthy, K.; Pazhamalai, P.; Kim, S. J. Two-dimensional siloxene nanosheets: Novel high-performance supercapacitor electrode materials. Energy Environ. Sci. 2018, 11, 1595–1602.

4

Dutta, S.; Kim, J.; Ide, Y.; Kim, J. H.; Hossain, S. A.; Bando, Y.; Yamauchi, Y.; Wu, K. C. W. 3D network of cellulose-based energy storage devices and related emerging applications. Mater. Horiz. 2017, 4, 522–545.

5

Thomas, B.; Raj, M. C.; Athira, B. K.; Rubiyah, H. M.; Joy, J.; Moores, A.; Drisko, G. L.; Sanchez, C. Nanocellulose, a versatile green platform: From biosources to materials and their applications. Chem. Rev. 2018, 118, 11575–11625.

6

García, A.; Gandini, A.; Labidi, J.; Belgacem, N.; Bras, J. Industrial and crop wastes: A new source for nanocellulose biorefinery. Ind. Crops Prod. 2016, 93, 26–38.

7

Kontturi, E.; Laaksonen, P.; Linder, M. B.; Nonappa; Gröschel, A. H.; Rojas, O. J.; Ikkala, O. Advanced materials through assembly of nanocelluloses. Adv. Mater. 2018, 30, 1703779.

8

Chen, W. S.; Yu, H. P.; Lee, S. Y.; Wei, T.; Li, J.; Fan, Z. J. Nanocellulose: A promising nanomaterial for advanced electrochemical energy storage. Chem. Soc. Rev. 2018, 47, 2837–2872.

9

Zhang, Q.; Zhang, L.; Wu, W. B.; Xiao, H. N. Methods and applications of nanocellulose loaded with inorganic nanomaterials: A review. Carbohydr. Polym. 2020, 229, 115454.

10

Wang, X. D.; Yao, C. H.; Wang, F.; Li, Z. D. Cellulose-based nanomaterials for energy applications. Small 2017, 13, 1702240.

11

Wang, Z. H.; Tammela, P.; Strømme, M.; Nyholm, L. Cellulose-based supercapacitors: Material and performance considerations. Adv. Energy Mater. 2017, 7, 1700130.

12

Lin, P. C.; Hsieh, C. T.; Liu, X.; Chang, F. C.; Chen, W. C.; Yu, J. S.; Chueh, C. C. Fabricating efficient flexible organic photovoltaics using an eco-friendly cellulose nanofibers/silver nanowires conductive substrate. Chem. Eng. J. 2021, 405, 126996.

13

Wang, D. C.; Yu, H. Y.; Qi, D. M.; Ramasamy, M.; Yao, J. M.; Tang, F.; Tam, K. C.; Ni, Q. Q. Supramolecular self-assembly of 3D conductive cellulose nanofiber aerogels for flexible supercapacitors and ultrasensitive sensors. ACS Appl. Mater. Interfaces 2019, 11, 24435–24446.

14

Lee, T. W.; Lee, S. E.; Jeong, Y. G. Carbon nanotube/cellulose papers with high performance in electric heating and electromagnetic interference shielding. Compos. Sci. Technol. 2016, 131, 77–87.

15

Chen, L. M.; Yu, H. Y.; Wang, D. C.; Yang, T.; Yao, J. M.; Tam, K. C. Simple synthesis of flower-like manganese dioxide nanostructures on cellulose nanocrystals for high-performance supercapacitors and wearable electrodes. ACS Sustainable Chem. Eng. 2019, 7, 11823–11831.

16

Shan, D. D.; Yang, J.; Liu, W.; Yan, J.; Fan, Z. J. Biomass-derived three-dimensional honeycomb-like hierarchical structured carbon for ultrahigh energy density asymmetric supercapacitors. J. Mater. Chem. A 2016, 4, 13589–13602.

17

Golmohammadi, H.; Morales-Narváez, E.; Naghdi, T.; Merkoçi, A. Nanocellulose in sensing and biosensing. Chem. Mater. 2017, 29, 5426–5446.

18

Nirmale, T. C.; Kale, B. B.; Varma, A. J. A review on cellulose and lignin based binders and electrodes: Small steps towards a sustainable lithium ion battery. Int. J. Biol. Macromol. 2017, 103, 1032–1043.

19

Du, X.; Zhang, Z.; Liu, W.; Deng, Y. L. Nanocellulose-based conductive materials and their emerging applications in energy devices—A review. Nano Energy 2017, 35, 299–320.

20

Zhang, Y. H. ; Hao, N. K. ; Lin, X. J. ; Nie, S. X. Emerging challenges in the thermal management of cellulose nanofibril-based supercapacitors, lithium-ion batteries and solar cells: A review. Carbohydr. Polym 2020, 234, 115888.

21

Hu, L. B.; Zheng, G. Y.; Yao, J.; Liu, N.; Weil, B.; Eskilsson, M.; Karabulut, E.; Ruan, Z. C.; Fan, S. H.; Bloking, J. T. et al. Transparent and conductive paper from nanocellulose fibers. Energy Environ. Sci. 2013, 6, 513–518.

22

Hamedi, M. M.; Hajian, A.; Fall, A. B.; Håkansson, K.; Salajkova, M.; Lundell, F.; Wågberg, L.; Berglund, L. A. Highly conducting, strong nanocomposites based on nanocellulose-assisted aqueous dispersions of single-wall carbon nanotubes. ACS Nano 2014, 8, 2467–2476.

23

Zhou, T.; Chen, D.; Jiu, J.; Nge, T. T.; Sugahara, T.; Nagao, S.; Koga, H.; Nogi, M.; Suganuma, K.; Wang, X. et al. Electrically conductive bacterial cellulose composite membranes produced by the incorporation of graphite nanoplatelets in pristine bacterial cellulose membranes. eXPRESS Polym. Lett. 2013, 7, 756–766.

24

Valentini, L.; Cardinali, M.; Fortunati, E.; Torre, L.; Kenny, J. M. A novel method to prepare conductive nanocrystalline cellulose/graphene oxide composite films. Mater. Lett. 2013, 105, 4–7.

25

Gao, K. Z.; Shao, Z. Q.; Wu, X.; Wang, X.; Li, J.; Zhang, Y. H.; Wang, W. J.; Wang, F. J. Cellulose nanofibers/reduced graphene oxide flexible transparent conductive paper. Carbohydr. Polym. 2013, 97, 243–251.

26

Dang, L. N.; Seppälä, J. Electrically conductive nanocellulose/graphene composites exhibiting improved mechanical properties in high-moisture condition. Cellulose 2015, 22, 1799–1812.

27

Flandin, L.; Cavaillé, J. Y.; Bidan, G.; Brechet, Y. New nanocomposite materials made of an insulating matrix and conducting fillers: Processing and properties. Polym. Compos. 2000, 21, 165–174.

28

Mihranyan, A.; Esmaeili, M.; Razaq, A.; Alexeichik, D.; Lindström, T. Influence of the nanocellulose raw material characteristics on the electrochemical and mechanical properties of conductive paper electrodes. J. Mater. Sci. 2012, 47, 4463–4472.

29

Carlsson, D. O.; Sjödin, M.; Nyholm, L.; Strømme, M. A comparative study of the effects of rinsing and aging of polypyrrole/nanocellulose composites on their electrochemical properties. J. Phys. Chem. B 2013, 117, 3900–3910.

30

Sasso, C.; Zeno, E.; Petit-Conil, M.; Chaussy, D.; Belgacem, M. N.; Tapin-Lingua, S.; Beneventi, D. Highly conducting polypyrrole/cellulose nanocomposite films with enhanced mechanical properties. Macromol. Mater. Eng. 2010, 295, 934–941.

31

Wang, H. H.; Bian, L. Y.; Zhou, P. P.; Tang, J.; Tang, W. H. Core–sheath structured bacterial cellulose/polypyrrole nanocomposites with excellent conductivity as supercapacitors. J. Mater. Chem. A. 2013, 1, 578–584.

32

Yuan, L. Y.; Yao, B.; Hu, B.; Huo, K. F.; Chen, W.; Zhou, J. Polypyrrole-coated paper for flexible solid-state energy storage. Energy Environ. Sci. 2013, 6, 470–476.

33

Xu, D. F.; Xiao, X.; Cai, J.; Zhou, J.; Zhang, L. N. Highly rate and cycling stable electrode materials constructed from polyaniline/cellulose nanoporous microspheres. J. Mater. Chem. A 2015, 3, 16424–16429.

34

Jradi, K.; Bideau, B.; Chabot, B.; Daneault, C. Characterization of conductive composite films based on TEMPO-oxidized cellulose nanofibers and polypyrrole. J. Mater. Sci. 2012, 47, 3752–3762.

35

Hsieh, M. C.; Kim, C.; Nogi, M.; Suganuma, K. Electrically conductive lines on cellulose nanopaper for flexible electrical devices. Nanoscale 2013, 5, 9289–9295.

36

Song, Y. Y.; Jiang, Y. Q.; Shi, L. Y.; Cao, S. M.; Feng, X.; Miao, M.; Fang, J. H. Solution-processed assembly of ultrathin transparent conductive cellulose nanopaper embedding AgNWs. Nanoscale 2015, 7, 13694–13701.

37

Hoeng, F.; Denneulin, A.; Reverdy-Bruas, N. Krosnicki, G, Bras, J. Rheology of cellulose nanofibrils/silver nanowires suspension for the production of transparent and conductive electrodes by screen printing. Appl. Surf. Sci. 2017, 394, 160–168.

38
Micropatterning silver  nanowire  networks  on  cellulose  nanopaper  for  transparent paper electronics ACS Appl. Mater. Interfaces 2018 10 38517 38525 10.1021/acsami.8b15230

Kim, D. ; Ko, Y. ; Kwon, G. ; Kim, U. J. ; You, J. Micropatterning silver nanowire networks on cellulose nanopaper for transparent paper electronics. ACS Appl. Mater. Interfaces 2018, 10, 38517–38525.

39

Pras, O.; Beneventi, D.; Chaussy, D.; Piette, P.; Tapin-Lingua, S. Use of microfibrillated cellulose and dendritic copper for the elaboration of conductive films from water-and ethanol-based dispersions. J. Mater. Sci. 2013, 48, 6911–6920.

40

Gopiraman, M.; Bang, H.; Yuan, G. H.; Yin, C.; Song, K. H.; Lee, J. S.; Chung, I. M.; Karvembu, R.; Kim, I. S. Noble metal/functionalized cellulose nanofiber composites for catalytic applications. Carbohydr. Polym. 2015, 132, 554–564.

41

Jiao, L.; Li, Q. X.; Deng, J. J.; Okosi, N.; Xia, J. F.; Su, M. Nanocellulose templated growth of ultra-small bismuth nanoparticles for enhanced radiation therapy. Nanoscale 2018, 10, 6751–6757.

42

Yang, Y.; Huang, Q. B.; Payne, G. F.; Sun, R. C.; Wang, X. H. A highly conductive, pliable and foldable Cu/cellulose paper electrode enabled by controlled deposition of copper nanoparticles. Nanoscale 2019, 11, 725–732.

43

Zhan, H.; Peng, N.; Lei, X. J.; Huang, Y. N.; Li, D.; Tao, R. J.; Chang, C. Y. UV-induced self-cleanable TiO2/nanocellulose membrane for selective separation of oil/water emulsion. Carbohydr. Polym. 2018, 201, 464–470.

44

Lefatshe, K.; Muiva, C. M.; Kebaabetswe, L. P. Extraction of nanocellulose and in-situ casting of ZnO/cellulose nanocomposite with enhanced photocatalytic and antibacterial activity. Carbohydr. Polym. 2017, 164, 301–308.

45

Almasi, H.; Mehryar, L.; Ghadertaj, A. Characterization of CuO-bacterial cellulose nanohybrids fabricated by in-situ and ex-situ impregnation methods. Carbohydr. Polym. 2019, 222, 114995.

46

Zarei, S.; Niad, M.; Raanaei, H. The removal of mercury ion pollution by using Fe3O4-nanocellulose: Synthesis, characterizations and DFT studies. J. Hazard. Mater. 2018, 344, 258–273.

47

Tran, Q. N.; Kim, I. T.; Park, S.; Choi, H. W.; Park, S. J. SnO2 nanoflower-nanocrystalline cellulose composites as anode materials for lithium-ion batteries. Materials 2020, 13, 3165.

48

Xiao, L. D.; Qi, H. J.; Qu, K. Q.; Shi, C.; Cheng, Y.; Sun, Z.; Yuan, B. N.; Huang, Z. H. et al. Layer-by-layer assembled free-standing and flexible nanocellulose/porous Co3O4 polyhedron hybrid film as supercapacitor electrodes. Adv. Compos. Hybrid Mater. 2021, 4, 306–316.

49

Gutierrez, J.; Tercjak, A.; Algar, I.; Retegi, A.; Mondragon, I. Conductive properties of TiO2/bacterial cellulose hybrid fibres. J. Colloid Interface Sci. 2012, 377, 88–93.

50

Li, W. B.; Li, L. F.; Wu, X.; Li, J. Y.; Jiang, L.; Yang, H. J.; Ke, G. Z.; Cao, G. Y.; Deng, B.; Xu, W. L. High infrared blocking cellulose film based on amorphous to anatase transition of TiO2 via atomic layer deposition. ACS Appl. Mater. Interfaces 2018, 10, 21056–21060.

51

Yadav, H. M.; Park, J. D.; Kang, H. C.; Kim, J.; Lee, J. J. Cellulose nanofiber composite with bimetallic zeolite imidazole framework for electrochemical supercapacitors. Nanomaterials 2021, 11, 395.

52

Zhu, L. T.; Zong, L.; Wu, X. C.; Li, M. J.; Wang, H. S.; You, J.; Li, C. X. Shapeable fibrous aerogels of metal-organic-frameworks templated with nanocellulose for rapid and large-capacity adsorption. ACS Nano 2018, 12, 4462–4468.

53

Zhang, X. F.; Feng, Y.; Wang, Z. G.; Jia, M. M.; Yao, J. F. Fabrication of cellulose nanofibrils/UiO-66-NH2 composite membrane for CO2/N2 separation. J. Memb. Sci. 2018, 568, 10–16.

54

Zhou, S. Y.; Kong, X. Y.; Zheng, B.; Huo, F. W.; Strømme, M.; Xu, C. Cellulose nanofiber @ conductive metal-organic frameworks for high-performance flexible supercapacitors. ACS Nano 2019, 13, 9578–9586.

55

Diercks, C. S.; Yaghi, O. M. The atom, the molecule, and the covalent organic framework. Science 2017, 355, eaal1585.

56

Wang, Z. F.; Zhang, S. N.; Chen, Y.; Zhang, Z. J.; Ma, S. Q. Covalent organic frameworks for separation applications. Chem. Soc. Rev. 2020, 49, 708–735.

57

Wan, X. F.; Wang, X. Y.; Chen, G. X.; Guo, C. B.; Zhang, B. W. Covalent organic framework/nanofibrillated cellulose composite membrane loaded with Pd nanoparticles for dechlorination of dichlorobenzene. Mater. Chem. Phys. 2020, 246, 122574.

58

Yang, H.; Yang, L. X.; Wang, H. J.; Xu, Z. A.; Zhao, Y. M.; Luo, Y.; Nasir, N.; Song, Y. M.; Wu, H.; Pan, F. S. et al. Covalent organic framework membranes through a mixed-dimensional assembly for molecular separations. Nat. Commun. 2019, 10, 2101.

59

Kong, X. Y.; Zhou, S. Y.; Strømme, M.; Xu, C. Redox active covalent organic framework-based conductive nanofibers for flexible energy storage device. Carbon 2021, 171, 248–256.

60

Largeot, C.; Portet, C.; Chmiola, J.; Taberna, P. L.; Gogotsi, Y.; Simon, P. Relation between the ion size and pore size for an electric double-layer capacitor. J. Am. Chem. Soc. 2008, 130, 2730–2731.

61

Kandalkar, S. G.; Dhawale, D. S.; Kim, C. K.; Lokhande, C. D. Chemical synthesis of cobalt oxide thin film electrode for supercapacitor application. Synth. Met. 2010, 160, 1299–1302.

62

Wang, G. P.; Zhang, L.; Zhang, J. J. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 2012, 41, 797–828.

63

Huang, M.; Li, F.; Dong, F.; Zhang, Y. X.; Zhang, L. L. MnO2-based nanostructures for high-performance supercapacitors. J. Mater. Chem. A 2015, 3, 21380–21423.

64

Zhang, Y. Z.; Wang, Y.; Cheng, T.; Lai, W. Y.; Pang, H.; Huang, W. Flexible supercapacitors based on paper substrates: A new paradigm for low-cost energy storage. Chem. Soc. Rev. 2015, 44, 5181–5199.

65

Fan, Z. J.; Yan, J.; Wei, T.; Zhi, L. J.; Ning, G. Q.; Li, T. Y.; Wei, F. Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv. Funct. Mater. 2011, 21, 2366–2375.

66

Wei, J. S.; Ding, C.; Zhang, P.; Ding, H.; Niu, X. Q.; Ma, Y. Y.; Li, C.; Wang, Y. G.; Xiong, H. M. Robust negative electrode materials derived from carbon dots and porous hydrogels for high-performance hybrid supercapacitors. Adv. Mater. 2019, 31, 1806197.

67

Pääkkö, M.; Vapaavuori, J.; Silvennoinen, R.; Kosonen, H.; Ankerfors, M.; Lindström, T.; Berglund, L. A.; Ikkala, O. Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter 2008, 4, 2492–2499.

68

Moon, R. J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem. Soc. Rev. 2011, 40, 3941–3994.

69

Zheng, Q. F.; Kvit, A.; Cai, Z. Y.; Ma, Z. Q.; Gong, S. Q. A freestanding cellulose nanofibril-reduced graphene oxide-molybdenum oxynitride aerogel film electrode for all-solid-state supercapacitors with ultrahigh energy density. J. Mater. Chem. A 2017, 5, 12528–12541.

70

Gogotsi, Y.; Simon, P. True performance metrics in electrochemical energy storage. Science 2011, 334, 917–918.

71

Niu, Q. Y.; Gao, K. Z.; Shao, Z. Q. Cellulose nanofiber/single-walled carbon nanotube hybrid non-woven macrofiber mats as novel wearable supercapacitors with excellent stability, tailorability and reliability. Nanoscale 2014, 6, 4083–4088.

72

Liu, Y.; Zhou, J.; Zhu, E. W.; Tang, J.; Liu, X. H.; Tang, W. H. Facile synthesis of bacterial cellulose fibres covalently intercalated with graphene oxide by one-step cross-linking for robust supercapacitors. J. Mater. Chem. C 2015, 3, 1011–1017.

73

Zheng, Q. F.; Cai, Z. Y.; Ma, Z. Q.; Gong, S. Q. Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors. ACS Appl. Mater. Interfaces 2015, 7, 3263–3271.

74

Gui, Z.; Zhu, H. L.; Gillette, E.; Han, X. G.; Rubloff, G. W.; Hu, L. B.; Lee, S. B. Natural cellulose fiber as substrate for supercapacitor. ACS Nano 2013, 7, 6037–6046.

75

Karthika, P.; Rajalakshmi, N.; Dhathathreyan, K. S. Flexible polyester cellulose paper supercapacitor with a gel electrolyte. ChemPhysChem 2013, 14, 3822–3826.

76

Yuan, L. Y.; Xiao, X.; Ding, T. P.; Zhong, J. W.; Zhang, X. H.; Shen, Y.; Hu, B.; Huang, Y. H.; Zhou, J.; Wang, Z. L. Paper-based supercapacitors for self-powered nanosystems. Angew. Chem., Int. Ed. 2012, 51, 4934–4938.

77

Wang, Z. H.; Carlsson, D. O.; Tammela, P.; Hua, K.; Zhang, P.; Nyholm, L.; Strømme, M. Surface modified nanocellulose fibers yield conducting polymer-based flexible supercapacitors with enhanced capacitances. ACS Nano 2015, 9, 7563–7571.

78

Kang, Y. J.; Chun, S. J.; Lee, S. S.; Kim, B. Y.; Kim, J. H.; Chung, H.; Lee, S. Y.; Kim, W. All-solid-state flexible supercapacitors fabricated with bacterial nanocellulose papers, carbon nanotubes, and triblock-copolymer ion gels. ACS Nano 2012, 6, 6400–6406.

79

Zhao, D. W.; Chen, C. J.; Zhang, Q.; Chen, W. S.; Liu, S. X.; Wang, Q. W.; Liu, Y. X.; Li, J.; Yu, H. P. High performance, flexible, solid-state supercapacitors based on a renewable and biodegradable mesoporous cellulose membrane. Adv. Energy Mater. 2017, 7, 1700739.

80

Yang, X.; Shi, K. Y.; Zhitomirsky, I.; Cranston, E. D. Cellulose nanocrystal aerogels as universal 3D lightweight substrates for supercapacitor materials. Adv. Mater. 2015, 27, 6104–6109.

81

Chen, L. M.; Yu, H. Y.; Li, Z. H.; Chen, X.; Zhou, W. L. Cellulose nanofiber derived carbon aerogel with 3D multiscale pore architecture for high-performance supercapacitors. Nanoscale 2021, 13, 17837–17845.

82

Wang, D. C.; Yu, H. Y.; Qi, D. M.; Wu, Y. H.; Chen, L. M.; Li, Z. H. Confined chemical transitions for direct extraction of conductive cellulose nanofibers with graphitized carbon shell at low temperature and pressure. J. Am. Chem. Soc. 2021, 143, 11620–11630.

83

Cheng, F. Y.; Tao, Z. L.; Liang, J.; Chen, J. Template-directed materials for rechargeable lithium-ion batteries. Chem. Mater. 2008, 20, 667–681.

84

Li, H.; Wang, Z. X.; Chen, L. Q.; Huang, X. J. Research on advanced materials for li-ion batteries. Adv. Mater. 2009, 21, 4593–4607.

85

Hu, L. B.; Liu, N.; Eskilsson, M.; Zheng, G. Y.; McDonough, J.; Wågberg, L.; Cui, Y. Silicon-conductive nanopaper for Li-ion batteries. Nano Energy 2013, 2, 138–145.

86

Zhou, X. M.; Liu, Y.; Du, C. Y.; Ren, Y.; Li, X. L.; Zuo, P. J.; Yin, G. P.; Ma, Y. L.; Cheng, X. Q.; Gao, Y. Z. Free-standing sandwich-type graphene/nanocellulose/silicon laminar anode for flexible rechargeable lithium ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 29638–29646.

87

Wang, W.; Sun, Y.; Liu, B.; Wang, S. G.; Cao, M. H. Porous carbon nanofiber webs derived from bacterial cellulose as an anode for high performance lithium ion batteries. Carbon 2015, 91, 56–65.

88

Wang, B.; Li, X. L.; Luo, B.; Yang, J. X.; Wang, X. J.; Song, Q.; Chen, S. Y.; Zhi, L. J. Pyrolyzed bacterial cellulose: A versatile support for lithium ion battery anode materials. Small 2013, 9, 2399–2404.

89

Huang, Y.; Lin, Z. X.; Zheng, M. B.; Wang, T. H.; Yang, J. Z.; Yuan, F. S.; Lu, X. Y.; Liu, L.; Sun, D. P. Amorphous Fe2O3 nanoshells coated on carbonized bacterial cellulose nanofibers as a flexible anode for high-performance lithium ion batteries. J. Power Sources 2016, 307, 649–656.

90

Wan, Y. Z.; Yang, Z. W.; Xiong, G. Y.; Guo, R. S.; Liu, Z.; Luo, H. L. Anchoring Fe3O4 nanoparticles on three-dimensional carbon nanofibers toward flexible high-performance anodes for lithium-ion batteries. J. Power Sources 2015, 294, 414–419.

91

Zhang, F.; Tang, Y. B.; Yang, Y.; Zhang, X. L.; Lee, C. S. In-Situ assembly of three-dimensional MoS2 nanoleaves/carbon nanofiber composites derived from bacterial cellulose as flexible and binder-free anodes for enhanced lithium-ion batteries. Electrochim. Acta 2016, 211, 404–410.

92

Wan, Y. Z.; Yang, Z. W.; Xiong, G. Y.; Luo, H. L. A general strategy of decorating 3D carbon nanofiber aerogels derived from bacterial cellulose with nano-Fe3O4 for high-performance flexible and binder-free lithium-ion battery anodes. J. Mater. Chem. A 2015, 3, 15386–15393.

93

Leijonmarck, S.; Cornell, A.; Lindbergh, G.; Wågberg, L. Flexible nano-paper-based positive electrodes for Li-ion batteries-preparation process and properties. Nano Energy 2013, 2, 794–800.

94

Cao, S. M.; Feng, X.; Song, Y. Y.; Xue, X.; Liu, H. J.; Miao, M.; Fang, J. H.; Shi, L. Y. Integrated fast assembly of free-standing lithium titanate/carbon nanotube/cellulose nanofiber hybrid network film as flexible paper-electrode for lithium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 10695–10701.

95

Zhang, S. S. A review on the separators of liquid electrolyte Li-ion batteries. J. Power Sources 2007, 164, 351–364.

96

Chun, S. J.; Choi, E. S.; Lee, E. H.; Kim, J. H.; Lee, S. Y.; Lee, S. Y. Eco-friendly cellulose nanofiber paper-derived separator membranes featuring tunable nanoporous network channels for lithium-ion batteries. J. Mater. Chem. 2012, 22, 16618–16626.

97

Sheng, J.; Tong, S. H.; He, Z. B.; Yang, R. D. Recent developments of cellulose materials for lithium-ion battery separators. Cellulose 2017, 24, 4103–4122.

98

Yu, B. C.; Park, K.; Jang, J. H.; Goodenough, J. B. Cellulose-based porous membrane for suppressing Li dendrite formation in lithium-sulfur battery. ACS Energy Lett. 2016, 1, 633–637.

99

Kim, J. H.; Kim, J. H.; Choi, E. S.; Yu, H. K.; Kim, J. H.; Wu, Q. L.; Chun, S. J.; Lee, S. Y.; Lee, S. Y. Colloidal silica nanoparticle-assisted structural control of cellulose nanofiber paper separators for lithium-ion batteries. J. Power Sources 2013, 242, 533–540.

100

Pan, R. J.; Sun, R.; Wang, Z. H.; Lindh, J.; Edström, K.; Strømme, M.; Nyholm, L. Sandwich-structured nano/micro fiber-based separators for lithium metal batteries. Nano Energy 2019, 55, 316–326.

101

Leijonmarck, S.; Cornell, A.; Lindbergh, G.; Wågberg, L. Single-paper flexible Li-ion battery cells through a paper-making process based on nano-fibrillated cellulose. J. Mater. Chem. A 2013, 1, 4671–4677.

102

Wang, Z. H.; Pan, R. J.; Sun, R.; Edström, K.; Strømme, M.; Nyholm, L. Nanocellulose structured paper-based lithium metal batteries. ACS Appl. Energy Mater. 2018, 1, 4341–4350.

103

Chiappone, A.; Nair, J. R.; Gerbaldi, C.; Jabbour, L.; Bongiovanni, R.; Zeno, E.; Beneventi, D.; Penazzi, N. Microfibrillated cellulose as reinforcement for Li-ion battery polymer electrolytes with excellent mechanical stability. J. Power Sources 2011, 196, 10280–10288.

104

Samir, M. A. S. A.; Mateos, A. M.; Alloin, F.; Sanchez, J. Y.; Dufresne, A. Plasticized nanocomposite polymer electrolytes based on poly(oxyethylene) and cellulose whiskers. Electrochim. Acta 2004, 49, 4667–4677.

105

Willgert, M.; Leijonmarck, S.; Lindbergh, G.; Malmström, E.; Johansson, M. Cellulose nanofibril reinforced composite electrolytes for lithium ion battery applications. J. Mater. Chem. A 2014, 2, 13556–13564.

106

Samir, M. A. S. A.; Alloin, F.; Sanchez, J. Y.; Dufresne, A. Cellulose nanocrystals reinforced poly(oxyethylene). Polymer 2004, 45, 4149–4157.

107

Samir, M. A. S. A.; Chazeau, L.; Alloin, F.; Cavaillé, J. Y.; Dufresne, A.; Sanchez, J. Y. POE-based nanocomposite polymer electrolytes reinforced with cellulose whiskers. Electrochim. Acta 2005, 50, 3897–3903.

108

Samir, M. A. S. A.; Alloin, F.; Sanchez, J. Y.; Dufresne, A. Cross-linked nanocomposite polymer electrolytes reinforced with cellulose whiskers. Macromolecules 2004, 37, 4839–4844.

109

Zhou, Y. H.; Fuentes-Hernandez, C.; Khan, T. M.; Liu, J. C.; Hsu, J.; Shim, J. W.; Dindar, A.; Youngblood, J. P.; Moon, R. J.; Kippelen, B. Recyclable organic solar cells on cellulose nanocrystal substrates. Sci. Rep. 2013, 3, 1536.

110

Zhou, Y. H.; Khan, T. M.; Liu, J. C.; Fuentes-Hernandez, C.; Shim, J. W.; Najafabadi, E.; Youngblood, J. P.; Moon, R. J.; Kippelen, B. Efficient recyclable organic solar cells on cellulose nanocrystal substrates with a conducting polymer top electrode deposited by film-transfer lamination. Org. Electron. 2014, 15, 661–666.

111

Gao, L.; Chao, L. F.; Hou, M. H.; Liang, J.; Chen, Y. H.; Yu, H. D.; Huang, W. Flexible, transparent nanocellulose paper-based perovskite solar cells. npj Flex. Electron. 2019, 3, 4.

112

Fang, Z. Q.; Zhu, H. L.; Yuan, Y. B.; Ha, D.; Zhu, S. Z.; Preston, C.; Chen, Q. X.; Li, Y. Y.; Han, X. G.; Lee, S. et al. Novel nanostructured paper with ultrahigh transparency and ultrahigh haze for solar cells. Nano Lett. 2014, 14, 765–773.

113

Gao, C. M.; Yuan, S.; Cui, K.; Qiu, Z. W.; Ge, S. G.; Cao, B. Q.; Yu, J. H. Flexible and biocompatibility power source for electronics: A cellulose paper based hole-transport-materials-free perovskite solar cell. Sol. RRL 2018, 2, 1800175.

114

Ghadiri, E.; Taghavinia, N.; Zakeeruddin, S. M.; Grätzel, M.; Moser, J. E. Enhanced electron collection efficiency in dye-sensitized solar cells based on nanostructured TiO2 hollow fibers. Nano Lett. 2010, 10, 1632–1638.

115

La Notte, L.; Cataldi, P.; Ceseracciu, L.; Bayer, I. S.; Athanassiou, A.; Marras, S.; Villari, E.; Brunetti, F.; Reale, A. Fully-sprayed flexible polymer solar cells with a cellulose-graphene electrode. Mater. Today Energy 2018, 7, 105–112.

116

Ma, X. J.; Deng, Q. D.; Wang, L.; Zheng, X.; Wang, S. S.; Wang, Q. H.; Chen, L. H.; Huang, L. L.; Ouyang, X. H.; Cao, S. L. Cellulose transparent conductive film and its feasible use in perovskite solar cells. RSC Adv. 2019, 9, 9348–9353.

117

Yuwawech, K.; Wootthikanokkhan, J.; Tanpichai, S. Enhancement of thermal, mechanical and barrier properties of EVA solar cell encapsulating films by reinforcing with esterified cellulose nanofibres. Polym. Test. 2015, 48, 12–22.

118

Liu, Z.; Li, H.; Shi, B. J.; Fan, Y.; Wang, Z. L.; Li, Z. Wearable and implantable triboelectric nanogenerators. Adv. Funct. Mater. 2019, 29, 1808820.

119

Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

120

Yao, C. H.; Hernandez, A.; Yu, Y. H.; Cai, Z. Y.; Wang, X. D. Triboelectric nanogenerators and power-boards from cellulose nanofibrils and recycled materials. Nano Energy 2016, 30, 103–108.

121

Guo, Y. L.; Chen, Y. D.; Ma, J. M.; Zhu, H. R.; Cao, X.; Wang, N.; Wang, Z. L. Harvesting wind energy: A hybridized design of pinwheel by coupling triboelectrification and electromagnetic induction effects. Nano Energy 2019, 60, 641–648.

122

Zhao, K.; Wang, Z. L.; Yang, Y. Self-powered wireless smart sensor node enabled by an ultrastable, highly efficient, and superhydrophobic-surface-based triboelectric nanogenerator. ACS Nano 2016, 10, 9044–9052.

123

Anaya, D. V.; He, T. Y. Y.; Lee, C.; Yuce, M. R. Self-powered eye motion sensor based on triboelectric interaction and near-field electrostatic induction for wearable assistive technologies. Nano Energy 2020, 72, 104675.

124

Shi, X. X.; Zhang, S. D.; Gong, S. Q. A self-powered and arch-structured triboelectric nanogenerator for portable electronics and human–machine communication. J. Mater. Chem. A 2020, 8, 8997–9005.

125

Han, Y. J.; Han, Y. F.; Zhang, X. P.; Li, L.; Zhang, C. W.; Liu, J. H.; Lu, G.; Yu, H. D.; Huang, W. Fish gelatin based triboelectric nanogenerator for harvesting biomechanical energy and self-powered sensing of human physiological signals. ACS Appl. Mater. Interfaces 2020, 12, 16442–16450.

126

Yao, C. H.; Yin, X.; Yu, Y. H.; Cai, Z. Y.; Wang, X. D. Chemically functionalized natural cellulose materials for effective triboelectric nanogenerator development. Adv. Funct. Mater. 2017, 27, 1700794.

127

Song, Y. H.; Shi, Z. Q.; Hu, G. H.; Xiong, C. X.; Isogai, A.; Yang, Q. L. Recent advances in cellulose-based piezoelectric and triboelectric nanogenerators for energy harvesting: A review. J. Mater. Chem. A 2021, 9, 1910–1937.

128

Kim, H. J.; Yim, E. C.; Kim, J. H.; Kim, S. J.; Park, J. Y.; Oh, I. K. Bacterial nano-cellulose triboelectric nanogenerator. Nano Energy 2017, 33, 130–137.

129

Zheng, Q. F.; Fang, L. M.; Guo, H. Q.; Yang, K. F.; Cai, Z. Y.; Meador, M. A. B.; Gong, S. Q. Highly porous polymer aerogel film-based triboelectric nanogenerators. Adv. Funct. Mater. 2018, 28, 1706365.

130

Qian, C. C.; Li, L. H.; Gao, M.; Yang, H. Y.; Cai, Z. R.; Chen, B. D.; Xiang, Z. Y.; Zhang, Z. J.; Song, Y. L. All-printed 3D hierarchically structured cellulose aerogel based triboelectric nanogenerator for multi-functional sensors. Nano Energy 2019, 63, 103885.

131

He, X.; Zou, H. Y.; Geng, Z. S.; Wang, X. F.; Ding, W. B.; Hu, F.; Zi, Y. L.; Xu, C.; Zhang, S. L.; Yu, H. et al. A hierarchically nanostructured cellulose fiber-based triboelectric nanogenerator for self-powered healthcare products. Adv. Funct. Mater. 2018, 28, 1805540.

132

Oh, H.; Kwak, S. S.; Kim, B.; Han, E.; Lim, G. H.; Kim, S. W.; Lim, B. Highly conductive ferroelectric cellulose composite papers for efficient triboelectric nanogenerators. Adv. Funct. Mater. 2019, 29, 1904066.

133

Shao, Y.; Feng, C. P.; Deng, B. W.; Yin, B.; Yang, M. B. Facile method to enhance output performance of bacterial cellulose nanofiber based triboelectric nanogenerator by controlling micro-nano structure and dielectric constant. Nano Energy 2019, 62, 620–627.

134

Peng, J.; Zhang, H. L.; Zheng, Q. F.; Clemons, C. M.; Sabo, R. C.; Gong, S. Q.; Ma, Z. Q.; Turng, L. S. A composite generator film impregnated with cellulose nanocrystals for enhanced triboelectric performance. Nanoscale 2017, 9, 1428–1433.

135

Zhao, F.; Cheng, H. H.; Zhang, Z. P.; Jiang, L.; Qu, L. T. Direct power generation from a graphene oxide film under moisture. Adv. Mater. 2015, 27, 4351–4357.

136

Liu, X. M.; Gao, H. Y.; Ward, J. E.; Liu, X. R.; Yin, B.; Fu, T. D.; Chen, J. H.; Lovley, D. R.; Yao, J. Power generation from ambient humidity using protein nanowires. Nature 2020, 578, 550–554.

137

Bai, J. X.; Huang, Y. X.; Cheng, H. H.; Qu, L. T. Moist-electric generation. Nanoscale 2019, 11, 23083–23091.

138

Lyu, Q. Q.; Peng, B. L.; Xie, Z. J.; Du, S.; Zhang, L. B.; Zhu, J. T. Moist-induced electricity generation by electrospun cellulose acetate membranes with optimized porous structures. ACS Appl. Mater. Interfaces 2020, 12, 57373–57381.

139

Wang, H. Y.; Sun, Y. L.; He, T. C.; Huang, Y. X.; Cheng, H. H.; Li, C.; Xie, D.; Yang, P. F.; Zhang, Y. F.; Qu, L. T. Bilayer of polyelectrolyte films for spontaneous power generation in air up to an integrated 1, 000 V output. Nat. Nanotechnol. 2021, 16, 811–819.

140

Yang, W. Q.; Li, X. K.; Han, X.; Zhang, W. H.; Wang, Z. B.; Ma, X. M.; Li, M. J.; Li, C. X. Asymmetric ionic aerogel of biologic nanofibrils for harvesting electricity from moisture. Nano Energy 2020, 71, 104610.

141

Li, Y.; Cui, J. D.; Shen, H. Y.; Liu, C. C.; Wu, P. L.; Qian, Z. Y.; Duan, Y. L.; Liu, D. T. Useful spontaneous hygroelectricity from ambient air by ionic wood. Nano Energy 2022, 96, 107065.

142

Eun, J.; Jeon, S. Direct fabrication of high performance moisture-driven power generators using laser induced graphitization of sodium chloride-impregnated cellulose nanofiber films. Nano Energy 2022, 92, 106772.

143

Lee, S.; Eun, J.; Jeon, S. Facile fabrication of a highly efficient moisture-driven power generator using laser-induced graphitization under ambient conditions. Nano Energy 2020, 68, 104364.

144

Wang, D. C.; Yu, H. Y.; Jiang, L. R.; Qi, D. M.; Zhang, X. X.; Chen, L. M.; Lv, W. T.; Xu, W. Q.; Tam, K. C. Flexible, anti-damage, and non-contact sensing electronic skin implanted with MWCNT to block public pathogens contact infection. Nano Res. 2022, 15, 2616–2625.

145

Koga, H.; Nagashima, K.; Huang, Y. T.; Zhang, G. Z.; Wang, C.; Takahashi, T.; Inoue, A.; Yan, H.; Kanai, M.; He, Y. et al. Paper-based disposable molecular sensor constructed from oxide nanowires, cellulose nanofibers, and pencil-drawn electrodes. ACS Appl. Mater. Interfaces 2019, 11, 15044–15050.

146

Wei, H. R.; Rodriguez, K.; Renneckar, S.; Leng, W. N.; Vikesland, P. J. Preparation and evaluation of nanocellulose-gold nanoparticle nanocomposites for SERS applications. Analyst 2015, 140, 5640–5649.

147

Park, M.; Chang, H.; Jeong, D. H.; Hyun, J. Spatial deformation of nanocellulose hydrogel enhances SERS. BioChip J. 2013, 7, 234–241.

148

Kim, W.; Lee, J. C.; Lee, G. J.; Park, H. K.; Lee, A.; Choi, S. Low-cost label-free biosensing bimetallic cellulose strip with SILAR-synthesized silver core–gold shell nanoparticle structures. Anal. Chem. 2017, 89, 6448–6454.

149

Kim, W.; Lee, S. H.; Kim, J. H.; Ahn, Y. J.; Kim, Y. H.; Yu, J. S.; Choi, S. Paper-based surface-enhanced Raman spectroscopy for diagnosing prenatal diseases in women. ACS Nano 2018, 12, 7100–7108.

150

Kim, W.; Lee, S. H.; Ahn, Y. J.; Lee, S. H.; Ryu, J.; Choi, S. K.; Choi, S. A label-free cellulose SERS biosensor chip with improvement of nanoparticle-enhanced LSPR effects for early diagnosis of subarachnoid hemorrhage-induced complications. Biosens. Bioelectron. 2018, 111, 59–65.

151

Wang, W.; Li, H. Y.; Zhang, D. W.; Jiang, J.; Cui, Y. R.; Qiu, S.; Zhou, Y. L.; Zhang, X. X. Fabrication of bienzymatic glucose biosensor based on novel gold nanoparticles-bacteria cellulose nanofibers nanocomposite. Electroanalysis 2010, 22, 2543–2550.

152

Gao, X. F.; Zheng, P.; Kasani, S.; Wu, S.; Yang, F.; Lewis, S.; Nayeem, S.; Engler-Chiurazzi, E. B.; Wigginton, J. G.; Simpkins, J. W. et al. Paper-based surface-enhanced Raman scattering lateral flow strip for detection of neuron-specific enolase in blood plasma. Anal. Chem. 2017, 89, 10104–10110.

153

Naghdi, T.; Golmohammadi, H.; Vosough, M.; Atashi, M.; Saeedi, I.; Maghsoudi, M. T. Lab-on-nanopaper: An optical sensing bioplatform based on curcumin embedded in bacterial nanocellulose as an albumin assay kit. Anal. Chim. Acta 2019, 1070, 104–111.

154

Park, M.; Jung, H.; Jeong, Y.; Jeong, K. H. Plasmonic schirmer strip for human tear-based gouty arthritis diagnosis using surface-enhanced Raman scattering. ACS Nano 2017, 11, 438–443.

155

Uddin, K. M. A.; Jokinen, V.; Jahangiri, F.; Franssila, S.; Rojas, O. J.; Tuukkanen, S. Disposable microfluidic sensor based on nanocellulose for glucose detection. Glob. Challenges 2019, 3, 1800079.

156

Tabatabaee, R. S.; Golmohammadi, H.; Ahmadi, S. H. Easy diagnosis of jaundice: A smartphone-based nanosensor bioplatform using photoluminescent bacterial nanopaper for point-of-care diagnosis of hyperbilirubinemia. ACS Sens. 2019, 4, 1063–1071.

157

Ouyang, Z. F.; Xu, D. W.; Yu, H. Y.; Li, S. H.; Song, Y.; Tam, K. C. Novel ultrasonic-coating technology to design robust, highly sensitive and wearable textile sensors with conductive nanocelluloses. Chem. Eng. J. 2022, 428, 131289.

158

Wang, C.; Li, Y. Z.; Yu, H. Y.; Abdalkarim, S. Y. H.; Zhou, J. P.; Yao, J. M.; Zhang, L. N. Continuous meter-scale wet-spinning of cornlike composite fibers for eco-friendly multifunctional electronics. ACS Appl. Mater. Interfaces 2021, 13, 40953–40963.

159

Ouyang, Z. F.; Cui, S. B.; Yu, H. Y.; Xu, D. W.; Wang, C.; Tang, D. P.; Tam, K. C. Versatile sensing devices for self-driven designated therapy based on robust breathable composite films. Nano Res. 2022, 15, 1027–1038.

160

Han, L.; Zhang, H. Y.; Yu, H. Y.; Ouyang, Z. F.; Yao, J. M.; Krucinska, I.; Kim, D.; Tam, K. C. Highly sensitive self-healable strain biosensors based on robust transparent conductive nanocellulose nanocomposites: Relationship between percolated network and sensing mechanism. Biosens. Bioelectron. 2021, 191, 113467.

161

Wang, C.; Zhu, M. H.; Yu, H. Y.; Abdalkarim, S. Y. H.; Ouyang, Z. F.; Zhu, J. Y.; Yao, J. M. Multifunctional biosensors made with self-healable silk fibroin imitating skin. ACS Appl. Mater. Interfaces 2021, 13, 33371–33382.

162

Zhu, M. H.; Yu, H. Y.; Tang, F.; Li, Y. Z.; Liu, Y. N.; Yao, J. M. Robust natural biomaterial based flexible artificial skin sensor with high transparency and multiple signals capture. Chem. Eng. J. 2020, 394, 124855.

163

Ouyang, Z. F.; Yu, H. Y.; Song, M. L.; Zhu, J. Y.; Wang, D. C. Ultrasensitive and robust self-healing composite films with reinforcement of multi-branched cellulose nanocrystals. Compos. Sci. Technol. 2020, 198, 108300.

164

Wang, M.; Anoshkin, I. V; Nasibulin, A. G.; Korhonen, J. T.; Seitsonen, J.; Pere, J.; Kauppinen, E. I.; Ras, R. H. A.; Ikkala, O. Modifying native nanocellulose aerogels with carbon nanotubes for mechanoresponsive conductivity and pressure sensing. Adv. Mater. 2013, 25, 2428–2432.

165

Song, M. L.; Yu, H. Y.; Zhu, J. Y.; Ouyang, Z. F.; Abdalkarim, S. Y. H.; Tam, K. C.; Li, Y. Z. Constructing stimuli-free self-healing, robust and ultrasensitive biocompatible hydrogel sensors with conductive cellulose nanocrystals. Chem. Eng. J. 2020, 398, 125547.

166

Chen, Z. H.; Hu, Y. J.; Zhuo, H.; Liu, L. X.; Jing, S. S.; Zhong, L. X.; Peng, X. W.; Sun, R. C. Compressible, elastic, and pressure-sensitive carbon aerogels derived from 2D titanium carbide nanosheets and bacterial cellulose for wearable sensors. Chem. Mater. 2019, 31, 3301–3312.

167

Jung, M.; Kim, K.; Kim, B.; Lee, K. J.; Kang, J. W.; Jeon, S. Vertically stacked nanocellulose tactile sensor. Nanoscale 2017, 9, 17212–17219.

168

Zhang, L. F.; Lyu, S. Y.; Zhang, Q. J.; Wu, Y. T.; Melcher, C.; Chmely, S. C.; Chen, Z. L.; Wang, S. Q. Dual-emitting film with cellulose nanocrystal-assisted carbon dots grafted SrAl2O4, Eu2+, Dy3+ phosphors for temperature sensing. Carbohydr. Polym. 2019, 206, 767–777.

169

Wang, M.; Tian, X. L.; Ras, R. H. A.; Ikkala, O. Sensitive humidity-driven reversible and bidirectional bending of nanocellulose thin films as bio-inspired actuation. Adv. Mater. Interfaces 2015, 2, 1500080.

170

Xu, S. M.; Yu, W. J.; Yao, X. L.; Zhang, Q.; Fu, Q. Nanocellulose-assisted dispersion of graphene to fabricate poly(vinyl alcohol)/graphene nanocomposite for humidity sensing. Compos. Sci. Technol. 2016, 131, 67–76.

171

Zhu, P. H.; Liu, Y.; Fang, Z. Q.; Kuang, Y. D.; Zhang, Y. Z.; Peng, C. X.; Chen, G. Flexible and highly sensitive humidity sensor based on cellulose nanofibers and carbon nanotube composite film. Langmuir 2019, 35, 4834–4842.

172

Zhang, L. Z.; Li, Q.; Zhou, J. P.; Zhang, L. N. Synthesis and photophysical behavior of pyrene-bearing cellulose nanocrystals for Fe3+ sensing. Macromol. Chem. Phys. 2012, 213, 1612–1617.

173

Weishaupt, R.; Siqueira, G.; Schubert, M.; Kämpf, M. M.; Zimmermann, T.; Maniura-Weber, K.; Faccio, G. A protein-nanocellulose paper for sensing copper ions at the nano-to micromolar level. Adv. Funct. Mater. 2017, 27, 1604291.

174

Abbasi-Moayed, S.; Golmohammadi, H.; Hormozi-Nezhad, M. R. A nanopaper-based artificial tongue: A ratiometric fluorescent sensor array on bacterial nanocellulose for chemical discrimination applications. Nanoscale 2018, 10, 2492–2502.

175

Dai, S. D.; Prempeh, N.; Liu, D. G.; Fan, Y. M.; Gu, M. Y.; Chang, Y. Cholesteric film of Cu(II)-doped cellulose nanocrystals for colorimetric sensing of ammonia gas. Carbohydr. Polym. 2017, 174, 531–539.

176

Zhang, J.; Jiang, G. P.; Goledzinowski, M.; Comeau, F. J. E.; Li, K. C.; Cumberland, T.; Lenos, J.; Xu, P.; Li, M.; Yu, A. P. et al. Green solid electrolyte with cofunctionalized nanocellulose/graphene oxide interpenetrating network for electrochemical gas sensors. Small Methods 2017, 1, 1700237.

Publication history
Copyright
Acknowledgements

Publication history

Received: 13 January 2022
Revised: 08 March 2022
Accepted: 29 March 2022
Published: 11 May 2022
Issue date: August 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the Outstanding Youth Project of Zhejiang Provincial Natural Science Foundation (No. LR22E030002) and Zhejiang Provincial Natural Science Key Foundation of China (Nos. LZ20E030003 and LY21E030020).

Return