Journal Home > Volume 15 , Issue 8

To conquer severe dendrites formation and side reactions of zinc metal anodes, which are serious obstacles for the practical applications of aqueous zinc ion battery (ZIB), herein, we develop a sodium allysulfonate (SAS) and acrylamide (AM) copolymer by radical polymerization process (crosslinking of C=C) as solid-state electrolyte. The interface kinetics is improved remarkably due to the high adhesion and excellent ion transferability of AM-SAS (AS) copolymers. Especially the sulfonic acid group in the hydrogel electrolyte can enhance the internal ionic conductivity effectively benefiting from its high affinity to Zn2+. Also, polymer chains realize re-regulation to Zn2+ flow in atomic-scale, thus leading to controllable deposition of Zn onto the dendrite-free Zn anodes. Consequently, the AS-1.5 electrolyte achieves ultra-stable Zn deposition/stripping behaviors with the lifespan over 1,000 h via the suppression of side-reactions and paralleled Zn deposition. High performances of Zn/Mn-doped V2O5 (MnVO) (over 500 cycles) and Zn/diquinoxalino [2,3-a:2',3'-c] phenazine (HATN) (over 2,500 cycles) full cells demonstrate that the AS hydrogel electrolyte is a common approach for ZIBs under various conditions. This molecular regulation engineering opens a novel route for hydrogel electrolyte fabrication, where sulfonic groups perform as media of Zn2+ transfer. Therefore, high bulk ionic conductivity as well as excellent interface ion diffusion ability is obtained.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

High-adhesion anionic copolymer as solid-state electrolyte for dendrite-free Zn-ion battery

Show Author's information Jiaxu Li1,2,§Junfeng Ren1,2,§Caixia Li1,3( )Pengxian Li1,2Tingting Wu1,2Shiwei Liu2Lei Wang1,3( )
State Key Laboratory Base of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, Qingdao University of Science and Technology, Qingdao 266042, China
College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China

§ Jiaxu Li and Junfeng Ren contributed equally to this work.

Abstract

To conquer severe dendrites formation and side reactions of zinc metal anodes, which are serious obstacles for the practical applications of aqueous zinc ion battery (ZIB), herein, we develop a sodium allysulfonate (SAS) and acrylamide (AM) copolymer by radical polymerization process (crosslinking of C=C) as solid-state electrolyte. The interface kinetics is improved remarkably due to the high adhesion and excellent ion transferability of AM-SAS (AS) copolymers. Especially the sulfonic acid group in the hydrogel electrolyte can enhance the internal ionic conductivity effectively benefiting from its high affinity to Zn2+. Also, polymer chains realize re-regulation to Zn2+ flow in atomic-scale, thus leading to controllable deposition of Zn onto the dendrite-free Zn anodes. Consequently, the AS-1.5 electrolyte achieves ultra-stable Zn deposition/stripping behaviors with the lifespan over 1,000 h via the suppression of side-reactions and paralleled Zn deposition. High performances of Zn/Mn-doped V2O5 (MnVO) (over 500 cycles) and Zn/diquinoxalino [2,3-a:2',3'-c] phenazine (HATN) (over 2,500 cycles) full cells demonstrate that the AS hydrogel electrolyte is a common approach for ZIBs under various conditions. This molecular regulation engineering opens a novel route for hydrogel electrolyte fabrication, where sulfonic groups perform as media of Zn2+ transfer. Therefore, high bulk ionic conductivity as well as excellent interface ion diffusion ability is obtained.

Keywords: adhesion, ionic conductivity, dendrite-free, copolymer, interface kinetics

References(55)

1

Zheng, J. X.; Zhao, Q.; Tang, T.; Yin, J. F.; Quilty, C. D.; Renderos, G. D.; Liu, X. T.; Deng, Y.; Wang, L.; Bock, D. C. et al. Reversible epitaxial electrodeposition of metals in battery anodes. Science 2019, 366, 645–648.

2

Parker, J. F.; Chervin, C. N.; Pala, I. R.; Machler, M.; Burz, M. F.; Long, J. W.; Rolison, D. R. Rechargeable nickel-3D zinc batteries: An energy-dense, safer alternative to lithium-ion. Science 2017, 356, 415–418.

3

Wu, X. K.; Wang, Z. C.; Zhang, D.; Qin, Y. N.; Wang, M. H.; Han, Y.; Zhan, T. R.; Yang, B.; Li, S. X.; Lai, J. P. et al. Solvent-free microwave synthesis of ultra-small Ru-Mo2C@CNT with strong metal−support interaction for industrial hydrogen evolution. Nat. Commun. 2021, 12, 4018.

4

Tian, Y.; An, Y. L.; Wei, C. L.; Xi, B. J.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Flexible and free-standing Ti3C2Tx MXene@Zn paper for dendrite-free aqueous zinc metal batteries and nonaqueous lithium metal batteries. ACS Nano 2019, 13, 11676–11685.

5

Liu, F.; Chen, Z. X.; Fang, G. Z.; Wang, Z. Q.; Cai, Y. S.; Tang, B. Y.; Zhou, J.; Liang, S. Q. V2O5 nanospheres with mixed vanadium valences as high electrochemically active aqueous zinc-ion battery cathode. Nano-Micro Lett. 2019, 11, 25.

6

Tang, B. Y.; Shan, L. T.; Liang, S. Q.; Zhou, J. Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ. Sci. 2019, 12, 3288–3304.

7

Li, C. X.; Hou, C. C.; Chen, L. Y.; Kaskel, S.; Xu, Q. Rechargeable Al-ion batteries. EnergyChem 2021, 3, 100049.

8

Kang, Z.; Wu, C. L.; Dong, L. B.; Liu, W. B.; Mou, J.; Zhang, J. W.; Chang, Z. W.; Jiang, B. Z.; Wang, G. X.; Kang, F. Y. et al. 3D porous copper skeleton supported zinc anode toward high capacity and long cycle life zinc ion batteries. ACS Sustainable Chem. Eng. 2019, 7, 3364–3371.

9

Li, C. P.; Xie, X. S.; Liu, H.; Wang, P. J.; Deng, C. B.; Lu, B. A.; Zhou, J.; Liang, S. Q. Integrated “all-in-one” strategy to stabilize zinc anodes for high-performance zinc-ion batteries. Natl. Sci. Rev. 2022, 9, nwab177.

10

Bin, D. S.; Chi, Z. X.; Li, Y. T.; Zhang, K.; Yang, X. Z.; Sun, Y. G.; Piao, J. Y.; Cao, A. M.; Wan, L. J. Controlling the compositional chemistry in single nanoparticles for functional hollow carbon nanospheres. J. Am. Chem. Soc. 2017, 139, 13492–13498.

11

Wang, R. T.; Lang, J. W.; Zhang, P.; Lin, Z. Y.; Yan, X. B. Fast and large lithium storage in 3D porous VN nanowires-graphene composite as a superior anode toward high-performance hybrid supercapacitors. Adv. Funct. Mater. 2015, 25, 2270–2278.

12

Fan, L.; Hu, Y. Y.; Rao, A. M.; Zhou, J.; Hou, Z. H.; Wang, C. X.; Lu, B. G. Prospects of electrode materials and electrolytes for practical potassium-based batteries. Small Methods 2021, 5, 2101131.

13

Jia, D. D.; Zheng, K.; Song, M.; Tan, H.; Zhang, A. T.; Wang, L. H.; Yue, L. J.; Li, D.; Li, C. W.; Liu, J. Q. VO2·0.2H2O nanocuboids anchored onto graphene sheets as the cathode material for ultrahigh capacity aqueous zinc ion batteries. Nano Res. 2020, 13, 215–224.

14

Li, C. X.; Dong, S. H.; Tang, R.; Ge, X. L.; Zhang, Z. W.; Wang, C. X.; Lu, Y. P.; Yin, L. W. Heteroatomic interface engineering in MOF-derived carbon heterostructures with built-in electric-field effects for high performance Al-ion batteries. Energy Environ. Sci. 2018, 11, 3201–3211.

15

Zhang, X. T.; Li, J. X.; Liu, D. Y.; Liu, M. K.; Zhou, T. S.; Qi, K. W.; Shi, L.; Zhu, Y. C.; Qian, Y. T. Ultra-long-life and highly reversible Zn metal anodes enabled by a desolvation and deanionization interface layer. Energy Environ. Sci. 2021, 14, 3120–3129.

16

Deng, C. B.; Xie, X. S.; Han, J. W.; Tang, Y.; Gao, J. W.; Liu, C. X.; Shi, X. D.; Zhou, J.; Liang, S. Q. A sieve-functional and uniform-porous kaolin layer toward stable zinc metal anode. Adv. Funct. Mater. 2020, 30, 2000599.

17

Ge, J. M.; Fan, L.; Rao, A. M.; Zhou, J.; Lu, B. A. Surface-substituted Prussian blue analogue cathode for sustainable potassium-ion batteries. Nat. Sustainable 2022, 5, 225–234.

18

Yang, H. J.; Qiao, Y.; Chang, Z.; Deng, H.; Zhu, X. Y.; Zhu, R. J.; Xiong, Z. T.; He, P.; Zhou, H. S. Reducing water activity by zeolite molecular sieve membrane for long-life rechargeable zinc battery. Adv. Mater. 2021, 33, 2102415.

19

Naveed, A.; Yang, H. J.; Yang, J.; Nuli, Y.; Wang, J. L. Highly reversible and rechargeable safe Zn batteries based on a triethyl phosphate electrolyte. Angew. Chem., Int. Ed. 2019, 58, 2760–2764.

20

Huang, C.; Zhao, X.; Liu, S.; Hao, Y. S.; Tang, Q. L.; Hu, A. P.; Liu, Z. X.; Chen, X. H. Stabilizing zinc anodes by regulating the electrical double layer with saccharin anions. Adv. Mater. 2021, 33, 2100445.

21

Hao, J. N.; Long, J.; Li, B.; Li, X. L.; Zhang, S. L.; Yang, F. H.; Zeng, X. H.; Yang, Z. H.; Pang, W. K.; Guo, Z. P. Toward high-performance hybrid Zn-based batteries via deeply understanding their mechanism and using electrolyte additive. Adv. Funct. Mater. 2019, 29, 1903605.

22

Bayaguud, A.; Luo, X.; Fu, Y. P.; Zhu, C. B. Cationic surfactant-type electrolyte additive enables three-dimensional dendrite-free zinc anode for stable zinc-ion batteries. ACS Energy Lett. 2020, 5, 3012–3020.

23

Ghavami, R. K.; Rafiei, Z. Performance improvements of alkaline batteries by studying the effects of different kinds of surfactant and different derivatives of benzene on the electrochemical properties of electrolytic zinc. J. Power Sources 2006, 162, 893–899.

24

Liu, Z. X.; Yang, Y. Q.; Liang, S. Q.; Lu, B. A.; Zhou, J. pH-buffer contained electrolyte for self-adjusted cathode-free Zn-MnO2 batteries with coexistence of dual mechanisms. Small Struct. 2021, 2, 2100119.

25

Liu, P. G.; Gao, Y.; Tan, Y. Y.; Liu, W. F.; Huang, Y. P.; Yan, J.; Liu, K. Y. Rational design of nitrogen doped hierarchical porous carbon for optimized zinc-ion hybrid supercapacitors. Nano Res. 2019, 12, 2835–2841.

26

Zhang, N.; Cheng, F. Y.; Liu, Y. C.; Zhao, Q.; Lei, K. X.; Chen, C. C.; Liu, X. S.; Chen, J. Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc. 2016, 138, 12894–12901.

27

Zhao, J. W.; Zhang, J.; Yang, W. H.; Chen, B. B.; Zhao, Z. M.; Qiu, H. Y.; Dong, S. M.; Zhou, X. H.; Cui, G. L.; Chen, L. Q. “Water-in-deep eutectic solvent” electrolytes enable zinc metal anodes for rechargeable aqueous batteries. Nano Energy 2019, 57, 625–634.

28

Ma, L. T.; Chen, S. M.; Li, N.; Liu, Z. X.; Tang, Z. J.; Zapien, J. A.; Chen, S. M.; Fan, J.; Zhi, C. Y. Hydrogen-free and dendrite-free all-solid-state Zn-ion batteries. Adv. Mater. 2020, 32, 1908121.

29

Li, H. F.; Han, C. P.; Huang, Y.; Huang, Y.; Zhu, M. S.; Pei, Z. X.; Xue, Q.; Wang, Z. F.; Liu, Z. X.; Tang, Z. J. et al. An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy Environ. Sci. 2018, 11, 941–951.

30

Mo, F. N.; Liang, G. J.; Meng, Q. Q.; Liu, Z. X.; Li, H. F.; Fan, J.; Zhi, C. Y. A flexible rechargeable aqueous zinc manganese-dioxide battery working at −20 °C. Energy Environ. Sci. 2019, 12, 706–715.

31

Chen, Z.; Li, X. L.; Wang, D. H.; Yang, Q.; Ma, L. T.; Huang, Z. D.; Liang, G. J.; Chen, A.; Guo, Y.; Dong, B. B. et al. Grafted MXene/polymer electrolyte for high performance solid zinc batteries with enhanced shelf life at low/high temperatures. Energy Environ. Sci. 2021, 14, 3492–3501.

32

Cong, J. L.; Shen, X.; Wen, Z. P.; Wang, X.; Peng, L. Q.; Zeng, J.; Zhao, J. B. Ultra-stable and highly reversible aqueous zinc metal anodes with high preferred orientation deposition achieved by a polyanionic hydrogel electrolyte. Energy Storage Mater. 2021, 35, 586–594.

33

Huang, Y.; Zhang, J. Y.; Liu, J. W.; Li, Z. X.; Jin, S. Y.; Li, Z. G.; Zhang, S. D.; Zhou, H. Flexible and stable quasi-solid-state zinc ion battery with conductive guar gum electrolyte. Mater. Today Energy 2019, 14, 100349.

34

Wu, K.; Huang, J. H.; Yi, J.; Liu, X. Y.; Liu, Y. Y.; Wang, Y. G.; Zhang, J. J.; Xia, Y. Y. Recent advances in polymer electrolytes for zinc ion batteries: Mechanisms, properties, and perspectives. Adv. Energy Mater. 2020, 10, 1903977.

35

Wang, D. H.; Li, H. F.; Liu, Z. X.; Tang, Z. J.; Liang, G. J.; Mo, F. N.; Yang, Q.; Ma, L. T.; Zhi, C. Y. A nanofibrillated cellulose/polyacrylamide electrolyte-based flexible and sewable high-performance Zn-MnO2 battery with superior shear resistance. Small 2018, 14, 1803978.

36

Tang, Y.; Liu, C. X.; Zhu, H. R.; Xie, X. S.; Gao, J. W.; Deng, C. B.; Han, M. M.; Liang, S. Q.; Zhou, J. Ion-confinement effect enabled by gel electrolyte for highly reversible dendrite-free zinc metal anode. Energy Storage Mater. 2020, 27, 109–116.

37

Chan, C. Y.; Wang, Z. Q.; Li, Y. L.; Yu, H.; Fei, B.; Xin, J. H. Single-ion conducting double-network hydrogel electrolytes for long cycling zinc-ion batteries. ACS Appl. Mater. Interfaces 2021, 13, 30594–30602.

38

Ma, L. T.; Chen, S. M.; Pei, Z. X.; Li, H. F.; Wang, Z. F.; Liu, Z. X.; Tang, Z. J.; Zapien, J. A.; Zhi, C. Y. Flexible waterproof rechargeable hybrid zinc batteries initiated by multifunctional oxygen vacancies-rich cobalt oxide. ACS Nano 2018, 12, 8597–8605.

39

Hao, S. W.; Meng, L.; Fu, Q. J.; Xu, F.; Yang, J. Low-temperature tolerance and conformal adhesion zwitterionic hydrogels as electronic skin for strain and temperature responsiveness. Chem. Eng. J. 2022, 431, 133782.

40

Hao, Y.; Feng, D. D.; Hou, L.; Li, T. Y.; Jiao, Y. C.; Wu, P. Y. Gel electrolyte constructing Zn (002) deposition crystal plane toward highly stable Zn anode. Adv. Sci. 2022, 9, 2104832.

41
Huang, S. W. ; Hou, L. ; Li, T. Y. ; Jiao, Y. C. ; Wu, P. Y. Antifreezing hydrogel electrolyte with ternary hydrogen bonding for high-performance zinc-ion batteries. Adv. Mater., in press, https://doi.org/10.1002/adma.202110140.
42

Zhang, B.; Qin, L.; Fang, Y.; Chai, Y.; Xie, X.; Lu, B.; Liang, S.; Zhou, J. Tuning Zn2+ coordination tunnel by hierarchical gel electrolyte for dendrite-free zinc anode. Sci. Bull. 2022, 67, 955–962.

43
Lu, H. Y.; Hu, J. S.; Wang, L. T.; Li, J. Z.; Ma, X.; Zhu, Z. C.; Li, H. Q.; Zhao, Y. J.; Li, Y. J.; Zhao, J. X. et al. Multi-component crosslinked hydrogel electrolyte toward dendrite-free aqueous Zn ion batteries with high temperature adaptability. Adv. Funct. Mater., in press, https://doi.org/10.1002/adfm.202112540.
44

Gaikwad, A. M.; Zamarayeva, A. M.; Rousseau, J.; Chu, H.; Derin, I.; Steingart, D. A. Highly stretchable alkaline batteries based on an embedded conductive fabric. Adv. Mater. 2012, 24, 5071–5076.

45

Huang, S.; Wan, F.; Bi, S. S.; Zhu, J. C.; Niu, Z. Q.; Chen, J. A self-healing integrated all-in-one zinc-ion battery. Angew. Chem., Int. Ed. 2019, 58, 4313–4317.

46

Huang, Y.; Liu, J. W.; Zhang, J. Y.; Jin, S. Y.; Jiang, Y. X.; Zhang, S. D.; Li, Z. G.; Zhi, C. Y.; Du, G. Q.; Zhou, H. Flexible quasi-solid-state zinc ion batteries enabled by highly conductive carrageenan bio-polymer electrolyte. RSC Adv. 2019, 9, 16313–16319.

47

Leng, K. T.; Li, G. J.; Guo, J. J.; Zhang, X. Y.; Wang, A. X.; Liu, X. J.; Luo, J. Y. A safe polyzwitterionic hydrogel electrolyte for long-life quasi-solid state zinc metal batteries. Adv. Funct. Mater. 2020, 30, 2001317.

48

Cummins, C.; Lundy, R.; Walsh, J. J.; Ponsinet, V.; Fleury, G.; Morris, M. A. Enabling future nanomanufacturing through block copolymer self-assembly: A review. Nano Today 2020, 35, 100936.

49

Tie, Z.; Liu, L.; Deng, S.; Zhao, D.; Niu, Z. Proton insertion chemistry of a zinc-organic battery. Angew. Chem., Int. Ed. 2020, 59, 4920–4924.

50

Chen, P.; Yuan, X. H.; Xia, Y. B.; Zhang, Y.; Fu, L. J.; Liu, L. L.; Yu, N. F.; Huang, Q. H.; Wang, B.; Hu, X. W. et al. An artificial polyacrylonitrile coating layer confining zinc dendrite growth for highly reversible aqueous zinc-based batteries. Adv. Sci. 2021, 8, 2100309.

51

Li, H. F.; Liu, Z. X.; Liang, G. J.; Huang, Y.; Huang, Y.; Zhu, M. S.; Pei, Z. X.; Xue, Q.; Tang, Z. J.; Wang, Y. K. et al. Waterproof and tailorable elastic rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide electrolyte. ACS Nano 2018, 12, 3140–3148.

52

Lu, Y. Y.; Zhu, T. Y.; Xu, N. S.; Huang, K. A semisolid electrolyte for flexible Zn-ion batteries. ACS Appl. Energy Mater. 2019, 2, 6904–6910.

53

Kim, J.; Zhang, G. G.; Shi, M. X. Z.; Suo, Z. G. Fracture, fatigue, and friction of polymers in which entanglements greatly outnumber cross-links. Science 2021, 374, 212–216.

54

Zhang, Q.; Luan, J. Y.; Huang, X. B.; Wang, Q.; Sun, D.; Tang, Y. G.; Ji, X. B.; Wang, H. Y. Revealing the role of crystal orientation of protective layers for stable zinc anode. Nat. Commun. 2020, 11, 3961.

55

Hu, L. F.; Wu, Z. Y.; Lu, C. J.; Ye, F.; Liu, Q.; Sun, Z. M. Principles of interlayer-spacing regulation of layered vanadium phosphates for superior zinc-ion batteries. Energy Environ. Sci. 2021, 14, 4095–4106.

File
12274_2022_4370_MOESM1_ESM.pdf (754.8 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 January 2022
Revised: 11 March 2022
Accepted: 28 March 2022
Published: 25 June 2022
Issue date: August 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51802171 and 52072197), Outstanding Youth Foundation of Shandong Province, China (No. ZR2019JQ14), Taishan Scholar Young Talent Program (No. tsqn201909114), and Major Basic Research Program of Natural Science Foundation of Shandong Province (No. ZR2020ZD09).

Return