AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Regulation of the macrophage-related inflammatory microenvironment for atherosclerosis treatment and angiogenesis via anti-cytokine agents

Hongji Pu1,§Minghua Yao2,§Zhaoyu Wu1,§Zhijue Xu1,§Chaoyi Cui1( )Renhua Huang3Muhammad Shafiq4Weimin Li1Xinwu Lu1( )Bo Li1( )
Department of Vascular Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200040, China
Department of Radiation, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan

§ Hongji Pu, Minghua Yao, Zhaoyu Wu, and Zhijue Xu contributed equally to this work.

Show Author Information

Graphical Abstract

Mesoporous silica nanoparticles (MSNs)@anti-IL-1β were able to specifically accumulate in the atherosclerotic plaque, diminish atherosclerotic plaques, and promote angiogenesis to improve ischemia in mice. The anti-cytokine agents may have broad implications in clinical practice for the reduction of the atherosclerosis progression and alleviation of the ischemia.

Abstract

Macrophages-mediated atherosclerosis (AS) is an inflammatory disease and the most common cause of ischemia. With the progress of basic and clinical research, anti-cytokine therapy has garnered considerable attention of the research community for the regulation of the inflammatory microenvironment for AS treatment. Despite of their promising potential, primary clinical trials have revealed that anti-cytokine drugs exhibit poor selectivity and thus affect other parts of the immune system, especially during long-term management. To circumvent these limitations, herein we exploited mesoporous silica nanoparticles (MSNs) with a pore size of 15.5 nm as carriers for the anti-interleukin-1β (anti-IL-1β) delivery to be the anti-cytokine agents. In vitro mechanistic studies indicated that the MSNs@anti-IL-1β can regulate the macrophage-related inflammatory microenvironment, promote the viability of vascular endothelial cells (vECs), and reduce proliferation and phenotypic switching of vascular smooth muscle cells (vSMCs). In vivo evaluation further revealed that the MSNs@anti-IL-1β were preferentially accumulated in macrophages, impeding the AS progress by maintaining the endothelium integrity and inhibiting the vSMCs proliferation. Besides, MSNs@anti-IL-1β induced neovascularization and improved hindlimb ischemia regeneration. Taken together, these MSNs affording the sustained release of anti-cytokine agents may have broad implications for the clinical management of the AS, including the reduction of the AS progression and alleviation of the ischemia.

Electronic Supplementary Material

Download File(s)
12274_2022_4366_MOESM1_ESM.pdf (946 KB)

References

1

Pasternak, R. C.; Criqui, M. H.; Benjamin, E. J.; Fowkes, F. G. R.; Isselbacher, E. M.; McCullough, P. A.; Wolf, P. A.; Zheng, Z. J. Atherosclerotic vascular disease conference: Writing group I: Epidemiology. Circulation 2004, 109, 2605–2612.

2

Mitchell, G. F.; Guo, C. Y.; Benjamin, E. J.; Larson, M. G.; Keyes, M. J.; Vita, J. A.; Vasan, R. S.; Levy, D. Cross-sectional correlates of increased aortic stiffness in the community: The framingham heart study. Circulation 2007, 115, 2628–2636.

3

Herrington, W.; Lacey, B.; Sherliker, P.; Armitage, J.; Lewington, S. Epidemiology of atherosclerosis and the potential to reduce the global burden of atherothrombotic disease. Circ. Res. 2016, 118, 535–546.

4

Catapano, A. L.; Graham, I.; De Backer, G.; Wiklund, O.; Chapman, M. J.; Drexel, H.; Hoes, A. W.; Jennings, C. S.; Landmesser, U.; Pedersen, T. R. et al. 2016 ESC/EAS guidelines for the management of dyslipidaemias: The task force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS) developed with the special contribution of the European association for cardiovascular prevention & rehabilitation (EACPR). Atherosclerosis 2016, 253, 281–344.

5

Aboyans, V.; Ricco, J. B.; Bartelink, M. L. E. L.; Björck, M.; Brodmann, M.; Cohnert, T.; Collet, J. P.; Czerny, M.; De Carlo, M.; Debus, S. et al. 2017 ESC guidelines on the diagnosis and treatment of peripheral arterial diseases, in collaboration with the European Society for Vascular Surgery (ESVS): Document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteries Endorsed by: the European Stroke Organization (ESO) The Task Force for the Diagnosis and Treatment of Peripheral Arterial Diseases of the European Society of Cardiology (ESC) and of the European Society for Vascular Surgery (ESVS). Eur. Heart J. 2018, 39, 763–816.

6

Michos, E. D.; McEvoy, J. W.; Blumenthal, R. S. Lipid management for the prevention of atherosclerotic cardiovascular disease. N. Engl. J. Med. 2019, 381, 1557–1567.

7

Wolf, D.; Ley, K. Immunity and inflammation in atherosclerosis. Circ. Res. 2019, 124, 315–327.

8

Faxon, D. P.; Fuster, V.; Libby, P.; Beckman, J. A.; Hiatt, W. R.; Thompson, R. W.; Topper, J. N.; Annex, B. H.; Rundback, J. H.; Fabunmi, R. P. et al. Atherosclerotic vascular disease conference: Writing group III: Pathophysiology. Circulation 2004, 109, 2617–2625.

9

Hansson, G. K. Immune mechanisms in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2001, 21, 1876–1890.

10

Libby, P. Inflammation in atherosclerosis. Nature 2002, 420, 868–874.

11

Gimbrone, M. A. Jr. García-Cardeña, G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ. Res. 2016, 118, 620–636.

12

Khurana, R.; Zhuang, Z. W.; Bhardwaj, S.; Murakami, M.; De Muinck, E.; Yla-Herttuala, S.; Ferrara, N.; Martin, J. F.; Zachary, I.; Simons, M. Angiogenesis-dependent and independent phases of intimal hyperplasia. Circulation 2004, 110, 2436–2443.

13

Li, X. D.; Hong, M. N.; Chen, J.; Lu, Y. Y.; Ye, M. Q.; Ma, Y.; Zhu, D. L.; Gao, P. J. Adventitial fibroblast-derived vascular endothelial growth factor promotes vasa vasorum-associated neointima formation and macrophage recruitment. Cardiovasc. Res. 2020, 116, 708–720.

14

Ridker, P. M. From CANTOS to CIRT to COLCOT to clinic: Will all atherosclerosis patients soon be treated with combination lipid-lowering and inflammation-inhibiting agents. Circulation 2020, 141, 787–789.

15

Ridker, P. M.; Everett, B. M.; Thuren, T.; MacFadyen, J. G.; Chang, W. H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.; Koenig, W.; Anker, S. D. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 2017, 377, 1119–1131.

16

Rossi-Semerano, L.; Fautrel, B.; Wendling, D.; Hachulla, E.; Galeotti, C.; Semerano, L.; Touitou, I.; Koné-Paut, I. Tolerance and efficacy of off-label anti-interleukin-1 treatments in France: A nationwide survey. Orphanet J. Rare Dis. 2015, 10, 19.

17

Zhang, J.; Zu, Y. J.; Dhanasekara, C. S.; Li, J.; Wu, D. Y.; Fan, Z. Y.; Wang, S. Detection and treatment of atherosclerosis using nanoparticles. WIREs Nanomed. Nanobiotechnol. 2017, 9, e1412.

18

Guan, S. Q.; Liu, X. J.; Fu, Y.; Li, C. L.; Wang, J. X.; Mei. Q. X.; Deng, G. Y.; Zheng, W. R.; Wan, Z. P.; Lu, J. A biodegradable “Nano-donut” for magnetic resonance imaging and enhanced chemo/photothermal/chemodynamic therapy through responsive catalysis in tumor microenvironment. J. Colloid Interface Sci. 2022, 608, 344–354.

19

Liu, H.; Wang, J. J. Loading IR820 using multifunctional dendrimers with enhanced stability and specificity. Pharmaceutics 2018, 10, 77.

20
Ma, Y. ; Xu, L. ; Yin, B. L. ; Shang, J. H. ; Chen, F. F. ; Xu, J. T. ; Song, Z. L. ; Nan, B. ; Song, G. S. ; Zhang, X. B. Ratiometric semiconducting polymer nanoparticle for reliable photoacoustic imaging of pneumonia-induced vulnerable atherosclerotic plaque in vivo. Nano Lett. 2021, 21, 4484–4493.
21

Koga, J. I.; Matoba, T.; Egashira, K. Anti-inflammatory nanoparticle for prevention of atherosclerotic vascular diseases. J. Atheroscler. Thromb. 2016, 23, 757–765.

22

Tang, F. Q.; Li, L. L.; Chen, D. Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery. Adv. Mater. 2012, 24, 1504–1534.

23

Weber, C.; Noels, H. Atherosclerosis: Current pathogenesis and therapeutic options. Nat. Med. 2011, 17, 1410–1422.

24

Yan, W.; Jiang, S. Immune cell-derived exosomes in the cancer-immunity cycle. Trends Cancer 2020, 6, 506–517.

25

Tabas, I.; Bornfeldt, K. E. Macrophage phenotype and function in different stages of atherosclerosis. Circ. Res. 2016, 118, 653–667.

26

Ying, W.; Cheruku, P. S.; Bazer, F. W.; Safe, S. H.; Zhou, B. Y. Investigation of macrophage polarization using bone marrow derived macrophages. J. Vis. Exp. 2013, 76, 50323.

27

Zhang, X.; Jiang, Y. H.; Huang, Q.; Wu, Z. Y.; Pu, H. J.; Xu, Z. J.; Li, B.; Lu, X. W.; Yang, X. R.; Qin, J. B. et al. Exosomes derived from adipose-derived stem cells overexpressing glyoxalase-1 protect endothelial cells and enhance angiogenesis in type 2 diabetic mice with limb ischemia. Stem Cell Res. Ther. 2021, 12, 403.

28

Dinarello, C. A. The IL-1 family of cytokines and receptors in rheumatic diseases. Nat. Rev. Rheumatol. 2019, 15, 612–632.

29

Grebe, A.; Hoss, F.; Latz, E. NLRP3 inflammasome and the IL-1 pathway in atherosclerosis. Circ. Res. 2018, 122, 1722–1740.

30

Grehan, J. F.; Levay-Young, B. K.; Fogelson, J. L.; François-Bongarçon, V.; Benson, B. A.; Dalmasso, A. P. IL-4 and IL-13 induce protection of porcine endothelial cells from killing by human complement and from apoptosis through activation of a phosphatidylinositide 3-kinase/Akt pathway. J. Immunol. 2005, 175, 1903–1910.

31

Weinstock, A.; Rahman, K.; Yaacov, O.; Nishi, H.; Menon, P.; Nikain, C. A.; Garabedian, M. L.; Pena, S.; Akbar, N.; Sansbury, B. E. et al. Wnt signaling enhances macrophage responses to IL-4 and promotes resolution of atherosclerosis. eLife 2021, 10, e67932.

32

Gomez, D.; Baylis, R. A.; Durgin, B. G.; Newman, A. A. C.; Alencar, G. F.; Mahan, S.; St Hilaire, C.; Müller, W.; Waisman, A.; Francis, S. E. et al. Interleukin-1β has atheroprotective effects in advanced atherosclerotic lesions of mice. Nat. Med. 2018, 24, 1418–1429.

33

Uhrin, P.; Wang, D. D.; Mocan, A.; Waltenberger, B.; Breuss, J. M.; Tewari, D.; Mihaly-Bison, J.; Huminiecki, Ł.; Starzyński, R. R.; Tzvetkov, N. T. et al. Vascular smooth muscle cell proliferation as a therapeutic target. Part 2: Natural products inhibiting proliferation. Biotechnol. Adv. 2018, 36, 1608–1621.

34

Hirano, S.; Zhou, Q.; Furuyama, A.; Kanno, S. Differential regulation of IL-1β and IL-6 release in murine macrophages. Inflammation 2017, 40, 1933–1943.

35

Libby, P.; Warner, S. J.; Friedman, G. B. Interleukin 1: A mitogen for human vascular smooth muscle cells that induces the release of growth-inhibitory prostanoids. J. Clin. Invest. 1988, 81, 487–498.

36

Spiliotis, E. T.; Nakos, K. Cellular functions of actin- and microtubule-associated septins. Curr. Biol. 2021, 31, R651–R666.

37

Libby, P.; Rocha, V. Z. All roads lead to IL-6: A central hub of cardiometabolic signaling. Int. J. Cardiol. 2018, 259, 213–215.

38

Apostolakis, S.; Vogiatzi, K.; Amanatidou, V.; Spandidos, D. A. Interleukin 8 and cardiovascular disease. Cardiovasc. Res. 2009, 84, 353–360.

39

González-Navajas, J. M.; Law, J.; Nguyen, K. P.; Bhargava, M.; Corr, M. P.; Varki, N.; Eckmann, L.; Hoffman, H. M.; Lee, J.; Raz, E. Interleukin 1 receptor signaling regulates DUBA expression and facilitates Toll-like receptor 9-driven antiinflammatory cytokine production. J. Exp. Med. 2010, 207, 2799–2807.

40

Eelen, G.; De Zeeuw, P.; Simons, M.; Carmeliet, P. Endothelial cell metabolism in normal and diseased vasculature. Circ. Res. 2015, 116, 1231–1244.

Nano Research
Pages 7342-7354
Cite this article:
Pu H, Yao M, Wu Z, et al. Regulation of the macrophage-related inflammatory microenvironment for atherosclerosis treatment and angiogenesis via anti-cytokine agents. Nano Research, 2022, 15(8): 7342-7354. https://doi.org/10.1007/s12274-022-4366-7
Topics:

946

Views

9

Crossref

6

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 19 December 2021
Revised: 26 March 2022
Accepted: 28 March 2022
Published: 04 May 2022
© Tsinghua University Press 2022
Return