Journal Home > Volume 15 , Issue 8

Precise control of alloying sites has long been a challenge, yet little has been achieved in the atomic-level manipulation of metallic nanomaterials. This study reported a three-stage metal and motif exchange mechanism of alloying reaction of an atomically precise ligand-protected [Ag44(p-MBA)30]4− (p-MBA = para-mercaptobenzoic acid) cluster with [Au2(p-NTP)2Cl] (p-MBA = para-mercaptobenzoic acid). During the first stage (Stage I), an exchange of ligand-shell metal atoms took place. During the second stage (Stage II), the motif exchanged on the [AuAg43(p-MBA)30]4− cluster. During the third stage (Stage III), the Au(I) atom in the ligand-shell was swapped with a Ag(0) atom of the icosahedral Ag12-core. The density functional theory (DFT) calculation results demonstrated that the metal exchange proceeded via different mechanisms at the different reaction stages. In reaction Stages I and II, the metal exchange proceeded via formation of a dianionic [Ag44(p-MBA)30]4−-[Au2(p-NTP)2Cl] intermediate and then broke and recombined with the ligand-shell. In Stage III, the diffusion of the Au(I) to icosahedral Ag12-core (Stage III) was proceeded via a motif catalyzed heterometal atom diffusion mechanism. We hope that this work will provide a new perspective for the precise control of alloy position in alloyed nanomaterials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Three-stage alloying of [Ag44(p-MBA)30]4− cluster with [Au2(p-NTP)2Cl]

Show Author's information Baoyu HuangXiaomei ZhaoYong Pei( )
Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan 411105, China

Abstract

Precise control of alloying sites has long been a challenge, yet little has been achieved in the atomic-level manipulation of metallic nanomaterials. This study reported a three-stage metal and motif exchange mechanism of alloying reaction of an atomically precise ligand-protected [Ag44(p-MBA)30]4− (p-MBA = para-mercaptobenzoic acid) cluster with [Au2(p-NTP)2Cl] (p-MBA = para-mercaptobenzoic acid). During the first stage (Stage I), an exchange of ligand-shell metal atoms took place. During the second stage (Stage II), the motif exchanged on the [AuAg43(p-MBA)30]4− cluster. During the third stage (Stage III), the Au(I) atom in the ligand-shell was swapped with a Ag(0) atom of the icosahedral Ag12-core. The density functional theory (DFT) calculation results demonstrated that the metal exchange proceeded via different mechanisms at the different reaction stages. In reaction Stages I and II, the metal exchange proceeded via formation of a dianionic [Ag44(p-MBA)30]4−-[Au2(p-NTP)2Cl] intermediate and then broke and recombined with the ligand-shell. In Stage III, the diffusion of the Au(I) to icosahedral Ag12-core (Stage III) was proceeded via a motif catalyzed heterometal atom diffusion mechanism. We hope that this work will provide a new perspective for the precise control of alloy position in alloyed nanomaterials.

Keywords: density functional theory (DFT) calculations, metal cluster, alloying mechanism, metal exchange

References(65)

1

Lin, X. Z.; Ma, W. G.; Sun, K. J.; Sun, B.; Fu, X. M.; Ren, X. Q.; Liu, C.; Huang, J. H. [AuAg26(SR)18S] nanocluster: Open shell structure and high faradaic efficiency in electrochemical reduction of CO2 to CO. J. Phys. Chem. Lett. 2021, 12, 552–557.

2

Qin, Z. X.; Sharma, S.; Wan, C. Q.; Malola, S.; Xu, W. W.; Häkkinen, H.; Li, G. A. Homoleptic alkynyl-ligated [Au13Ag16L24]3− cluster as a catalytically active eight-electron superatom. Angew. Chem., Int. Ed. 2021, 60, 970–975.

3

Cai, X.; Saranya, G.; Shen, K. Q.; Chen, M. Y.; Si, R.; Ding, W. P.; Zhu, Y. Reversible switching of catalytic activity by shuttling an atom into and out of gold nanoclusters. Angew. Chem., Int. Ed. 2019, 58, 9964–9968.

4

Wu, Z. L.; Mullins, D. R.; Allard, L. F.; Zhang, Q. F.; Wang, L. S. CO Oxidation over ceria supported Au22 nanoclusters: Shape effect of the support. Chin. Chem. Lett. 2018, 29, 795–799.

5

Song, Y. B.; Li, Y. W.; Zhou, M.; Liu, X.; Li, H.; Wang, H.; Shen, Y. H.; Zhu, M. Z.; Jin, R. C. Ultrabright Au@Cu14 nanoclusters: 71.3% phosphorescence quantum yield in non-degassed solution at room temperature. Sci. Adv. 2021, 7, eabd2091.

6

Liu, X.; Saranya, G.; Huang, X. Y.; Cheng, X. L.; Wang, R.; Chen, M. Y.; Zhang, C. F.; Li, T.; Zhu, Y. Ag2Au50(PET)36 nanocluster: Dimeric assembly of Au25(PET)18 enabled by silver atoms. Angew. Chem., Int. Ed. 2020, 59, 13941–13946.

7

Xie, Y. S.; Zhang, N.; Tang, Z. R.; Anpo, M.; Xu, Y. J. Tip-grafted Ag-ZnO nanorod arrays decorated with Au clusters for enhanced photocatalysis. Catal. Today 2020, 340, 121–127.

8

Posha, B.; Nambiar, S. R.; Sandhyarani, N. Gold atomic cluster mediated electrochemical aptasensor for the detection of lipopolysaccharide. Biosens. Bioelectron. 2018, 101, 199–205.

9

Zhou, R. H.; Li, Y. Q.; Tian, Y. Y.; Sun, Q.; Deng, P. C.; Wu, L.; Hou, X. D. Simple fluorescence sensing of extreme acidity based on inner filter effect of ascorbic acid to fluorescent Au nanoclusters. Nanoscale 2017, 9, 10167–10172.

10

Zheng, K. Y.; Xie, J. P. Composition-dependent antimicrobial ability of full-spectrum AuxAg25-x alloy nanoclusters. ACS Nano 2020, 14, 11533–11541.

11

Zhang, P.; Zhai, J.; Gao, X. Y.; Zhao, H. K.; Su, W. Y.; Zhao, L. N. Targeted peptide-Au cluster binds to epidermal growth factor receptor (EGFR) in both active and inactive states: A clue for cancer inhibition through dual pathways. Sci. Bull. 2018, 63, 349–355.

12

Zhang, H.; Liu, H.; Tian, Z. Q.; Lu, D.; Yu, Y.; Cestellos-Blanco, S.; Sakimoto, K. K.; Yang, P. D. Bacteria photosensitized by intracellular gold nanoclusters for solar fuel production. Nat. Nanotechnol. 2018, 13, 900–905.

13

Wei, X.; Kang, X.; Duan, T. F.; Li, H.; Wang, S. X.; Pei, Y.; Zhu, M. Z. [Au16Ag43H12(SPhCl2)34]5−: An Au-Ag alloy nanocluster with 12 hydrides and its enlightenment on nanocluster structural evolution. Inorg. Chem. 2021, 60, 11640–11647.

14

Zou, X. J.; Li, Y. F.; Jin, S.; Kang, X.; Wei, X.; Wang, S. X.; Meng, X. M.; Zhu, M. Z. Doping copper atoms into the nanocluster kernel: Total structure determination of [Cu30Ag61(SAdm)38S3](BPh4). J. Phys. Chem. Lett. 2020, 11, 2272–2276.

15

Qin, Z. X.; Zhang, J. W.; Wan, C. Q.; Liu, S.; Abroshan, H.; Jin, R. C.; Li, G. Atomically precise nanoclusters with reversible isomeric transformation for rotary nanomotors. Nat. Commun. 2020, 11, 6019.

16

Higaki, T.; Liu, C.; Morris, D. J.; He, G. Y.; Luo, T. Y.; Sfeir, M. Y.; Zhang, P.; Rosi, N. L.; Jin, R. C. Au130−xAgx nanoclusters with non-metallicity: A drum of silver-rich sites enclosed in a marks-decahedral cage of gold-rich sites. Angew. Chem., Int. Ed. 2019, 58, 18798–18802.

17

Li, Y. F.; Zhou, M. M.; Jin, S.; Xiong, L.; Yuan, Q. Q.; Du, W. J.; Pei, Y.; Wang, S. X.; Zhu, M. Z. Total structural determination of [Au1Ag24(Dppm)3(SR)17]2+ comprising an open icosahedral Au1Ag12 core with six free valence electrons. Chem. Commun. 2019, 55, 6457–6460.

18

Wan, X. K.; Cheng, X. L.; Tang, Q.; Han, Y. Z.; Hu, G. X.; Jiang, D. E.; Wang, Q. M. Atomically precise bimetallic Au19Cu30 nanocluster with an icosidodecahedral Cu30 shell and an alkynyl-Cu interface. J. Am. Chem. Soc. 2017, 139, 9451–9454.

19

Bootharaju, M. S.; Kozlov, S. M.; Cao, Z.; Harb, M.; Maity, N.; Shkurenko, A.; Parida, M. R.; Hedhili, M. N.; Eddaoudi, M.; Mohammed, O. F. et al. Doping-induced anisotropic self-assembly of silver icosahedra in [Pt2Ag23Cl7(PPh3)10] nanoclusters. J. Am. Chem. Soc. 2017, 139, 1053–1056.

20

Liu, X.; Yao, G.; Cheng, X. L.; Xu, J. Y.; Cai, X.; Hu, W. G.; Xu, W. W.; Zhang, C. F.; Zhu, Y. Cd-driven surface reconstruction and photodynamics in gold nanoclusters. Chem. Sci. 2021, 12, 3290–3294.

21

Qin, Z. X.; Hu, S.; Han, W. H.; Li, Z. W.; Xu, W. W.; Zhang, J. J.; Li, G. Tailoring optical and photocatalytic properties by single-Ag-atom exchange in Au13Ag12(PPh3)10Cl8 nanoclusters. Nano Res. 2022, 15, 2971–2976.

22

Fei, W. W.; Antonello, S.; Dainese, T.; Dolmella, A.; Lahtinen, M.; Rissanen, K.; Venzo, A.; Maran, F. Metal doping of Au25(SR)18 clusters: Insights and hindsights. J. Am. Chem. Soc. 2019, 141, 16033–16045.

23

Yan, N.; Liao, L. W.; Yuan, J. Y.; Lin, Y. J.; Weng, L. H.; Yang, J. L.; Wu, Z. K. Bimetal doping in nanoclusters: Synergistic or counteractive? Chem. Mater. 2016, 28, 8240–8247.

24

Jin, S.; Zhou, M. M.; Kang, X.; Li, X. W.; Du, W. J.; Wei, X.; Chen, S.; Wang, S. X.; Zhu, M. Z. Three-dimensional octameric assembly of icosahedral M13 units in [Au8Ag57(Dppp)4(C6H11S)32Cl2]Cl and its [Au8Ag55(Dppp)4(C6H11S)34][BPh4]2 derivative. Angew. Chem., Int. Ed. 2020, 59, 3891–3895.

25

Niihori, Y.; Kikuchi, Y.; Kato, A.; Matsuzaki, M.; Negishi, Y. Understanding ligand-exchange reactions on thiolate-protected gold clusters by probing isomer distributions using reversed-phase high-performance liquid chromatography. ACS Nano 2015, 9, 9347–9356.

26

Du, W. J.; Jin, S.; Xiong, L.; Chen, M.; Zhang, J.; Zou, X. J.; Pei, Y.; Wang, S. X.; Zhu, M. Z. Ag50(Dppm)6(SR)30 and its homologue AuAg50−x(Dppm)6(SR)30 alloy nanocluster: Seeded growth, structure determination, and differences in properties. J. Am. Chem. Soc. 2017, 139, 1618–1624.

27

Chen, T.; Yang, S.; Chai, J. S.; Song, Y. B.; Fan, J. Q.; Rao, B.; Sheng, H. T.; Yu, H. Z.; Zhu, M. Z. crystallization-induced emission enhancement: A novel fluorescent Au-Ag bimetallic nanocluster with precise atomic structure. Sci. Adv. 2017, 3, e1700956.

28

Wang, Z.; Senanayake, R.; Aikens, C. M.; Chen, W. M.; Tung, C. H.; Sun, D. Gold-doped silver nanocluster [Au3Ag38(SCH2Ph)24X5]2− (X = Cl or Br). Nanoscale 2016, 8, 18905–18911.

29

Bootharaju, M. S.; Kozlov, S. M.; Cao, Z.; Harb, M.; Parida, M. R.; Hedhili, M. N.; Mohammed, O. F.; Bakr, O. M.; Cavallo, L.; Basset, J. -M. Directversus ligand-exchange synthesis of [PtAg28(BDT)12(TPP)4]4− Nanoclusters: Effect of a single-atom dopant on the optoelectronic and chemical properties. Nanoscale 2017, 9, 9529–9536.

30

Dou, X. Y.; Yuan, X.; Yao, Q. F.; Luo, Z. T.; Zheng, K. Y.; Xie, J. P. Facile synthesis of water-soluble Au25−xAgx nanoclusters protected by mono- and bi-thiolate ligands. Chem. Commun. 2014, 50, 7459–7462.

31

Wang, X Y.; Wang, S. S.; Qian, S. Y.; Liu, N. W.; Dou, X. Y.; Yuan, X. Mechanistic insights into the two-phase synthesis of heteroleptic Au nanoclusters. Nanoscale 2021, 13, 3512–3518.

32

Dou, X. Y.; Wang, X. Y.; Qian, S. Y.; Liu, N. W.; Yuan, X. From understanding the roles of tetraoctylammonium bromide in the two-phase brust-schiffrin method to tuning the size of gold nanoclusters. Nanoscale 2020, 12, 19855–19860.

33

Yang, S.; Chai, J. S.; Song, Y. B.; Fan, J. Q.; Chen, T.; Wang, S. X.; Yu, H. Z.; Li, X. W.; Zhu, M. Z. In situ two-phase ligand exchange: A new method for the synthesis of alloy nanoclusters with precise atomic structures. J. Am. Chem. Soc. 2017, 139, 5668–5671.

34

Das, A.; Li, T.; Nobusada, K.; Zeng, C. J.; Rosi, N. L.; Jin, R. C. Nonsuperatomic [Au23(SC6H11)16] nanocluster featuring bipyramidal Au15 kernel and trimeric Au3(SR)4 motif. J. Am. Chem. Soc. 2013, 135, 18264–18267.

35

Kang, X.; Wei, X.; Wang, S. X.; Zhu, M. Z. An insight, at the atomic level, into the polarization effect in controlling the morphology of metal nanoclusters. Chem. Sci. 2021, 12, 11080–11088.

36

Pan, P. Y.; Zhou, C. J.; Li, H.; Zhu, C.; Chen, C.; Kang, X.; Zhu, M. Z. Reversible transformation between Au14Ag8 and Au14Ag4 nanoclusters. Nanoscale 2021, 13, 17162–17167.

37

Kang, X.; Huang, L.; Liu, W.; Xiong, L.; Pei, Y.; Sun, Z. H.; Wang, S. X.; Wei, S. Q.; Zhu, M. Z. Reversible nanocluster structure transformation between face-centered cubic and icosahedral isomers. Chem. Sci. 2019, 10, 8685–8693.

38

Sels, A.; Salassa, G.; Pollitt, S.; Guglieri, C.; Rupprechter, G.; Barrabés, N.; Bürgi, T. Structural investigation of the ligand exchange reaction with rigid dithiol on doped (Pt, Pd)Au25 Clusters. J. Phys. Chem. C 2017, 121, 10919–10926.

39

Kothalawala, N.; Kumara, C.; Ferrando, R.; Dass, A. Au144−xPdx(SR)60 nanomolecules. Chem. Commun. 2013, 49, 10850–10852.

40

Kumara, C.; Dass, A. (AuAg)144(SR)60 alloy nanomolecules. Nanoscale 2011, 3, 3064–3067.

41

Neumaier, M.; Baksi, A.; Weis, P.; Schneider, E. K.; Chakraborty, P.; Hahn, H.; Pradeep, T.; Kappes, M. M. Kinetics of intercluster reactions between atomically precise noble metal clusters [Ag25(DMBT)18] and [Au25(PET)18] in room temperature solutions. J. Am. Chem. Soc. 2021, 143, 6969–6980.

42

Baksi, A.; Schneider, E. K.; Weis, P.; Chakraborty, I.; Fuhr, O.; Lebedkin, S.; Parak, W. J.; Kappes, M. M. Linear size contraction of ligand protected Ag29 clusters by substituting Ag with Cu. ACS Nano 2020, 14, 15064–15070.

43

Khatun, E.; Chakraborty, P.; Jacob, B. R.; Paramasivam, G.; Bodiuzzaman, M.; Dar, W. A.; Pradeep, T. Intercluster reactions resulting in silver-rich trimetallic nanoclusters. Chem. Mater. 2020, 32, 611–619.

44

Krishnadas, K. R.; Ghosh, A.; Baksi, A.; Chakraborty, I.; Natarajan, G.; Pradeep, T. Intercluster reactions between Au25(SR)18 and Ag44(SR)30. J. Am. Chem. Soc. 2016, 138, 140–148.

45

Krishnadas, K. R.; Baksi, A.; Ghosh, A.; Natarajan, G.; Pradeep, T. Manifestation of geometric and electronic shell structures of metal clusters in intercluster reactions. ACS Nano 2017, 11, 6015–6023.

46

Chakraborty, I.; Pradeep, T. Atomically precise clusters of noble metals: Emerging link between atoms and nanoparticles. Chem. Rev. 2017, 117, 8208–8271.

47

Li, Y. W.; Zhou, M.; Jin, R. C. Programmable metal nanoclusters with stomic precision. Adv. Mater. 2021, 33, 2006591.

48

Kawawaki, T.; Imai, Y.; Suzuki, D.; Kato, S.; Kobayashi, I.; Suzuki, T.; Kaneko, R.; Hossain, S.; Negishi, Y. Atomically precise alloy nanoclusters. Chem. Eur. J. 2020, 26, 16150–16193.

49

Kang, X.; Li, Y. W.; Zhu, M. Z.; Jin, R. C. Atomically precise alloy nanoclusters: Syntheses, structures, and properties. Chem. Soc. Rev. 2020, 49, 6443–6514.

50

Pillay, M. N.; Van Zyl, W. E.; Liu, C. W. A construction guide for high-nuclearity (≥ 50 metal atoms) coinage metal clusters at the nanoscale: Bridging molecular precise constructs with the bulk material phase. Nanoscale 2020, 12, 24331–24348.

51

Bootharaju, M. S.; Joshi, C. P.; Parida, M. R.; Mohammed, O. F.; Bakr, O. M. Templated atom-precise galvanic synthesis and structure elucidation of a [Ag24Au(SR)18] nanocluster. Angew. Chem., Int. Ed. 2016, 128, 934–938.

52

Zheng, K. Y.; Fung, V.; Yuan, X.; Jiang, D. E.; Xie, J. P. Real time monitoring of the dynamic intracluster diffusion of single gold atoms into silver nanoclusters. J. Am. Chem. Soc. 2019, 141, 18977–18983.

53

Zhang, B.; Safonova, O. V.; Pollitt, S.; Salassa, G.; Sels, A.; Kazan, R.; Wang, Y. M.; Rupprechter, G.; Barrabés, N.; Bürgi, T. On the mechanism of rapid metal exchange between thiolate-protected gold and gold/silver clusters: A time-resolved in situ XAFS study. Phys. Chem. Chem. Phys. 2018, 20, 5312–5318.

54

Yao, Q. F.; Feng, Y.; Fung, V.; Yu, Y.; Jiang, D. E.; Yang, J.; Xie, J. P. Precise control of alloying sites of bimetallic nanoclusters via surface motif exchange reaction. Nat. Commun. 2017, 8, 1555.

55

Yang, H. Y.; Wang, Y.; Huang, H. Q.; Gell, L.; Lehtovaara, L.; Malola, S.; Häkkinen, H.; Zheng, N. F. All-thiol-stabilized Ag44 and Au12Ag32 nanoparticles with single-crystal structures. Nat. Commun. 2013, 4, 2422.

56

Gell, L.; Häkkinen, H. Theoretical analysis of the M12Ag32(SR)404− and X@M12Ag32(SR)304− nanoclusters (M = Au, Ag; X = H, Mn). J. Phys. Chem. C 2015, 119, 10943–10948.

57

Morera-Boado, C.; Hidalgo, F.; Noguez, C. Stability and electronic charge compensation of [Ag44−xAux(SR)30]4− clusters. J. Phys. Chem. C 2019, 123, 26633–26643.

58

Tang, L.; Kang, X.; Wang, X. Y.; Zhang, X. H.; Yuan, X.; Wang, S. X. Dynamic metal exchange between a metalloid silver cluster and silver(I) thiolate. Inorg. Chem. 2021, 60, 3037–3045.

59

Desireddy, A.; Conn, B. E.; Guo, J.; Yoon, B.; Barnett, R. N.; Monahan, B. M.; Kirschbaum, K.; Griffith, W. P.; Whetten, R. L.; Landman, U. et al. Ultrastable silver nanoparticles. Nature 2013, 501, 399–402.

60

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

61

Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 1990, 92, 508–517.

62

Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756–7764.

63

Perdew, J. P.; Levy, M. Physical content of the exact Kohn-sham orbital energies: Band gaps and derivative discontinuities. Phys. Rev. Lett. 1983, 51, 1884–1887.

64

Bučko, T.; Lebègue, S.; Hafner, J.; Ángyán, J. G. Tkatchenko-scheffler Van der Waals correction method with and without self-consistent screening applied to solids. Phys. Rev. B. 2013, 87, 064110.

65

Yang, H. Y.; Wang, Y.; Yan, J. Z.; Chen, X.; Zhang, X.; Häkkinen, H.; Zheng, N. F. Structural evolution of atomically precise thiolated bimetallic [Au12+nCu32(SR)30+n]4−(n= 0, 2, 4, 6) Nanoclusters. J. Am. Chem. Soc. 2014, 136, 7197–7200.

File
12274_2022_4364_MOESM1_ESM.pdf (1.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 03 February 2022
Revised: 22 March 2022
Accepted: 25 March 2022
Published: 31 May 2022
Issue date: August 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 91961121, 21773201, and 21422305) and the Project of Innovation Team of the Ministry of Education (No. IRT_17R90).

Return