Journal Home > Volume 15 , Issue 8

Flexible high-frequency vibration sensors are highly desirable in various real-world applications such as structural health monitoring, environmental monitoring, and the internet of things. However, developing a facile and effective method to fabricate vibration sensors simultaneously featuring high vibration frequency response-ability and flexibility remains a grand challenge. Herein, we report a flexible ultrahigh-frequency triboelectric vibration sensor (UTVS) prepared by a layer-particle-layer structure. Owing to the flexibility of the materials (i.e., polyethylene terephthalate membrane) and the ultrahigh-frequency vibration response-ability of internal microparticles, the flexible UTVS exhibits an enhanced working frequency range of 3–170 kHz, which is much broader than previously reported triboelectric vibration sensors. Moreover, the UTVS can work not only in a flat state but also in a bent state due to its flexibility and the unique layer-particle-layer structural design. The UTVS shows nanometer-level vibration response-ability, omnidirectional response, stability in the temperature range of 10–70 °C, good frequency resolution of 0.01 kHz, and excellent performance in burst vibration detection (e.g., pencil lead break events and impact events from falling steel balls). With a collection of compelling features, the device is successfully demonstrated in vibration monitoring of curved structures (e.g., real-time water pipeline leak monitoring). Such a flexible ultrahigh-frequency triboelectric vibration sensor holds great potential in a wide range of practical applications, such as communication, health care, and infrastructure monitoring.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Flexible triboelectric nanogenerator toward ultrahigh-frequency vibration sensing

Show Author's information Zhiwei Lin1,§Chenchen Sun1,§Gaoqiang Zhang1Endong Fan1Zhihao Zhou1Ziying Shen1Jun Yang2Mingyang Liu1Yushu Xia1Shaobo Si1Jin Yang1( )
Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Department of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China

§ Zhiwei Lin and Chenchen Sun contributed equally to this work.

Abstract

Flexible high-frequency vibration sensors are highly desirable in various real-world applications such as structural health monitoring, environmental monitoring, and the internet of things. However, developing a facile and effective method to fabricate vibration sensors simultaneously featuring high vibration frequency response-ability and flexibility remains a grand challenge. Herein, we report a flexible ultrahigh-frequency triboelectric vibration sensor (UTVS) prepared by a layer-particle-layer structure. Owing to the flexibility of the materials (i.e., polyethylene terephthalate membrane) and the ultrahigh-frequency vibration response-ability of internal microparticles, the flexible UTVS exhibits an enhanced working frequency range of 3–170 kHz, which is much broader than previously reported triboelectric vibration sensors. Moreover, the UTVS can work not only in a flat state but also in a bent state due to its flexibility and the unique layer-particle-layer structural design. The UTVS shows nanometer-level vibration response-ability, omnidirectional response, stability in the temperature range of 10–70 °C, good frequency resolution of 0.01 kHz, and excellent performance in burst vibration detection (e.g., pencil lead break events and impact events from falling steel balls). With a collection of compelling features, the device is successfully demonstrated in vibration monitoring of curved structures (e.g., real-time water pipeline leak monitoring). Such a flexible ultrahigh-frequency triboelectric vibration sensor holds great potential in a wide range of practical applications, such as communication, health care, and infrastructure monitoring.

Keywords: flexible electronics, self-powered sensor, vibration sensing, structural health monitoring

References(51)

1

Awwad, A.; Yahyia, M.; Albasha, L.; Mortula, M. M.; Ali, T. Communication network for ultrasonic acoustic water leakage detectors. IEEE Access 2020, 8, 29954–29964.

2

Rostami, J.; Tse, P. W.; Yuan, M. D. Detection of broken wires in elevator wire ropes with ultrasonic guided waves and tone-burst wavelet. Struct. Health Monit. 2020, 19, 481–494.

3
Frederick, W. Substation insulator failure prevention by ultrasonic corona detection. IEEE Trans. Ind. Appl. 1972, IA-8, 82–83.
4

Swan, M. Sensor mania! The internet of things, wearable computing, objective metrics, and the quantified Self 2. 0. J. Sens. Actuator Netw. 2012, 1, 217–253.

5

Dixon, N.; Smith, A.; Flint, J. A.; Khanna, R.; Clark, B.; Andjelkovic, M. An acoustic emission landslide early warning system for communities in low-income and middle-income countries. Landslides 2018, 15, 1631–1644.

6

Michlmayr, G.; Chalari, A.; Clarke, A.; Or, D. Fiber-optic high-resolution acoustic emission (AE) monitoring of slope failure. Landslides 2017, 14, 1139–1146.

7

Chen, X.; Li, J. W.; Zhang, G. T.; Shi, Y. PZT nanoactive fiber composites for acoustic emission detection. Adv. Mater. 2011, 23, 3965–3969.

8

Lang, C. H.; Fang, J.; Shao, H.; Ding, X.; Lin, T. High-sensitivity acoustic sensors from nanofibre webs. Nat. Commun. 2016, 7, 11108.

9

Lee, H. S.; Chung, J.; Hwang, G. T.; Jeong, C. K.; Jung, Y.; Kwak, J. H.; Kang, H. M.; Byun, M.; Kim, W. D.; Hur, S. et al. Flexible inorganic piezoelectric acoustic nanosensors for biomimetic artificial hair cells. Adv. Funct. Mater. 2014, 24, 6914–6921.

10

Zhou, L. Y.; He, J. Q.; Li, W. Z.; He, P. S.; Ye, Q. X.; Fu, B. W.; Tao, P.; Song, C. Y.; Wu, J. B.; Deng, T. et al. Butterfly wing hears sound: Acoustic detection using biophotonic nanostructure. Nano Lett. 2019, 19, 2627–2633.

11

Rothberg, S. J.; Allen, M. S.; Castellini, P.; Di Maio, D.; Dirckx, J. J. J.; Ewins, D. J.; Halkon, B. J.; Muyshondt, P.; Paone, N.; Ryan, T. et al. An international review of laser Doppler vibrometry: Making light work of vibration measurement. Opt. Lasers Eng. 2017, 99, 11–22.

12

Oralkan, O.; Ergun, A. S.; Johnson, J. A.; Karaman, M.; Demirci, U.; Kaviani, K.; Lee, T. H.; Khuri-Yakub, B. T. Capacitive micromachined ultrasonic transducers: Next-generation arrays for acoustic imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2002, 49, 1596–1610.

13

Lee, S.; Kim, J.; Yun, I.; Bae, G. Y.; Kim, D.; Park, S.; Yi, I. M.; Moon, W.; Chung, Y.; Cho, K. An ultrathin conformable vibration-responsive electronic skin for quantitative vocal recognition. Nat. Commun. 2019, 10, 2468.

14

Cong, M.; Wu, X. J.; Qian, C. Q. A longitudinal mode electromagnetic acoustic transducer (EMAT) based on a permanent magnet chain for pipe inspection. Sensors 2016, 16, 740.

15

Kang, L.; Feeney, A.; Dixon, S. Wideband electromagnetic dynamic acoustic transducers (WEMDATs) for air-coupled ultrasonic applications. Appl. Phys. Lett. 2019, 114, 053505.

16

Zhao, Y. C.; Gao, S. H.; Zhang, X.; Huo, W. X.; Xu, H.; Chen, C.; Li, J.; Xu, K. X.; Huang, X. Fully flexible electromagnetic vibration sensors with annular field confinement origami magnetic membranes. Adv. Funct. Mater. 2020, 30, 2001553.

17
Yan, S. ; Liu, W. L. ; Song, G. B. ; Zhao, P. T. ; Zhang, S. Connection looseness detection of steel grid structures using piezoceramic transducers. Int. J. Distrib. Sens. Netw. 2018, 14, 1550147718759234.
18

Xu, Y.; Luo, M. Z.; Liu, Q.; Du, G. F.; Song, G. B. PZT transducer array enabled pipeline defect locating based on time-reversal method and matching pursuit de-noising. Smart Mater. Struct. 2019, 28, 075019.

19

Du, G. F.; Kong, Q. Z.; Lai, T.; Song, G. B. Feasibility study on crack detection of pipelines using piezoceramic transducers. Int. J. Distrib. Sens. Netw. 2013, 9, 631715.

20

Cheng, L. Q.; Xu, Z.; Zhao, C. L.; Thong, H. C.; Cen, Z. Y.; Lu, W.; Lan, Y.; Wang, K. Significantly improved piezoelectric performance of PZT-PMnN ceramics prepared by spark plasma sintering. RSC Adv. 2018, 8, 35594–35599.

21

Hu, H. J.; Zhu, X.; Wang, C. H.; Zhang, L.; Li, X. S.; Lee, S.; Huang, Z. L.; Chen, R. M.; Chen, Z. Y.; Wang, C. F. et al. Stretchable ultrasonic transducer arrays for three-dimensional imaging on complex surfaces. Sci. Adv. 2018, 4, eaar3979.

22

Wang, C. H.; Li, X. S.; Hu, H. J.; Zhang, L.; Huang, Z. L.; Lin, M. Y.; Zhang, Z. R.; Yin, Z. N.; Huang, B.; Gong, H. et al. Monitoring of the central blood pressure waveform via a conformal ultrasonic device. Nat. Biomed. Eng. 2018, 2, 687–695.

23

Loke, G.; Alain, J.; Yan, W.; Khudiyev, T.; Noel, G.; Yuan, R.; Missakian, A.; Fink, Y. Computing fabrics. Matter 2020, 2, 786–788.

24

Yan, W.; Page, A.; Nguyen-Dang, T.; Qu, Y. P.; Sordo, F.; Wei, L.; Sorin, F. Advanced multimaterial electronic and optoelectronic fibers and textiles. Adv. Mater. 2019, 31, 1802348.

25

Loke, G.; Yan, W.; Khudiyev, T.; Noel, G.; Fink, Y. Recent progress and perspectives of thermally drawn multimaterial fiber electronics. Adv. Mater. 2020, 32, 1904911.

26

Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

27

Quan, T.; Wu, Y. C.; Yang, Y. Hybrid electromagnetic-triboelectric nanogenerator for harvesting vibration energy. Nano Res. 2015, 8, 3272–3280.

28

Li, G. Z.; Wang, G. G.; Cai, Y. W.; Sun, N.; Li, F.; Zhou, H. L.; Zhao, H. X.; Zhang, X. N.; Han, J. C.; Yang, Y. A high-performance transparent and flexible triboelectric nanogenerator based on hydrophobic composite films. Nano Energy 2020, 75, 104918.

29

Wang, S. H.; Lin, L.; Wang, Z. L. Triboelectric nanogenerators as self-powered active sensors. Nano Energy 2015, 11, 436–462.

30

Wang, Z. L.; Chen, J.; Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 2015, 8, 2250–2282.

31

Xu, W. H.; Zheng, H. X.; Liu, Y.; Zhou, X. F.; Zhang, C.; Song, Y. X.; Deng, X.; Leung, M.; Yang, Z. B.; Xu, R. X. et al. A droplet-based electricity generator with high instantaneous power density. Nature 2020, 578, 392–396.

32

Hinchet, R.; Yoon, H. J.; Ryu, H.; Kim, M. K.; Choi, E. K.; Kim, D. S.; Kim, S. W. Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology. Science 2019, 365, 491–494.

33

Chen, C.; Wen, Z.; Shi, J. H.; Jian, X. H.; Li, P. Y.; Yeow, J. T. W.; Sun, X. H. Micro triboelectric ultrasonic device for acoustic energy transfer and signal communication. Nat. Commun. 2020, 11, 4143.

34

Sun, J. G.; Tu, K. K.; Büchele, S.; Koch, S. M.; Ding, Y.; Ramakrishna, S. N.; Stucki, S.; Guo, H. Y.; Wu, C. S.; Keplinger, T. et al. Functionalized wood with tunable tribopolarity for efficient triboelectric nanogenerators. Matter 2021, 4, 3049–3066.

35

Xu, C. H.; Yang, Y. R.; Gao, W. Skin-interfaced sensors in digital medicine: From materials to applications. Matter 2020, 2, 1414–1445.

36

Yang, W. Q.; Chen, J.; Zhu, G.; Wen, X. N.; Bai, P.; Su, Y. J.; Lin, Y.; Wang, Z. L. Harvesting vibration energy by a triple-cantilever based triboelectric nanogenerator. Nano Res. 2013, 6, 880–886.

37

Wang, L. L.; Liu, W. Q.; Yan, Z. G.; Wang, F. J.; Wang, X. Stretchable and shape-adaptable triboelectric nanogenerator based on biocompatible liquid electrolyte for biomechanical energy harvesting and wearable human-machine interaction. Adv. Funct. Mater. 2021, 31, 2007221.

38

Liu, W. Q.; Wang, X.; Song, Y. X.; Cao, R. R.; Wang, L. L.; Yan, Z. G.; Shan, G. Y. Self-powered forest fire alarm system based on impedance matching effect between triboelectric nanogenerator and thermosensitive sensor. Nano Energy 2020, 73, 104843.

39

Yan, Z. G.; Wang, L. L.; Xia, Y. F.; Qiu, R. D.; Liu, W. Q.; Wu, M.; Zhu, Y.; Zhu, S. L.; Jia, C. Y.; Zhu, M. M. et al. Flexible high-resolution triboelectric sensor array based on patterned laser-induced graphene for self-powered real-time tactile sensing. Adv. Funct. Mater. 2021, 31, 2100709.

40

Wu, M.; Wang, X.; Xia, Y. F.; Zhu, Y.; Zhu, S. L.; Jia, C. Y.; Guo, W. Y.; Li, Q. Q.; Yan, Z. G. Stretchable freezing-tolerant triboelectric nanogenerator and strain sensor based on transparent, long-term stable, and highly conductive gelatin-based organohydrogel. Nano Energy 2022, 95, 106967.

41

Jin, L.; Xiao, X.; Deng, W. L.; Nashalian, A.; He, D. R.; Raveendran, V.; Yan, C.; Su, H.; Chu, X.; Yang, T. et al. Manipulating relative permittivity for high-performance wearable triboelectric nanogenerators. Nano Lett. 2020, 20, 6404–6411.

42

Wang, Z. L. On Maxwell's displacement current for energy and sensors: The origin of nanogenerators. Mater. Today 2017, 20, 74–82.

43

Zi, Y. L.; Guo, H. Y.; Wen, Z.; Yeh, M. H.; Hu, C. G.; Wang, Z. L. Harvesting low-frequency (< 5 Hz) irregular mechanical energy: A possible killer application of triboelectric nanogenerator.ACS Nano 2016, 10, 4797–4805.

DOI
44

Yu, A. F.; Song, M.; Zhang, Y.; Zhang, Y.; Chen, L. B.; Zhai, J. Y.; Wang, Z. L. Self-powered acoustic source locator in underwater environment based on organic film triboelectric nanogenerator. Nano Res. 2015, 8, 765–773.

45

Fan, X.; Chen, J.; Yang, J.; Bai, P.; Li, Z. L.; Wang, Z. L. Ultrathin, rollable, paper-based triboelectric nanogenerator for acoustic energy harvesting and self-powered sound recording. ACS Nano 2015, 9, 4236–4243.

46

Yang, J.; Chen, J.; Liu, Y.; Yang, W. Q.; Su, Y. J.; Wang, Z. L. Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and self-powered active acoustic sensing. ACS Nano 2014, 8, 2649–2657.

47

Jang, J.; Lee, J. W.; Jang, J. H.; Choi, H. A triboelectric-based artificial basilar membrane to mimic cochlear tonotopy. Adv. Healthc. Mater. 2016, 5, 2481–2487.

48

Guo, H. Y.; Pu, X. J.; Chen, J.; Meng, Y.; Yeh, M. H.; Liu, G. L.; Tang, Q.; Chen, B. D.; Liu, D.; Qi, S. et al. A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids. Sci. Robot. 2018, 3, eaat2516.

49

Kang, S.; Cho, S.; Shanker, R.; Lee, H.; Park, J.; Um, D. S.; Lee, Y.; Ko, H. Transparent and conductive nanomembranes with orthogonal silver nanowire arrays for skin-attachable loudspeakers and microphones. Sci. Adv. 2018, 4, eaas8772.

50

de Almeida, V. A. D.; Baptista, F. G.; de Aguiar, P. R. Piezoelectric transducers assessed by the pencil lead break for impedance-based structural health monitoring. IEEE Sens. J. 2015, 15, 693–702.

51

Li, R.; Huang, H. D.; Xin, K. L.; Tao, T. A review of methods for burst/leakage detection and location in water distribution systems. Water Supply 2015, 15, 429–441.

Video
12274_2022_4363_MOESM2_ESM.avi
12274_2022_4363_MOESM3_ESM.avi
12274_2022_4363_MOESM4_ESM.avi
12274_2022_4363_MOESM5_ESM.avi
File
12274_2022_4363_MOESM1_ESM.pdf (7.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 24 January 2022
Revised: 10 March 2022
Accepted: 27 March 2022
Published: 24 May 2022
Issue date: August 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

J. Y. acknowledges support from the National Natural Science Foundation of China (No. 51675069), the Scientific and Technological Research Program of Chongqing Municipal Education Commission (No. KJ1703047), the Fundamental Research Funds for the Central Universities (Nos. 2018CDQYGD0020 and cqu2018CDHB1A05), and the Natural Science Foundation Projects of Chongqing (Nos. cstc2017shmsA40018 and cstc2018jcyjAX0076). Z. W. L. would like to thank the China Scholarship Council (No. 201806050157) for its financial support.

Return