Journal Home > Volume 15 , Issue 8

Supported noble metal catalysts have the promising application in volatile organic compounds (VOCs) catalytic combustion but suffer from the deactivation due to noble metal sintering at high temperatures. Herein, we report the construction of shell-sandwiched MnO2-Ag-CeO2 hollow spheres with remarkable sintering resistance and high activity in toluene combustion. Ag clusters were sandwiched between outer MnO2 and inner CeO2 shell to enlarge and stabilize metal–support active interface. The unique hollow structure could alter the electronic states of catalysts sites and increase the adsorbed site of reactant molecules. Meanwhile, Mn–Ag–Ce multi-interfaces in MnO2-Ag-CeO2 could facilitate the sustainable activation and the stable release of oxygen species via a tandem transfer. The oxygen species at Ag–Mn interface perimeter were instantly replenished by Ag–Ce interface to accelerate a deep oxidation of intermediates, guaranteeing the opening of benzene ring to generate maleic anhydride. This investigation provides a promising method for constructing efficient and sintering-resistant cluster catalysts for VOCs oxidation.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Confining shell-sandwiched Ag clusters in MnO2-CeO2 hollow spheres to boost activity and stability of toluene combustion

Show Author's information Menglan Xiao1,6Xueqin Yang2Yue Peng4Yucong Guo1Yuechang Wei5Maofa Ge1,3,6Xiaolin Yu1,6( )
State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
School of Environment, Tsinghua University, Beijing 100084, China
State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Supported noble metal catalysts have the promising application in volatile organic compounds (VOCs) catalytic combustion but suffer from the deactivation due to noble metal sintering at high temperatures. Herein, we report the construction of shell-sandwiched MnO2-Ag-CeO2 hollow spheres with remarkable sintering resistance and high activity in toluene combustion. Ag clusters were sandwiched between outer MnO2 and inner CeO2 shell to enlarge and stabilize metal–support active interface. The unique hollow structure could alter the electronic states of catalysts sites and increase the adsorbed site of reactant molecules. Meanwhile, Mn–Ag–Ce multi-interfaces in MnO2-Ag-CeO2 could facilitate the sustainable activation and the stable release of oxygen species via a tandem transfer. The oxygen species at Ag–Mn interface perimeter were instantly replenished by Ag–Ce interface to accelerate a deep oxidation of intermediates, guaranteeing the opening of benzene ring to generate maleic anhydride. This investigation provides a promising method for constructing efficient and sintering-resistant cluster catalysts for VOCs oxidation.

Keywords: hollow spheres, multi-interfaces, toluene combustion, active lattice oxygen

References(43)

1

He, C.; Cheng, J.; Zhang, X.; Douthwaite, M.; Pattisson, S.; Hao, Z. P. Recent advances in the catalytic oxidation of volatile organic compounds: A review based on pollutant sorts and sources. Chem. Rev. 2019, 119, 4471–4568.

2

Liu, B. Y.; Ji, J.; Zhang, B. G.; Huang, W. J.; Gan, Y. L.; Leung, D. Y. C.; Huang, H. B. Catalytic ozonation of VOCs at low temperature: A comprehensive review. J. Hazard. Mater. 2022, 422, 126847.

3

Zeng, J.; Xie, H. M.; Liu, Z.; Liu, X. C.; Zhou, G. L.; Jiang, Y. Oxygen vacancy induced MnO2 catalysts for efficient toluene catalytic oxidation. Catal. Sci. Technol. 2021, 11, 6708–6723.

4

Zhang, P.; Mei, X. L.; Zhao, X. C.; Xiong, J.; Li, Y. F.; Zhao, Z.; Wei, Y. C. Boosting catalytic purification of soot particles over double perovskite-type La2−xKxNiCoO6 catalysts with an ordered macroporous structure. Environ. Sci. Technol. 2021, 55, 11245–11254.

5

Chen, C. Y.; Wu, Q. M.; Chen, F.; Zhang, L.; Pan, S. X.; Bian, C. Q.; Zheng, X. M.; Meng, X. J.; Xiao, F. S. Aluminium-rich beta zeolite-supported platinum nanoparticles for the low-temperature catalytic removal of toluene. J. Mater. Chem. A 2015, 3, 5556–5562.

6

Wang, F.; Ma, J. Z.; Xin, S. H.; Wang, Q.; Xu, J.; Zhang, C. B.; He, H.; Zeng, X. C. Resolving the puzzle of single-atom silver dispersion on nanosized γ-Al2O3 surface for high catalytic performance. Nat. Commun. 2020, 11, 529.

7

Jiang, Z. Y.; Feng, X. B.; Deng, J. L.; He, C.; Douthwaite, M.; Yu, Y. K.; Liu, J.; Hao, Z. P.; Zhao, Z. Atomic-scale insights into the low-temperature oxidation of methanol over a single-atom Pt1-Co3O4 catalyst. Adv. Funct. Mater. 2019, 29, 1902041.

8

Chen, Y.; Feng, Y. X.; Li, L.; Liu, J. Y.; Pan, X. L.; Liu, W.; Wei, F. F.; Cui, Y. T.; Qiao, B. T.; Sun, X. C. et al. Identification of active sites on high-performance Pt/Al2O3 catalyst for cryogenic CO oxidation. ACS Catal. 2020, 10, 8815–8824.

9

Zhao, S. Z.; Wen, Y. F.; Liu, X. J.; Pen, X. Y.; Lü, F.; Gao, F. Y.; Xie, X. Z.; Du, C. C.; Yi, H. H.; Kang, D. J. et al. Formation of active oxygen species on single-atom Pt catalyst and promoted catalytic oxidation of toluene. Nano Res. 2020, 13, 1544–1551.

10

Zhang, S.; Chang, C. R.; Huang, Z. Q.; Li, J.; Wu, Z. M.; Ma, Y. Y.; Zhang, Z. Y.; Wang, Y.; Qu, Y. Q. High catalytic activity and chemoselectivity of sub-nanometric Pd clusters on porous nanorods of CeO2 for hydrogenation of nitroarenes. J. Am. Chem. Soc. 2016, 138, 2629–2637.

11

Peng, H. G.; Rao, C.; Zhang, N.; Wang, X.; Liu, W. M.; Mao, W. T.; Han, L.; Zhang, P. F.; Dai, S. Confined ultrathin Pd-Ce nanowires with outstanding moisture and SO2 tolerance in methane combustion. Angew. Chem. , Int. Ed. 2018, 57, 8953–8957.

12

Zhan, W. C.; He, Q.; Liu, X. F.; Guo, Y. L.; Wang, Y. Q.; Wang, L.; Guo, Y.; Borisevich, A. Y.; Zhang, J. S.; Lu, G. Z. et al. A sacrificial coating strategy toward enhancement of metal–support interaction for ultrastable Au nanocatalysts. J. Am. Chem. Soc. 2016, 138, 16130–16139.

13

Montemore, M. M.; van Spronsen, M. A.; Madix, R. J.; Friend, C. M. O2 activation by metal surfaces: Implications for bonding and reactivity on heterogeneous catalysts. Chem. Rev. 2018, 118, 2816–2862.

14

Sun, K. J.; Kohyama, M.; Tanaka, S.; Takeda, S. Direct O2 activation on gold/metal oxide catalysts through a unique double linear O–Au–O structure. ChemCatChem 2013, 5, 2217–2222.

15

Zhang, Y. L.; Zhang, J. Y.; Zhang, B. S.; Si, R.; Han, B.; Hong, F.; Niu, Y. M.; Sun, L.; Li, L.; Qiao, B. T. et al. Boosting the catalysis of gold by O2 activation at Au–SiO2 interface. Nat. Commun. 2020, 11, 558.

16

Cargnello, M.; Doan-Nguyen, V. V. T.; Gordon, T. R.; Diaz, R. E.; Stach, E. A.; Gorte, R. J.; Fornasiero, P.; Murray, C. B. Control of metal nanocrystal size reveals metal–support interface role for ceria catalysts. Science 2013, 341, 771–773.

17

Bu, Y. B.; Chen, Y. F.; Jiang, G. M.; Hou, X. M.; Li, S.; Zhang, Z. T. Understanding of Au–CeO2 interface and its role in catalytic oxidation of formaldehyde. Appl. Catal. B Environ. 2020, 260, 118138.

18

Xiao, L. P.; Li, G.; Yang, Z.; Chen, K.; Zhou, R. S.; Liao, H. G.; Xu, Q. C.; Xu, J. Engineering of amorphous PtOx interface on Pt/WO3 nanosheets for ethanol oxidation electrocatalysis. Adv. Funct. Mater. 2021, 31, 2100982.

19

Zhao, X. X.; Wang, J. Y.; Yu, R. B.; Wang, D. Construction of multishelled binary metal oxides via coabsorption of positive and negative ions as a superior cathode for sodium-ion batteries. J. Am. Chem. Soc. 2018, 140, 17114–17119.

20

Fan, J. W.; Niu, X. F.; Teng, W.; Zhang, P.; Zhang, W. X.; Zhao, D. Y. Highly dispersed Fe-Ce mixed oxide catalysts confined in mesochannels toward low-temperature oxidation of formaldehyde. J. Mater. Chem. A 2020, 8, 17174–17184.

21

Zhang, J.; Li, T.; Wang, C. A.; Luo, J. L. The rational design of sandwich-like MnO2-Pd-CeO2 hollow spheres with enhanced activity and stability for CO oxidation. Nanoscale 2019, 11, 6776–6783.

22

Huang, Z. W.; Gu, X.; Cao, Q. Q.; Hu, P. P.; Hao, J. M.; Li, J. H.; Tang, X. F. Catalytically active single-atom sites fabricated from silver particles. Angew. Chem. , Int. Ed. 2012, 51, 4198–4203.

23

Liu, B.; Li, C. M.; Zhang, G. Q.; Yao, X. S.; Chuang, S. S. C.; Li, Z. Oxygen vacancy promoting dimethyl carbonate synthesis from CO2 and methanol over Zr-doped CeO2 nanorods. ACS Catal. 2018, 8, 10446–10456.

24

Tao, L.; Shi, Y. L.; Huang, Y. C.; Chen, R.; Zhang, Y. Q.; Huo, J.; Zou, Y. Q.; Yu, G.; Luo, J.; Dong, C. L. et al. Interface engineering of Pt and CeO2 nanorods with unique interaction for methanol oxidation. Nano Energy 2018, 53, 604–612.

25

Ma, X.; Liu, H.; Yang, W. J.; Mao, G. Y.; Zheng, L. R.; Jiang, H. L. Modulating coordination environment of single-atom catalysts and their proximity to photosensitive units for boosting MOF photocatalysis. J. Am. Chem. Soc. 2021, 143, 12220–12229.

26

Ma, J. Z.; Li, X. T.; Zhang, C. B.; Ma, Q. X.; He, H. Novel CeMnaOx catalyst for highly efficient catalytic decomposition of ozone. Appl. Catal. B Environ. 2020, 264, 118498.

27

Deng, H.; Kang, S. Y.; Ma, J. Z.; Wang, L.; Zhang, C. B.; He, H. The role of structural defects in MnOx promoted by Ag doping in the catalytic combustion of volatile organic compounds and ambient decomposition of O3. Environ. Sci. Technol. 2019, 53, 10871–10879.

28

Zhang, X. D.; Bi, F. K.; Zhu, Z. Q.; Yang, Y.; Zhao, S. H.; Chen, J. F.; Lv, X. T.; Wang, Y. X.; Xu, J. C.; Liu, N. The promoting effect of H2O on rod-like MnCeOx derived from MOFs for toluene oxidation: A combined experimental and theoretical investigation. Appl. Catal. B Environ. 2021, 297, 120393.

29

Wang, Z. W.; Yang, H. G.; Liu, R.; Xie, S. H.; Liu, Y. X.; Dai, H. X.; Huang, H. B.; Deng, J. G. Probing toluene catalytic removal mechanism over supported Pt nano- and single-atom-catalyst. J. Hazard. Mater. 2020, 392, 122258.

30

Tang, X. F.; Chen, J. L.; Li, Y. G.; Li, Y.; Xu, Y. D.; Shen, W. J. Complete oxidation of formaldehyde over Ag/MnOx-CeO2 catalysts. Chem. Eng. J. 2006, 118, 119–125.

31

Tang, H. L.; Liu, F.; Wei, J. K.; Qiao, B. T.; Zhao, K. F.; Su, Y.; Jin, C. Z.; Li, L.; Liu, J. Y.; Wang, J. H. et al. Ultrastable hydroxyapatite/titanium-dioxide-supported gold nanocatalyst with strong metal–support interaction for carbon monoxide oxidation. Angew. Chem. , Int. Ed. 2016, 55, 10606–10611.

32

Ma, X. Y.; Xiao, M. L.; Yang, X. Q.; Yu, X. L.; Ge, M. F. Boosting benzene combustion by engineering oxygen vacancy-mediated Ag/CeO2-Co3O4 catalyst via interfacial electron transfer. J. Colloid Interface Sci. 2021, 594, 882–890.

33

Wang, F.; Deng, J.; Impeng, S.; Shen, Y. J.; Yan, T. T.; Chen, G. R.; Shi, L. Y.; Zhang, D. S. Unraveling the effects of the coordination number of Mn over α-MnO2 catalysts for toluene oxidation. Chem. Eng. J. 2020, 396, 125192.

34

Xiao, M. L.; Yu, X. L.; Guo, Y. C.; Ge, M. F. Boosting toluene combustion by tuning electronic metal–support interactions in in situ grown Pt@Co3O4 catalysts. Environ. Sci. Technol. 2022, 56, 1376–1385.

35

Wang, Y. T.; Wang, C.; Zeng, K.; Wang, S. M.; Zhang, H. L.; Li, X. W.; Wang, Z.; Zhang, C. H. Revealing the strong interaction effect of MnOx nanoparticles and Nb2O5 supports with variable morphologies on catalytic propane oxidation. Appl. Surf. Sci. 2022, 576, 151797.

36

Han, D. W.; Ma, X Y.; Yang, X. Q.; Xiao, M. L.; Sun, H.; Ma, L. J.; Yu, X. L.; Ge, M. F. Metal organic framework-templated fabrication of exposed surface defect-enriched Co3O4 catalysts for efficient toluene oxidation. J. Colloid Interface Sci. 2021, 603, 695–705.

37

Hou, J. T.; Li, Y. Z.; Liu, L. L.; Ren, L.; Zhao, X. J. Effect of giant oxygen vacancy defects on the catalytic oxidation of OMS-2 nanorods. J. Mater. Chem. A 2013, 1, 6736–6741.

38

Li, Y. F.; Zhang, P.; Xiong, J.; Wei, Y. C.; Chi, H. J.; Zhang, Y. L.; Lai, K. Z.; Zhao, Z.; Deng, J. G. Facilitating catalytic purification of auto-exhaust carbon particles via the Fe2O3{113} facet-dependent effect in Pt/Fe2O3 catalysts. Environ. Sci. Technol. 2021, 55, 16153–16162.

39

Yang, X. Q.; Yu, X. L.; Jing, M. Z.; Song, W. Y.; Liu, J.; Ge, M. F. Defective MnxZr1−xO2 solid solution for the catalytic oxidation of toluene: Insights into the oxygen vacancy contribution. ACS Appl. Mater. Interfaces 2019, 11, 730–739.

40

Kopelent, R.; van Bokhoven, J. A.; Szlachetko, J.; Edebeli, J.; Paun, C.; Nachtegaal, M.; Safonova, O. V. Catalytically active and spectator Ce3+ in ceria-supported metal catalysts. Angew. Chem. , Int. Ed. 2015, 54, 8728–8731.

41

Nie, L.; Mei, D. H.; Xiong, H. F.; Peng, B.; Ren, Z. B.; Hernandez, X. I. P.; DeLaRiva, A.; Wang, M.; Engelhard, M. H.; Kovarik, L. et al. Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science 2017, 358, 1419–1423.

42

Yang, X. Q.; Ma, X. Y.; Yu, X. L.; Ge, M. F. Exploration of strong metal–support interaction in zirconia supported catalysts for toluene oxidation. Appl. Catal. B Environ. 2020, 263, 118355.

43

Shen, Y. J.; Deng, J.; Impeng, S.; Li, S. X.; Yan, T. T.; Zhang, J. P.; Shi, L. Y.; Zhang, D. S. Boosting toluene combustion by engineering Co–O strength in cobalt oxide catalysts. Environ. Sci. Technol. 2020, 54, 10342–10350.

File
12274_2022_4360_MOESM1_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 26 January 2022
Revised: 23 March 2022
Accepted: 24 March 2022
Published: 25 April 2022
Issue date: August 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This project was supported by the National Natural Science Foundation of China (Nos. 22076192, 22006032, 21777166, 42175133, and 21806169), and Beijing National Laboratory for Molecular Sciences (No. BNLMS-CXXM-202011), and the National Key Research and Development Program of China (No. 2016YFC0202202). The authors wish to thank facility support of the 4B9A beamline of Beijing Synchrotron Radiation Facility (BSRF).

Return