Journal Home > Volume 15 , Issue 8

High yield production of phenol from hydroxylation of benzene with low energy consumption is of paramount importance, but still challenging. Herein, a new strategy, consisting of using diatomic synergistic modulation (DSM) to effectively control the separation of photo-generated carriers for an enhanced production of phenol is reported. The atomic level dispersion of Fe and Cr respectively decorated on Al based MIL-53-NH2 photocatalyst (Fe1/Cr:MIL-53-NH2) is designed, in which Cr single atoms are substituted for Al3+ while Fe single atoms are coordinated by N. Notably, the Fe1/Cr:MIL-53-NH2 significantly boosts the photo-oxidation of benzene to phenol under visible light irradiation, which is much higher than those of MIL-53-NH2, Cr:MIL-53-NH2, Fe1/MIL-53-NH2, and Fe nanoparticles/Cr:MIL-53-NH2 catalysts. Theoretical and experimental results reveal that the Cr single atoms and Fe single atoms can act as electron acceptor and electron donor, respectively, during photocatalytic reaction, exhibiting a synergistic effect on the separation of the photo-generated carriers and thereby causing great enhancement on the benzene oxidation. This strategy provides new insights for rational design of advanced photocatalysts at the atomic level.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Constructing the separation pathway for photo-generated carriers by diatomic sites decorated on MIL-53-NH2(Al) for enhanced photocatalytic performance

Show Author's information Gang Wang1,§Yan Liu1,§Ning Zhao1,§Huimei Chen1Wenjie Wu1Yueyue Li1Xiangwen Liu2Ang Li3Wenxing Chen4Junjie Mao1( )
Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100094, China
Beijing Key Laboratory of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124, China
Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China

§ Gang Wang, Yan Liu, and Ning Zhao contributed equally to this work.

Abstract

High yield production of phenol from hydroxylation of benzene with low energy consumption is of paramount importance, but still challenging. Herein, a new strategy, consisting of using diatomic synergistic modulation (DSM) to effectively control the separation of photo-generated carriers for an enhanced production of phenol is reported. The atomic level dispersion of Fe and Cr respectively decorated on Al based MIL-53-NH2 photocatalyst (Fe1/Cr:MIL-53-NH2) is designed, in which Cr single atoms are substituted for Al3+ while Fe single atoms are coordinated by N. Notably, the Fe1/Cr:MIL-53-NH2 significantly boosts the photo-oxidation of benzene to phenol under visible light irradiation, which is much higher than those of MIL-53-NH2, Cr:MIL-53-NH2, Fe1/MIL-53-NH2, and Fe nanoparticles/Cr:MIL-53-NH2 catalysts. Theoretical and experimental results reveal that the Cr single atoms and Fe single atoms can act as electron acceptor and electron donor, respectively, during photocatalytic reaction, exhibiting a synergistic effect on the separation of the photo-generated carriers and thereby causing great enhancement on the benzene oxidation. This strategy provides new insights for rational design of advanced photocatalysts at the atomic level.

Keywords: photocatalysis, charge-carrier dynamics, benzene oxidation, diatomic sites, MIL-53-NH2

References(58)

1

Niwa, S. I.; Eswaramoorthy, M.; Nair, J.; Raj, A.; Itoh, N.; Shoji, H.; Namba, T.; Mizukami, F. A one-step conversion of benzene to phenol with a palladium membrane. Science 2002, 295, 105–107.

2

Zhou, Y.; Ma, Z. P.; Tang, J. J.; Yan, N.; Du, Y. H.; Xi, S. B.; Wang, K.; Zhang, W.; Wen, H. M.; Wang, J. Immediate hydroxylation of arenes to phenols via V-containing all-silica ZSM-22 zeolite triggered non-radical mechanism. Nat. Commun. 2018, 9, 2931.

3

Chen, X. F.; Zhang, J. S.; Fu, X. Z.; Antonietti, M.; Wang, X. C. Fe-g-C3N4-catalyzed oxidation of benzene to phenol using hydrogen peroxide and visible light. J. Am. Chem. Soc. 2009, 131, 11658–11659.

4

Tanev, P. T.; Chibwe, M.; Pinnavaia, T. J. Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds. Nature 1994, 368, 321–323.

5

Li, W.; Chu, X. S.; Wang, F.; Dang, Y. Y.; Liu, X. Y.; Wang, X. C.; Wang, C. Y. Enhanced cocatalyst–support interaction and promoted electron transfer of 3D porous g-C3N4/GO-M (Au, Pd, Pt) composite catalysts for hydrogen evolution. Appl. Catal. B 2021, 288, 120034.

6

Li, W.; Wang, F.; Chu, X. S.; Dang, Y. Y.; Liu, X. Y.; Ma, T. H.; Li, J. Y.; Wang, C. Y. 3D porous BN/rGO skeleton embedded by MoS2 nanostructures for simulated-solar-light induced hydrogen production. Chem. Eng. J. 2022, 435, 132441.

7

Gu, Y. Q.; Li, Q.; Zang, D. J.; Huang, Y. C.; Yu, H.; Wei, Y. G. Light-induced efficient hydroxylation of benzene to phenol by quinolinium and polyoxovanadate-based supramolecular catalysts. Angew. Chem. , Int. Ed. 2021, 60, 13310–13316.

8

Lee, B. H.; Park, S.; Kim, M.; Sinha, A. K.; Lee, S. C.; Jung, E.; Chang, W. J.; Lee , K. S.; Kim, J. H.; Cho, S. P. et al. Reversible and cooperative photoactivation of single-atom Cu/TiO2 photocatalysts. Nat. Mater. 2019, 18, 620–626.

9

Trickett, C. A.; Helal, A.; Al-Maythalony, B. A.; Yamani, Z. H.; Cordova, K. E.; Yaghi, O. M. The chemistry of metal-organic frameworks for CO2 capture, regeneration and conversion. Nat. Rev. Mater. 2017, 2, 17045.

10

Saha, S.; Das, G.; Thote, J.; Banerjee, R. Photocatalytic metal-organic framework from CdS quantum dot incubated luminescent metallohydrogel. J. Am. Chem. Soc. 2014, 136, 14845–14851.

11

Lin, S.; Diercks, C. S.; Zhang, Y. B.; Kornienko, N.; Nichols, E. M.; Zhao, Y. B.; Paris, A. R.; Kim, D.; Yang, P. D.; Yaghi, O. M. et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 2015, 349, 1208–1213.

12

Tsuji, T.; Zaoputra, A. A.; Hitomi, Y.; Mieda, K.; Ogura, T.; Shiota, Y.; Yoshizawa, K.; Sato, H.; Kodera, M. Specific enhancement of catalytic activity by a dicopper core: Selective hydroxylation of benzene to phenol with hydrogen peroxide. Angew. Chem., Int. Ed. 2017, 56, 7779–7782.

13

Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 6149, 1230444.

14

Fu, J. W.; Xu, Q. L.; Low, J. X.; Jiang, C. J.; Yu, J. G. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl. Catal. B 2019, 243, 556–565.

15

Chen, J. Q.; Gao, S.; Xu, J. Direct hydroxylation of benzene to phenol over a new vanadium-substituted phosphomolybdate as a solid catalyst. Catal. Commun. 2008, 9, 728–733.

16

Wang, D. K.; Wang, M. T.; Li, Z. H. Fe-based metal-organic frameworks for highly selective photocatalytic benzene hydroxylation to phenol. ACS Catal. 2015, 5, 6852–6857.

17

Abdel-Mageed, A. M.; Rungtaweevoranit, B.; Parlinska-Wojtan, M.; Pei, X. K.; Yaghi, O. M.; Jürgen Behm, R. Highly active and stable single-atom Cu catalysts supported by a metal-organic framework. J. Am. Chem. Soc. 2019, 141, 5201–5210.

18

Bui, T. D.; Kimura, A.; Ikeda, S.; Matsumura, M. Determination of oxygen sources for oxidation of benzene on TiO2 photocatalysts in aqueous solutions containing molecular oxygen. J. Am. Chem. Soc. 2010, 132, 8453–8458.

19

Wang, G.; He, C. T.; Huang, R.; Mao, J. J.; Wang, D. S.; Li, Y. D. Photoinduction of Cu single atoms decorated on UiO-66-NH2 for enhanced photocatalytic reduction of CO2 to liquid fuels. J. Am. Chem. Soc. 2020, 142, 19339–19345.

20
Jing, H. Y. ; Zhu, P. ; Zheng , X. B. ; Zhang, Z. D. ; Wang , D. S. ; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater., in press, https://doi.org/10.1016/j.apmate.2021.10.004.
DOI
21

Wang, Y.; Zheng M; Li, Y. R.; Ye, C. L.; Chen, J.; Ye, J. Y.; Zhang, Q. H.; Li, J.; Zhou, Z. Y.; Fu, X. Z. et al. p–d orbital hybridization induced by a monodispersed Ga site on a Pt3Mn nanocatalyst boosts ethanol electrooxidation. Angew. Chem., Int. Ed. 2022, 61, e202115735.

22

Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856–1866.

23

Yang, H. B.; Hung, S. F.; Liu, S.; Yuan, K. D.; Miao, S.; Zhang, L. P.; Huang, X.; Wang, H. Y.; Cai, W. Z.; Chen, R. et al. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat. Energy 2018, 3, 140–147.

24

Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.

25
Yang, J. R. ; Li, W. H. ; Xu, K. N. ; Tan, S. D. ; Wang, D. S. ; Li, Y. D. Regulating the tip effect on single-atom and cluster catalysts: Forming reversible oxygen species with high efficiency in chlorine evolution reaction. Angew. Chem., in press, https://doi.org/10.1002/ange.202200366.
DOI
26

Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 134, e202115219.

27

Mao, J. J.; He, C. T.; Pei, J. J.; Liu, Y.; Li, J.; Chen, W. X.; He, D. S.; Wang, D. S.; Li, Y. D. Isolated Ni atoms dispersed on Ru nanosheets: High-performance electrocatalysts toward hydrogen oxidation reaction. Nano Lett. 2020, 20, 3442–3448.

28

Zhang, J.; Zheng, C. Y.; Zhang, M. L.; Qiu, Y. J.; Xu, Q.; Cheong, W. C.; Chen, W. X.; Zheng, L. R.; Gu, L.; Hu, Z. P. et al. Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline. Nano Res. 2020, 13, 3082–3087.

29

Zhou, M.; Jiang, Y.; Wang, G.; Wu, W. J.; Chen, W. X.; Yu, P.; Lin, Y. Q.; Mao, J. J.; Mao, L. Q. Single-atom Ni-N4 provides a robust cellular NO sensor. Nat. Commun. 2020, 11, 3188.

30

Liu, Y.; Zhu, G. X.; Li, A.; Pei, J. J.; Zheng, Y. M.; Chen, W. X.; Ding, J.; Wu, W. J.; Wang, T.; Wang, D. S. et al. Transforming cobalt hydroxide nanowires into single atom site catalysts. Nano Energy 2021, 83, 105799.

31

Wu, W. J.; Liu, Y.; Liu, D.; Chen, W. X.; Song, Z. Y.; Wang, X. M.; Zheng, Y. M.; Lu, N.; Wang, C. X.; Mao, J. J. et al. Single copper sites dispersed on hierarchically porous carbon for improving oxygen reduction reaction towards zinc-air battery. Nano Res. 2021, 14, 998–1003.

32

Mao, J. J.; Yin, J. S.; Pei, J. J.; Wang, D. S.; Li, Y. D. Single atom alloy: An emerging atomic site material for catalytic applications. Nano Today 2020, 34, 100917.

33

Mao, J. J.; He, C. T.; Pei, J. J.; Chen, W. X.; He, D. S.; He, Y. Q.; Zhuang, Z. B.; Chen, C.; Peng, Q.; Wang, D. S. et al. Accelerating water dissociation kinetics by isolating cobalt atoms into ruthenium lattice. Nat. Commun. 2018, 9, 4958.

34

Li, W. H.; Yang, J. R.; Jing, H. Y.; Zhang , J.; Wang, Y.; Li, J.; Zhao, J.; Wang, D. S.; Li, Y. D. Creating high regioselectivity by electronic metal–support interaction of a single-atomic-site catalyst. J. Am. Chem. Soc. 2021, 143, 15453–15461.

35

Jiao, L.; Zhang, R.; Wan, G.; Yang, W. J.; Wan, X.; Zhou, H.; Shui, J. L.; Yu, S. H.; Jiang, H. L. Nanocasting SiO2 into metal-organic frameworks imparts dual protection to high-loading Fe single-atom electrocatalysts. Nat. Commun. 2020, 11, 2831.

36

Wang, G.; Huang, R.; Zhang, J. W.; Mao, J. J.; Wang, D. S.; Li. Y. D. Synergistic modulation of the separation of photo-generated carriers via engineering of dual atomic sites for promoting photocatalytic performance. Adv. Mater. 2021, 33, 2105904.

37

Zhang, T. J.; Walsh, A. G.; Yu, J. H.; Zhang, P. Single-atom alloy catalysts: Structural analysis, electronic properties and catalytic activities. Chem. Soc. Rev. 2021, 50, 569–588.

38

Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. 2021, 14, 2418–2423.

39

Zhang, B.; Sun, G.; Ding, S. P.; Asakura, H.; Zhang, J.; Sautet, P.; Yan, N. Atomically dispersed Pt1-polyoxometalate catalysts: How does metal–support interaction affect stability and hydrogenation activity. J. Am. Chem. Soc. 2019, 141, 8185–8197.

40

Fei, H. L.; Dong, J. C.; Feng, Y. X.; Allen, C. S.; Wan, C. Z.; Volosskiy, B.; Li, M. F.; Zhao, Z. P.; Wang, Y. L.; Sun , H. T. et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 2018, 1, 63–72.

41

Gu, J.; Hsu, C. S.; Bai, L. C.; Chen, H. M.; Hu, X. L. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 2019, 364, 1091–1094.

42

Zhang, L. W.; Long, R.; Zhang, Y. M.; Duan, D. L.; Xiong, Y. J.; Zhang, Y. J.; Bi, Y. P. Direct observation of dynamic bond evolution in single-atom Pt/C3N4 catalysts. Angew. Chem. , Int. Ed. 2020, 59, 6224–6229.

43

Yang, J. R.; Li, W. H.; Tan, S. D.; Xu, K. N.; Wang, Y.; Wang, D. S.; Li, Y. D. The electronic metal–support interaction directing the design of single atomic site catalysts: Achieving high efficiency towards hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 19085–19091.

44

Sun, D. R.; Liu, W. J.; Qiu, M.; Zhang, Y. F.; Li, Z. H. Introduction of a mediator for enhancing photocatalytic performance via post-synthetic metal exchange in metal-organic frameworks (MOFs). Chem. Commun. 2015, 51, 2056–2059.

45

Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O’Keeffe, M.; Yaghi, O. M. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 2008, 319, 939–943.

46

Dhakshinamoorthy, A.; Li, Z. H.; Garcia, H. Catalysis and photocatalysis by metal organic frameworks. Chem. Soc. Rev. 2018, 47, 8134–8172.

47

Serra-Crespo, P.; van der Veen, M. A.; Gobechiya, E.; Houthoofd, K.; Filinchuk, Y.; Kirschhock, C. E. A.; Martens, J. A.; Sels, B. F.; De Vos, D. E.; Kapteijn, F. et al. NH2-MIL-53(Al): A high-contrast reversible solid-state nonlinear optical switch. J. Am. Chem. Soc. 2012, 134, 8314–8317.

48

Kornienko, N.; Zhao, Y. B.; Kley, C. S.; Zhu, C. H.; Kim, D.; Lin, S.; Chang, C. J.; Yaghi, O. M.; Yang, P. D. Metal-organic frameworks for electrocatalytic reduction of carbon dioxide. J. Am. Chem. Soc. 2015, 137, 14129–14135.

49

Hao, M. M.; Li, Z. H. Visible light-initiated synergistic/cascade reactions over metal-organic frameworks. Solar RRL 2021, 5, 2000454.

50

Portillo, A. S.; Baldoví, H. G.; Fernandez, M. T. G.; Navalón, S.; Atienzar, P.; Ferrer, B.; Alvaro, M.; Garcia, H.; Li, Z. H. Ti as mediator in the photoinduced electron transfer of mixed-metal NH2-UiO-66(Zr/Ti): Transient absorption spectroscopy study and application in photovoltaic cell. J. Phys. Chem. C 2017, 121, 7015–7024.

51

An, Y.; Liu, Y. Y.; An, P. F.; Dong, J. C.; Xu, B. Y.; Dai, Y.; Qin, X. Y.; Zhang, X. Y.; Whangbo, M. H.; Huang, B. B. NiII coordination to Al-based metal-organic framework made from 2-aminoterephthalate for photocatalytic overall water splitting. Angew. Chem., Int. Ed. 2017, 11, 3036–3040.

52

Deng, X. Y. ; Li, Z. H. ; García, H. Visible light induced organic transformations using metal-organic-frameworks (MOFs). Chem. —Eur. J 2017, 23, 11189–11209.

53

Sang, N. X.; Quan, N. M.; Tho, N. H.; Tuan, N. T.; Tung, T. T. Mechanism of enhanced photocatalytic activity of Cr-doped ZnO nanoparticles revealed by photoluminescence emission and electron spin resonance. Semicond. Sci. Technol. 2019, 34, 025013.

54

Zhu, J. F.; Deng, Z. G.; Chen, F.; Zhang, J. L.; Chen, H. J.; Anpo, M.; Huang, J. Z.; Zhang, L. Z. Hydrothermal doping method for preparation of Cr3+-TiO2 photocatalysts with concentration gradient distribution of Cr3+. Appl. Catal. B 2006, 62, 329–335.

55

Prokhorov, A. A. Static and dynamic characteristics of the Cr3+ EPR spectra in the Van Vleck paramagnet TmAl3(BO3)4. J. Mater. Sci. 2016, 51, 4762–4768.

56

Padervand, M.; Rhimi, B.; Wang, C. Y. One-pot synthesis of novel ternary Fe3N/Fe2O3/C3N4 photocatalyst for efficient removal of rhodamine B and CO2 reduction. J. Alloys Compd. 2021, 852, 156955.

57

Fàbrega, C.; Andreu, T.; Cabot, A.; Morante, J. R. Location and catalytic role of iron species in TiO2: Fe photocatalysts: An EPR study. J. Photochem. Photobiol. A 2010, 211, 170–175.

58

Shakurov, G. S.; Shcherbakova, T. A.; Shustov, V. A. High-frequency tunable EPR of Fe2+ in the natural and synthetic forsterite. Appl. Magn. Reson. 2011, 40, 135–145.

File
12274_2022_4357_MOESM1_ESM.pdf (2.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 03 March 2022
Revised: 22 March 2022
Accepted: 22 March 2022
Published: 02 May 2022
Issue date: August 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21971002), and the Natural Science Foundation of Anhui Province (Nos. 1908085QB45 and 2008085QB81). The calculations in this paper have been done on the supercomputing system of the National Supercomputing Center in Changsha. The authors thank the BL1W1B in the Beijing Synchrotron Radiation Facility (BSRF), BL14W1 in the Shanghai Synchrotron Radiation Facility (SSRF), BL10B and BL12B in the National Synchrotron Radiation Laboratory (NSRL) for help with characterizations.

Return