AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A controllable fabrication improved silicon nanowire array sensor on (111) SOI for accurate bio-analysis application

Zicheng Lu1,2Hong Zhou1Yi Wang1Yanxiang Liu1Tie Li1( )
Science and Technology on Micro-system Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
University of Chinese Academy of Sciences (UCAS), Beijing 100190, China
Show Author Information

Graphical Abstract

A controllable fabrication improved silicon nanowire array sensor is presented, the sensor made by a novel fabricated approach possessed better electrical performance, stability in the flow field, and sensing uniformity than those we previously reported.

Abstract

Silicon nanowire field-effect transistor (SiNW-FET) sensors possess the ability of rapid response, real-time, and label-free detection with high sensitivity and selectivity in the analysis of charged molecules. Their nano-scale size makes them well suited for ultralow detection of charged molecules, but also brings the uniformity fabrication challenging, thus limiting their large-scale application. By a horizontal control approach, highly controllable silicon nanowires arrays at the top of the silicon-on-insulator (SOI) wafer (T-SiNW) were developed in our previous work. To further improve the device uniformity, here a novel SiNW fabricated approach was carefully designed by the combination of horizontal and vertical control. The new silicon nanowires appeared at the bottom of the top silicon layer (B-SiNW). The B-SiNW has a relatively low requirement on the fabrication process and better device uniformity compared to T-SiNW. These improvements resulted in the B-SiNW device with a lower current fluctuation (4.1 nA with 5.1% variations) in the flowing liquid, compared to the T-SiNW device (4.4 nA with 11% variations). Further, in quantitative detection of 40 ng/mL MMP-9, the B-SiNW sensors provided larger signals and lower fluctuation (normalized average response value: 0.57 with 4.2% variations), compared to the T-SiNW sensors (0.41 with 12.1% variations), thus indicating a more accurate bio-analysis application of the B-SiNW sensor. This work advances the nanowire sensor technology a step closer toward large-scale application to create stable sensing platforms in disease diagnosis and monitoring.

References

1

Cui, Y.; Wei, Q. Q.; Park, H.; Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289–1292.

2

Stern, E.; Klemic, J. F.; Routenberg, D. A.; Wyrembak, P. N.; Turner-Evans, D. B.; Hamilton, A. D.; LaVan, D. A.; Fahmy, T. M.; Reed, M. A. Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 2007, 445, 519–522.

3

Gao, A. R.; Lu, N.; Dai, P. F.; Li, T.; Pei, H.; Gao, X. L.; Gong, Y. B.; Wang, Y. L.; Fan, C. H. Silicon-nanowire-based CMOS-compatible field-effect transistor nanosensors for ultrasensitive electrical detection of nucleic acids. Nano Lett. 2011, 11, 3974–3978.

4

Baraban, L.; Ibarlucea, B.; Baek, E.; Cuniberti, G. Hybrid silicon nanowire devices and their functional diversity. Adv. Sci. (Weinh) 2019, 6, 1900522.

5

Ahmad, R.; Mahmoudi, T.; Ahn, M. S.; Hahn, Y. B. Recent advances in nanowires-based field-effect transistors for biological sensor applications. Biosens. Bioelectron. 2018, 100, 312–325.

6

Patolsky, F.; Lieber, C. M. Nanowire nanosensors. Mater. Today 2005, 8, 20–28.

7

Tran, D. P.; Pham, T. T. T.; Wolfrum, B.; Offenhäusser, A.; Thierry, B. CMOS-compatible silicon nanowire field-effect transistor biosensor: Technology development toward commercialization. Materials 2018, 11, 785.

8

Lee, R.; Kwon, D. W.; Kim, S.; Kim, S.; Mo, H. S.; Kim, D. H.; Park, B. G. Nanowire size dependence on sensitivity of silicon nanowire field-effect transistor-based ph sensor. Jpn. J. Appl. Phys. 2017, 56, 124001.

9

Kaisti, M. Detection principles of biological and chemical fet sensors. Biosens. Bioelectron. 2017, 98, 437–448.

10

Pachauri, V.; Ingebrandt, S. Biologically sensitive field-effect transistors: From ISFETs to nanoFETs. Essays Biochem. 2016, 60, 81–90.

11

Zhang, A. Q.; Lee, J. H.; Lieber, C. M. Nanowire-enabled bioelectronics. Nano Today 2021, 38, 101135.

12

Zheng, G. F.; Patolsky, F.; Cui, Y.; Wang, W. U.; Lieber, C. M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 2005, 23, 1294–1301.

13

Vacic, A.; Criscione, J. M.; Stern, E.; Rajan, N. K.; Fahmy, T.; Reed, M. A. Multiplexed SOI bioFETs. Biosens. Bioelectron. 2011, 28, 239–242.

14

Li, J.; Kutovyi, Y.; Zadorozhnyi, I.; Boichuk, N.; Vitusevich, S. Monitoring of dynamic processes during detection of cardiac biomarkers using silicon nanowire field-effect transistors. Adv. Mater. Interf. 2020, 7, 2000508.

15

Smith, R.; Geary, S. M.; Salem, A. K. Silicon nanowires and their impact on cancer detection and monitoring. ACS Appl. Nano Mater. 2020, 3, 8522–8536.

16

Ishikawa, F. N.; Curreli, M.; Chang, H. K.; Chen, P. C.; Zhang, R.; Cote, R. J.; Thompson, M. E.; Zhou, C. W. A calibration method for nanowire biosensors to suppress device-to-device variation. ACS Nano 2009, 3, 3969–3976.

17

Li, H.; Dauphin-Ducharme, P.; Ortega, G.; Plaxco, K. W. Calibration-free electrochemical biosensors supporting accurate molecular measurements directly in undiluted whole blood. J. Am. Chem. Soc. 2017, 139, 11207–11213.

18

Rajan, N. K.; Duan, X. X.; Reed, M. A. Performance limitations for nanowire/nanoribbon biosensors. WIREs Nanomed Nanobiotechnol. 2013, 5, 629–645.

19

Zafar, S.; D’Emic, C.; Jagtiani, A.; Kratschmer, E.; Miao, X.; Zhu, Y.; Mo, R.; Sosa, N.; Hamann, H.; Shahidi, G. et al. Silicon nanowire field effect transistor sensors with minimal sensor-to-sensor variations and enhanced sensing characteristics. ACS Nano 2018, 12, 6577–6587.

20

Rani, D.; Pachauri, V.; Mueller, A.; Vu, X. T.; Nguyen, T. C.; Ingebrandt, S. On the use of scalable nanoisfet arrays of silicon with highly reproducible sensor performance for biosensor applications. ACS Omega 2016, 1, 84–92.

21

Regonda, S.; Tian, R. H.; Gao, J. M.; Greene, S.; Ding, J. H.; Hu, W. Silicon multi-nanochannel FETs to improve device uniformity/stability and femtomolar detection of insulin in serum. Biosens. Bioelectron. 2013, 45, 245–251.

22

Hobbs, R. G.; Petkov, N.; Holmes, J. D. Semiconductor nanowire fabrication by bottom–up and top–down paradigms. Chem. Mater. 2012, 24, 1975–1991.

23

Pregl, S.; Weber, W. M.; Nozaki, D.; Kunstmann, J.; Baraban, L.; Opitz, J.; Mikolajick, T.; Cuniberti, G. Parallel arrays of Schottky barrier nanowire field effect transistors: Nanoscopic effects for macroscopic current output. Nano Res. 2013, 6, 381–388.

24

Mirza, M. M.; Schupp, F. J.; Mol, J. A.; MacLaren, D. A.; Briggs, G. A. D.; Paul, D. J. One dimensional transport in silicon nanowire junction-less field effect transistors. Sci. Rep. 2017, 7, 3004.

25

Calahorra, Y.; Kelrich, A.; Cohen, S.; Ritter, D. Catalyst shape engineering for anisotropic cross-sectioned nanowire growth. Sci. Rep. 2017, 7, 40891.

26

Chen, S. Y.; Bomer, J. G.; Van Der Wiel, W. G.; Carlen, E. T. Van Den Berg, A. Top-down fabrication of sub-30 nm monocrystalline silicon nanowires using conventional microfabrication. ACS Nano 2009, 3, 3485–3492.

27

Lee, K. N.; Jung, S. W.; Shin, K. S.; Kim, W. H.; Lee, M. H.; Seong, W. K. Fabrication of suspended silicon nanowire arrays. Small 2008, 4, 642–648.

28

Mu, L. Y.; Chang, Y.; Sawtelle, S. D.; Wipf, M.; Duan, X. X.; Reed, M. A. Silicon nanowire field-effect transistors—A versatile class of potentiometric nanobiosensors. IEEE Access 2015, 3, 287–302.

29

Nuzaihan, M. N. M.; Hashim, U.; Arshad, M. K. M.; Ruslinda, A. R.; Rahman, S. F. A.; Fathil, M. F. M.; Ismail, M. H. Top–down nanofabrication and characterization of 20 nm silicon nanowires for biosensing applications. PLoS One 2016, 11, e0152318.

30

Fonash, S. J. Advances in dry etching processes—A review. Solid State Technol. 1985, 28, 150–158.

31

Rajan, N. K.; Routenberg, D. A.; Chen, J.; Reed, M. A. 1/f noise of silicon nanowire bioFETs. IEEE Electr. Dev. Lett. 2010, 31, 615–617.

32

Yu, X.; Wang, Y. C.; Zhou, H.; Liu, Y. X.; Wang, Y.; Li, T.; Wang, Y. L. Top–down fabricated silicon-nanowire-based field-effect transistor device on a (111) silicon wafer. Small 2013, 9, 525–530.

33

Yang, X.; Gao, A. R.; Wang, Y. L.; Li, T. Wafer-level and highly controllable fabricated silicon nanowire transistor arrays on (111) silicon-on-insulator (SOI) wafers for highly sensitive detection in liquid and gaseous environments. Nano Res. 2018, 11, 1520–1529.

34

He, Y. Q.; Yang, Y.; Lu, Z. C.; Wang, Y. L.; Li, T. Novel fabrication for vertically stacked inverted triangular and diamond-shaped silicon nanowires on (100) single crystal silicon wafer. J. Micromechan. Microeng. 2020, 30, 015003.

35

Gong, X. F.; Zhao, R.; Yu, X. M. A 3-D-silicon nanowire FET biosensor based on a novel hybrid process. J. Microelectromech. Syst. 2018, 27, 164–170.

36

Kim, D. R.; Lee, C. H.; Zheng, X. L. Probing flow velocity with silicon nanowire sensors. Nano Lett. 2009, 9, 1984–1988.

37

Chen, K. I.; Li, B. R.; Chen, Y. T. Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation. Nano Today 2011, 6, 131–154.

38

Stern, E.; Vacic, A.; Rajan, N. K.; Criscione, J. M.; Park, J.; Ilic, B. R.; Mooney, D. J.; Reed, M. A.; Fahmy, T. M. Label-free biomarker detection from whole blood. Nat. Nanotechnol. 2010, 5, 138–142.

39

Wipf, M.; Stoop, R. L.; Navarra, G.; Rabbani, S.; Ernst, B.; Bedner, K.; Schönenberger, C.; Calame, M. Label-free FimH protein interaction analysis using silicon nanoribbon bioFETs. ACS Sens. 2016, 1, 781–788.

40

Lee, J.; Wipf, M.; Mu, L. Y.; Adams, C.; Hannant, J.; Reed, M. A. Metal-coated microfluidic channels: An approach to eliminate streaming potential effects in nano biosensors. Biosens. Bioelectron. 2017, 87, 447–452.

41

Gao, A. R.; Lu, N.; Wang, Y. C.; Dai, P. F.; Li, T.; Gao, X. L.; Wang, Y. L.; Fan, C. H. Enhanced sensing of nucleic acids with silicon nanowire field effect transistor biosensors. Nano Lett. 2012, 12, 5262–5268.

42

Schasfoort, R. B. M.; Bergveld, P.; Kooyman, R. P. H.; Greve, J. Possibilities and limitations of direct detection of protein charges by means of an immunological field-effect transistor. Anal. Chim. Acta 1990, 238, 323–329.

43

Stern, E.; Wagner, R.; Sigworth, F. J.; Breaker, R.; Fahmy, T. M.; Reed, M. A. Importance of the debye screening length on nanowire field effect transistor sensors. Nano Letters 2007, 7, 3405–3409.

44

Vacic, A.; Criscione, J. M.; Rajan, N. K.; Stern, E.; Fahmy, T. M.; Reed, M. A. Determination of molecular configuration by debye length modulation. J. Am. Chem. Soc. 2011, 133, 13886–13889.

45

Chun, M. S.; Lee, T. S.; Choi, N. W. Microfluidic analysis of electrokinetic streaming potential induced by microflows of monovalent electrolyte solution. J. Micromech. Microeng. 2005, 15, 710–719.

46

Van Der Heyden, F. H. J.; Stein, D.; Dekker, C. Streaming currents in a single nanofluidic channel. Phys. Rev. Lett. 2005, 95, 116104.

47

Chotikavanich, S.; De Paiva, C. S.; Li, D. Q.; Chen, J. J.; Bian, F.; Farley, W. J.; Pflugfelder, S. C. Production and activity of matrix metalloproteinase-9 on the ocular surface increase in dysfunctional tear syndrome. Invest. Ophthalmol. Vis. Sci. 2009, 50, 3203–3209.

48

Lanza, N. L.; Valenzuela, F.; Perez, V. L.; Galor, A. The matrix metalloproteinase 9 point-of-care test in dry eye. Ocul. Surf. 2016, 14, 189–195.

49

Sambursky, R.; Davitt, W. F.; Friedberg, M.; Tauber, S. Prospective, multicenter, clinical evaluation of point-of-care matrix metalloproteinase-9 test for confirming dry eye disease. Cornea 2014, 33, 812–818.

50

Messmer, E. M.; Von Lindenfels, V.; Garbe, A.; Kampik, A. Matrix metalloproteinase 9 testing in dry eye disease using a commercially available point-of-care immunoassay. Ophthalmology 2016, 123, 2300–2308.

Nano Research
Pages 7468-7475
Cite this article:
Lu Z, Zhou H, Wang Y, et al. A controllable fabrication improved silicon nanowire array sensor on (111) SOI for accurate bio-analysis application. Nano Research, 2022, 15(8): 7468-7475. https://doi.org/10.1007/s12274-022-4353-z
Topics:

915

Views

8

Crossref

8

Web of Science

8

Scopus

1

CSCD

Altmetrics

Received: 21 February 2022
Revised: 18 March 2022
Accepted: 22 March 2022
Published: 09 June 2022
© Tsinghua University Press 2022
Return