Journal Home > Volume 15 , Issue 8

Sodium metal is a promising anode for sodium batteries due to its high theoretical capacity and low cost. However, the serious Na dendrite growth and low Coulombic efficiency, especially at high current densities/cycling capacities, severely limit the application of sodium metal anodes. Herein, trifluoromethylfullerene, C60(CF3)6, is designed as an electrolyte additive to enable the high-rate cycling of sodium metal anodes with high Coulombic efficiency. The CF3 groups contribute to the formation of stable NaF-rich solid electrolyte interface layer, while C60 cages induce the uniform distribution of sodium ions and promote the formation of smooth and compact morphology. Thus, Na||Cu cell with C60(CF3)6 can be cycled at 2 mA·cm−2 and 10 mAh·cm−2 over 180 cycles with an average Coulombic efficiency of 99.9%, and Na||Na cell can be cycled at 10 mA·cm−2 over 600 cycles. Furthermore, Na||NaV2(PO4)3@C full cell exhibits high capacity retention of 84% over 2,000 cycles at 20 C (~ 3 mA·cm−2).


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

High-rate sodium metal batteries enabled by trifluormethylfullerene additive

Show Author's information Pengju Li1Xiaobo Huang1Zhipeng Jiang1,2Han Zhang1,2Pengwei Yu1Xing Lu1( )Jia Xie2( )
State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

Abstract

Sodium metal is a promising anode for sodium batteries due to its high theoretical capacity and low cost. However, the serious Na dendrite growth and low Coulombic efficiency, especially at high current densities/cycling capacities, severely limit the application of sodium metal anodes. Herein, trifluoromethylfullerene, C60(CF3)6, is designed as an electrolyte additive to enable the high-rate cycling of sodium metal anodes with high Coulombic efficiency. The CF3 groups contribute to the formation of stable NaF-rich solid electrolyte interface layer, while C60 cages induce the uniform distribution of sodium ions and promote the formation of smooth and compact morphology. Thus, Na||Cu cell with C60(CF3)6 can be cycled at 2 mA·cm−2 and 10 mAh·cm−2 over 180 cycles with an average Coulombic efficiency of 99.9%, and Na||Na cell can be cycled at 10 mA·cm−2 over 600 cycles. Furthermore, Na||NaV2(PO4)3@C full cell exhibits high capacity retention of 84% over 2,000 cycles at 20 C (~ 3 mA·cm−2).

Keywords: fullerene, high rate, sodium metal anode, electrolyte additive, trifluormethylfullerene

References(55)

1

Wang, Y. X.; Wang, Y. X.; Wang, Y. X.; Feng, X. M.; Chen, W. H.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Developments and perspectives on emerging high-energy-density sodium-metal batteries. Chem 2019, 5, 2547–2570.

2

Lee, B.; Paek, E.; Mitlin, D.; Lee, S. W. Sodium metal anodes: Emerging solutions to dendrite growth. Chem. Rev. 2019, 119, 5416–5460.

3

Wang, H.; Matios, E.; Luo, J. M.; Li, W. Y. Combining theories and experiments to understand the sodium nucleation behavior towards safe sodium metal batteries. Chem. Soc. Rev. 2020, 49, 3783–3805.

4

Zhao, Y.; Adair, K. R.; Sun, X. L. Recent developments and insights into the understanding of Na metal anodes for Na-metal batteries. Energy Environ. Sci. 2018, 11, 2673–2695.

5

Zheng, X. Y.; Bommier, C.; Luo, W.; Jiang, L. H.; Hao, Y. N.; Huang, Y. H. Sodium metal anodes for room-temperature sodium-ion batteries: Applications, challenges and solutions. Energy Storage Mater. 2019, 16, 6–23.

6

Bao, C. Y.; Wang, B.; Liu, P.; Wu, H.; Zhou, Y.; Wang, D. L.; Liu, H. K.; Dou, S. X. Solid electrolyte interphases on sodium metal anodes. Adv. Funct. Mater. 2020, 30, 2004891.

7

Ma, C. Y.; Xu, T. T.; Wang, Y. Advanced carbon nanostructures for future high performance sodium metal anodes. Energy Storage Mater. 2020, 25, 811–826.

8

Lee, Y.; Lee, J.; Lee, J.; Kim, K.; Cha, A. M.; Kang, S. J.; Wi, T.; Kang, S. J.; Lee, H. W.; Choi, N. S. Fluoroethylene carbonate-based electrolyte with 1 M sodium bis(fluorosulfonyl)imide enables high-performance sodium metal electrodes. ACS Appl. Mater. Interfaces 2018, 10, 15270–15280.

9

Yi, Q.; Lu, Y.; Sun, X. R.; Zhang, H.; Yu, H. L.; Sun, C. W. Fluorinated ether based electrolyte enabling sodium-metal batteries with exceptional cycling stability. ACS Appl. Mater. Interfaces 2019, 11, 46965–46972.

10

Mogensen, R.; Brandell, D.; Younesi, R. Solubility of the solid electrolyte interphase (SEI) in sodium ion batteries. ACS Energy Lett. 2016, 1, 1173–1178.

11

Fan, J. J.; Dai, P.; Shi, C. G.; Wen, Y. F.; Luo, C. X.; Yang, J.; Song, C.; Huang, L.; Sun, S. G. Synergistic dual-additive electrolyte for interphase modification to boost cyclability of layered cathode for sodium ion batteries. Adv. Funct. Mater. 2021, 31, 2010500.

12

Shi, Q. W.; Zhong, Y. R.; Wu, M.; Wang, H. Z.; Wang, H. L. High-performance sodium metal anodes enabled by a bifunctional potassium salt. Angew. Chem., Int. Ed. 2018, 57, 9069–9072.

13

Wang, H.; Wang, C. L.; Matios, E.; Li, W. Y. Facile stabilization of the sodium metal anode with additives: Unexpected key role of sodium polysulfide and adverse effect of sodium nitrate. Angew. Chem., Int. Ed. 2018, 57, 7734–7737.

14

Wang, S. Y.; Cai, W. B.; Sun, Z. H.; Huang, F. Y.; Jie, Y. L.; Liu, Y.; Chen, Y. W.; Peng, B.; Cao, R. G.; Zhang, G. Q. et al. Stable cycling of Na metal anodes in a carbonate electrolyte. Chem. Commun. 2019, 55, 14375–14378.

15

Jiang, R.; Hong, L.; Liu, Y. C.; Wang, Y. D.; Patel, S.; Feng, X. Y.; Xiang, H. F. An acetamide additive stabilizing ultra-low concentration electrolyte for long-cycling and high-rate sodium metal battery. Energy Storage Mater. 2021, 42, 370–379.

16

Miao, X. G.; Di, H. X.; Ge, X. L.; Zhao, D. Y.; Wang, P.; Wang, R. T.; Wang, C. X.; Yin, L. W. AlF3-modified anode-electrolyte interface for effective Na dendrites restriction in nasicon-based solid-state electrolyte. Energy Storage Mater. 2020, 30, 170–178.

17

Zhu, M.; Li, L. L.; Zhang, Y. J.; Wu, K.; Yu, F. F.; Huang, Z. Y.; Wang, G. Y.; Li, J. Y.; Wen, L. Y.; Liu, H. K. et al. An in-situ formed stable interface layer for high-performance sodium metal anode in a non-flammable electrolyte. Energy Storage Mater. 2021, 42, 145–153.

18

Zheng, X. Y.; Fu, H. Y.; Hu, C. C.; Xu, H.; Huang, Y.; Wen, J. Y.; Sun, H. B.; Luo, W.; Huang, Y. H. Toward a stable sodium metal anode in carbonate electrolyte: A compact, inorganic alloy interface. J. Phys. Chem. Lett. 2019, 10, 707–714.

19

Fang, W.; Jiang, H.; Zheng, Y.; Zheng, H.; Liang, X.; Sun, Y.; Chen, C. H.; Xiang, H. F. A bilayer interface formed in high concentration electrolyte with SbF3 additive for long-cycle and high-rate sodium metal battery. J. Power Sources 2020, 455, 227956.

20

Lee, Y.; Lee, J.; Kim, H.; Kang, K.; Choi, N. S. Highly stable linear carbonate-containing electrolytes with fluoroethylene carbonate for high-performance cathodes in sodium-ion batteries. J. Power Sources 2016, 320, 49–58.

21

Zhu, M.; Zhang, Y. J.; Yu, F. F.; Huang, Z. Y.; Zhang, Y.; Li, L. L.; Wang, G. Y.; Wen, L. Y.; Liu, H. K.; Dou, S. X. et al. Stable sodium metal anode enabled by an interface protection layer rich in organic sulfide salt. Nano Lett. 2021, 21, 619–627.

22

Zhong, Y. R.; Shi, Q. W.; Zhu, C. Q.; Zhang, Y. F.; Li, M.; Francisco, J. S.; Wang, H. L. Mechanistic insights into fast charging and discharging of the sodium metal battery anode: A comparison with lithium. J. Am. Chem. Soc. 2021, 143, 13929–13936.

23

Goryunkov, A. A.; Kuvychko, I. V.; Ioffe, I. N.; Dick, D. L.; Sidorov, L. N.; Strauss, S. H.; Boltalina, O. V. Isolation of C60(CF3)n (n = 2, 4, 6, 8, 10) with high compositional purity. J. Fluorine Chem. 2003, 124, 61–64.

24

Jiang, Z. P.; Zeng, Z. Q.; Yang, C. K.; Han, Z. L.; Hu, W.; Lu, J.; Xie, J. Nitrofullerene, a C60-based bifunctional additive with smoothing and protecting effects for stable lithium metal anode. Nano Lett. 2019, 19, 8780–8786.

25

Ardhi, R. E. A.; Liu, G. C.; Lee, J. K. Metal-semiconductor ohmic and schottky contact interfaces for stable Li-metal electrodes. ACS Energy Lett. 2021, 6, 1432–1442.

26

Xu, Q. S.; Lin, J. J.; Ye, C. C.; Jin, X. J.; Ye, D. Q.; Lu, Y. Y.; Zhou, G. M.; Qiu, Y. C.; Li, W. S. Air-stable and dendrite-free lithium metal anodes enabled by a hybrid interphase of C60 and Mg. Adv. Energy Mater. 2020, 10, 1903292.

27

Li, P. J.; Jiang, Z. P.; Huang, X. B.; Lu, X.; Xie, J.; Cheng, S. J. Nitrofullerene as an electrolyte-compatible additive for high-performance sodium metal batteries. Nano Energy 2021, 89, 106396.

28

Gu, Y.; Wang, W. W.; Li, Y. J.; Wu, Q. H.; Tang, S.; Yan, J. W.; Zheng, M. S.; Wu, D. Y.; Fan, C. H.; Hu, W. Q. et al. Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes. Nat. Commun. 2018, 9, 1339.

29

Hoen, S.; Chopra, N. G.; Xiang, X. D.; Mostovoy, R.; Hou, J. G.; Vareka, W. A.; Zettl, A. Elastic properties of a van der waals solid: C60. Phys. Rev. B 1992, 46, 12737–12739.

30

Pikhurov, D. V.; Zuev, V. V. The effect of fullerene C60 on the dielectric behaviour of epoxy resin at low nanofiller loading. Chem. Phys. Lett. 2014, 601, 13–15.

31

Song, P. A.; Liu, L. N.; Huang, G. B.; Yu, Y. M.; Guo, Q. P. Largely enhanced thermal and mechanical properties of polymer nanocomposites via incorporating C60@graphene nanocarbon hybrid. Nanotechnology 2013, 24, 505706.

32

Jiang, Z. P.; Zhao, Y. M.; Lu, X.; Xie, J. Fullerenes for rechargeable battery applications: Recent developments and future perspectives. J. Energy Chem. 2021, 55, 70–79.

33

McHedlov-Petrossyan, N. O. Fullerenes in liquid media: An unsettling intrusion into the solution chemistry. Chem. Rev. 2013, 113, 5149–5193.

34

Han, J. G.; Hwang, C.; Kim, S. H.; Park, C.; Kim, J.; Jung, G. Y.; Baek, K.; Chae, S.; Kang, S. J.; Cho, J. et al. An antiaging electrolyte additive for high-energy-density lithium-ion batteries. Adv. Energy Mater. 2020, 10, 2000563.

35

Hou, Z.; Wang, W. H.; Chen, Q. W.; Yu, Y. K.; Zhao, X. X.; Tang, M.; Zheng, Y. Y.; Quan, Z. W. Hybrid protective layer for stable sodium metal anodes at high utilization. ACS Appl. Mater. Interfaces 2019, 11, 37693–37700.

36

Zhang, X.; Hao, F.; Cao, Y. J.; Xie, Y. H.; Yuan, S. Y.; Dong, X. L.; Xia, Y. Y. Dendrite-free and long-cycling sodium metal batteries enabled by sodium-ether cointercalated graphite anode. Adv. Funct. Mater. 2021, 31, 2009778.

37

Zhao, Y.; Goncharova, L. V.; Zhang, Q.; Kaghazchi, P.; Sun, Q.; Lushington, A.; Wang, B. Q.; Li, R. Y.; Sun, X. L. Inorganic–organic coating via molecular layer deposition enables long life sodium metal anode. Nano Lett. 2017, 17, 5653–5659.

38

Zheng, X. Y.; Gu, Z. Y.; Liu, X. Y.; Wang, Z. Q.; Wen, J. Y.; Wu, X. L.; Luo, W.; Huang, Y. H. Bridging the immiscibility of an all-fluoride fire extinguishant with highly-fluorinated electrolytes toward safe sodium metal batteries. Energy Environ. Sci. 2020, 13, 1788–1798.

39

Han, M.; Zhu, C. B.; Ma, T.; Pan, Z.; Tao, Z. L.; Chen, J. In situ atomic force microscopy study of nano–micro sodium deposition in ester-based electrolytes. Chem. Commun. 2018, 54, 2381–2384.

40

Liu, X. Y.; Zheng, X. Y.; Dai, Y. M.; Wu, W. Y.; Huang, Y. Y.; Fu, H. Y.; Huang, Y. H.; Luo, W. Fluoride-rich solid-electrolyte-interface enabling stable sodium metal batteries in high-safe electrolytes. Adv. Funct. Mater. 2021, 31, 2103522.

41

Wu, J. Y.; Li, X. W.; Rao, Z. X.; Xu, X. N.; Cheng, Z. X.; Liao, Y. Q.; Yuan, L. X.; Xie, X. L.; Li, Z.; Huang, Y. H. Electrolyte with boron nitride nanosheets as leveling agent towards dendrite-free lithium metal anodes. Nano Energy 2020, 72, 104725.

42

Chen, X.; Shen, X.; Hou, T. Z.; Zhang, R.; Peng, H. J.; Zhang, Q. Ion-solvent chemistry-inspired cation-additive strategy to stabilize electrolytes for sodium-metal batteries. Chem 2020, 6, 2242–2256.

43

Zheng, X. Y.; Gu, Z. Y.; Fu, J.; Wang, H. T.; Ye, X. L.; Huang, L. Q.; Liu, X. Y.; Wu, X. L.; Luo, W.; Huang, Y. H. Knocking down the kinetic barriers towards fast-charging and low-temperature sodium metal batteries. Energy Environ. Sci. 2021, 14, 4936–4947.

44

Choudhury, S.; Wei, S. Y.; Ozhabes, Y.; Gunceler, D.; Zachman, M. J.; Tu, Z. Y.; Shin, J. H.; Nath, P.; Agrawal, A.; Kourkoutis, L. F. et al. Designing solid-liquid interphases for sodium batteries. Nat. Commun. 2017, 8, 898.

45

Xie, J.; Liao, L.; Gong, Y. J.; Li, Y. B.; Shi, F. F.; Pei, A.; Sun, J.; Zhang, R. F.; Kong, B.; Subbaraman, R. et al. Stitching h-BN by atomic layer deposition of LiF as a stable interface for lithium metal anode. Sci. Adv. 2017, 3, eaao3170.

46

Schafzahl, L.; Hanzu, I.; Wilkening, M.; Freunberger, S. A. An electrolyte for reversible cycling of sodium metal and intercalation compounds. ChemSusChem 2017, 10, 401–408.

47

Le, P. M. L.; Vo, T. D.; Pan, H. L.; Jin, Y.; He, Y.; Cao, X.; Nguyen, H. V.; Engelhard, M. H.; Wang, C. M.; Xiao, J. et al. Excellent cycling stability of sodium anode enabled by a stable solid electrolyte interphase formed in ether-based electrolytes. Adv. Funct. Mater. 2020, 30, 2001151.

48

Seh, Z. W.; Sun, J.; Sun, Y. M.; Cui, Y. A highly reversible room-temperature sodium metal anode. ACS Cent. Sci. 2015, 1, 449–455.

49

Wang, S. Y.; Chen, Y. W.; Jie, Y. L.; Lang, S. Y.; Song, J. H.; Lei, Z. W.; Wang, S.; Ren, X. D.; Wang, D.; Li, X. L. et al. Stable sodium metal batteries via manipulation of electrolyte solvation structure. Small Methods 2020, 4, 1900856.

50

Cao, R. G.; Mishra, K.; Li, X. L.; Qian, J. F.; Engelhard, M. H.; Bowden, M. E.; Han, K. S.; Mueller, K. T.; Henderson, W. A.; Zhang, J. G. Enabling room temperature sodium metal batteries. Nano Energy 2016, 30, 825–830.

51

Zheng, J. M.; Chen, S. R.; Zhao, W. G.; Song, J. H.; Engelhard, M. H.; Zhang, J. G. Extremely stable sodium metal batteries enabled by localized high-concentration electrolytes. ACS Energy Lett. 2018, 3, 315–321.

52
Doi, K.; Yamada, Y.; Okoshi, M.; Ono, J.; Chou, C. P.; Nakai, H.; Yamada, A. Reversible sodium metal electrodes: Is fluorine an essential interphasial component? Angew. Chem., Int. Ed. 2019, 58, 8024–8028.
53

Zhou, L.; Cao, Z.; Zhang, J.; Sun, Q. J.; Wu, Y. Q.; Wahyudi, W.; Hwang, J. Y.; Wang, L. M.; Cavallo, L.; Sun, Y. K. et al. Engineering sodium-ion solvation structure to stabilize sodium anodes: Universal strategy for fast-charging and safer sodium-ion batteries. Nano Lett. 2020, 20, 3247–3254.

54

Han, B.; Zou, Y. C.; Zhang, Z.; Yang, X. M.; Shi, X. B.; Meng, H.; Wang, H.; Xu, K.; Deng, Y. H.; Gu, M. Probing the Na metal solid electrolyte interphase via cryo-transmission electron microscopy. Nat. Commun. 2021, 12, 3066.

55

Xue, W. J.; Huang, M. J.; Li, Y. T.; Zhu, Y. G.; Gao, R.; Xiao, X. H.; Zhang, W. X.; Li, S. P.; Xu, G. Y.; Yu, Y. et al. Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte. Nat Energy 2021, 6, 495–505.

Video
12274_2022_4349_MOESM2_ESM.mp4
12274_2022_4349_MOESM3_ESM.mp4
File
12274_2022_4349_MOESM1_ESM.pdf (7.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 January 2022
Revised: 01 March 2022
Accepted: 22 March 2022
Published: 04 May 2022
Issue date: August 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Science Foundation of China (Nos. 21925104, 51672093, 51821005, U1966214, 51902116, and 21975087). We thank the Analytical and Testing Center of HUST for all related measurements.

Return