Journal Home > Volume 15 , Issue 8

We present capillary grip-induced stick-slip motion, a nanoscale tribological effect, where the role of a nanoscale confined water meniscus formed between a buckled sharp tip and a glass or mica surface is addressed by shear dynamic force measurement. We obtained the effective elasticity, viscosity, conservative (elastic) and non-conservative (viscous) forces, energy dissipation, and lateral force using small oscillation, amplitude-modulation, and shear-mode quartz tuning fork-atomic force microscopy (QTF-AFM). We distinguished the conservative and non-conservative forces by investigating the dependence of normal load and relative humidity, slip length, and stick-slip frequency. We found that the confined nanoscale water enhances the lateral forces via capillary grip-induced stick-slip on a rough surface, resulting in an increase of static lateral force (3-fold for both substrates) and kinetic lateral force (6-fold for glass, 3-fold for mica). This work provides quantitative and systematic understanding of nanoscale tribology properties in humid ambient conditions and is thus useful for control of friction as well as characterization of tribology in nanomaterials and nanodevices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Capillary grip-induced stick-slip motion

Show Author's information Sangmin An1,2Manhee Lee3Bongsu Kim1,Wonho Jhe1( )
Department of Physics & Astronomy, Seoul National University, Seoul 08826, Republic of Korea
Department of Physics, Institute of Photonics and Information Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
Department of Physics, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
Present address: Samsung Advanced Institute of Technology (SAIT), Samsung Electronics, Suwon 16678, Republic of Korea

Abstract

We present capillary grip-induced stick-slip motion, a nanoscale tribological effect, where the role of a nanoscale confined water meniscus formed between a buckled sharp tip and a glass or mica surface is addressed by shear dynamic force measurement. We obtained the effective elasticity, viscosity, conservative (elastic) and non-conservative (viscous) forces, energy dissipation, and lateral force using small oscillation, amplitude-modulation, and shear-mode quartz tuning fork-atomic force microscopy (QTF-AFM). We distinguished the conservative and non-conservative forces by investigating the dependence of normal load and relative humidity, slip length, and stick-slip frequency. We found that the confined nanoscale water enhances the lateral forces via capillary grip-induced stick-slip on a rough surface, resulting in an increase of static lateral force (3-fold for both substrates) and kinetic lateral force (6-fold for glass, 3-fold for mica). This work provides quantitative and systematic understanding of nanoscale tribology properties in humid ambient conditions and is thus useful for control of friction as well as characterization of tribology in nanomaterials and nanodevices.

Keywords: relative humidity, dynamic force measurement, nanoscale water meniscus, lateral force, stick-slip motion

References(41)

1

Socoliuc, A.; Bennewitz, R.; Gnecco, E.; Meyer, E. Transition from stick-slip to continuous sliding in atomic friction: Entering a new regime of ultralow friction. Phys. Rev. Lett. 2004, 92, 134301.

2

Lee, C.; Li, Q. Y.; Kalb, W.; Liu, X. Z.; Berger, H.; Carpick, R. W.; Hone, J. Frictional characteristics of atomically thin sheets. Science 2010, 328, 76–80.

3

Socoliuc, A.; Gnecco, E.; Maier, S.; Pfeiffer, O.; Baratoff, A.; Bennewitz, R.; Meyer, E. Atomic-scale control of friction by actuation of nanometer-sized contacts. Science 2006, 313, 207–210.

4

Hedgeland, H.; Fouquet, P.; Jardine, A. P.; Alexandrowicz, G.; Allison, W.; Ellis, J. Measurement of single-molecule frictional dissipation in a prototypical nanoscale system. Nat. Phys. 2009, 5, 561–564.

5

Mo, Y. F.; Turner, K. T.; Szlufarska, I. Friction laws at the nanoscale. Nature 2009, 457, 1116–1119.

6

Deng, Z.; Klimov, N. N.; Solares, S. D.; Li, T.; Xu, H.; Cannara, R. J. Nanoscale interfacial friction and adhesion on supported versus suspended monolayer and multilayer graphene. Langmuir 2013, 29, 235–243.

7

Deng, Z.; Smolyanitsky, A.; Li, Q. Y.; Feng, X. Q.; Cannara, R. J. Adhesion-dependent negative friction coefficient on chemically modified graphite at the nanoscale. Nat. Mater. 2012, 11, 1032–1037.

8

Cannara, R. J.; Brukman, M. J.; Cimatu, K.; Sumant, A. V.; Baldelli, S.; Carpick, R. W. Nanoscale friction varied by isotopic shifting of surface vibrational frequencies. Science 2007, 318, 780–783.

9

Filleter, T.; McChesney, J. L.; Bostwick, A.; Rotenberg, E.; Emtsev, K. V.; Seyller, T.; Horn, K.; Bennewitz, R. Friction and dissipation in epitaxial graphene films. Phys. Rev. Lett. 2009, 102, 086102.

10

Bhaskaran, H.; Gotsmann, B.; Sebastian, A.; Drechsler, U.; Lantz, M. A.; Despont, M.; Jaroenapibal, P.; Carpick, R. W.; Chen, Y.; Sridharan, K. Ultralow nanoscale wear through atom-by-atom attrition in silicon-containing diamond-like carbon. Nat. Nanotechnol. 2010, 5, 181–185.

11

Choe, H.; Hong, M. H.; Seo, Y.; Lee, K.; Kim, G.; Cho, Y.; Ihm, J.; Jhe, W. Formation, manipulation, and elasticity measurement of a nanometric column of water molecules. Phys. Rev. Lett. 2005, 95, 187801.

12

Kim, S.; Kim, D.; Kim, J.; An, S.; Jhe, W. Direct evidence for curvature-dependent surface tension in capillary condensation: Kelvin equation at molecular scale. Phys. Rev. X 2018, 8, 041046.

13

Major, R. C.; Houston, J. E.; McGrath, M. J.; Siepmann, J. I.; Zhu, X. Y. Viscous water meniscus under nanoconfinement. Phys. Rev. Lett. 2006, 96, 177803.

14

Jinesh, K. B.; Frenken, J. W. M. Capillary condensation in atomic scale friction: How water acts like a glue. Phys. Rev. Lett. 2006, 96, 166103.

15

Lee, M.; Kim, B.; Kim, J.; Jhe, W. Noncontact friction via capillary shear interaction at nanoscale. Nat. Commun. 2015, 6, 7359.

16

Mazeran, P. E. Effect of sliding velocity on capillary condensation and friction force in a nanoscopic contact. Mater. Sci. Eng. C 2006, 26, 751–755.

17

Giovambattista, N.; Rossky, P. J.; Debenedetti, P. G. Phase transitions induced by nanoconfinement in liquid water. Phys. Rev. Lett. 2009, 102, 050603.

18

Falk, K.; Sedlmeier, F.; Joly, L.; Netz, R. R.; Bocquet, L. Molecular origin of fast water transport in carbon nanotube membranes: Superlubricity versus curvature dependent friction. Nano Lett. 2010, 10, 4067–4073.

19

Thompson, P. A.; Robbins, M. O. Origin of stick-slip motion in boundary lubrication. Science 1990, 250, 792–794.

20

Ohnishi, S.; Kaneko, D.; Gong, J. P.; Osada, Y.; Stewart, A. M.; Yaminsky, V. V. Influence of cyclohexane vapor on stick-slip friction between mica surfaces. Langmuir 2007, 23, 7032–7038.

21

Tian, K. W.; Goldsby, D. L.; Carpick, R. W. Rate and state friction relation for nanoscale contacts: Thermally activated Prandtl–Tomlinson model with chemical aging. Phys. Rev. Lett. 2018, 120, 186101.

22

Tian, K. W.; Gosvami, N. N.; Goldsby, D. L.; Carpick, R. W. Stick-slip instabilities for interfacial chemical bond-induced friction at the nanoscale. J. Phys. Chem. B 2018, 122, 991–999.

23

Tian, K. W.; Li, Z. H.; Liu, Y.; Gosvami, N. N.; Goldsby, D. L.; Szlufarska, I.; Carpick, R. W. Linear aging behavior at short timescales in nanoscale contacts. Phys. Rev. Lett. 2020, 124, 026801.

24

Giessibl, F. J. Atomic resolution of the silicon (111)-(7 × 7) surface by atomic force microscopy. Science 1995, 267, 68–71.

25

Giessibl, F. J. Advances in atomic force microscopy. Rev. Mod. Phys. 2003, 75, 949–983.

26

Fatayer, S.; Schuler, B.; Steurer, W.; Scivetti, I.; Repp, J.; Gross, L.; Persson, M.; Meyer, G. Reorganization energy upon charging a single molecule on an insulator measured by atomic force microscopy. Nat. Nanotechnol. 2018, 13, 376–380.

27

Pavliček, N.; Gross, L. Generation, manipulation and characterization of molecules by atomic force microscopy. Nat. Rev. Chem. 2017, 1, 0005.

28

Giessibl, F. J. The qPlus sensor, a powerful core for the atomic force microscope. Rev. Sci. Instrum. 2019, 90, 011101.

29

An, S.; Kim, B.; Kwon, S.; Moon, G.; Lee, M.; Jhe, W. Bifurcation-enhanced ultrahigh sensitivity of a buckled cantilever. Proc. Natl. Acad. Sci. USA 2018, 115, 2884–2889.

30

An, S.; Kim, C.; Jhe, W. Buckling tip-based nanoscratching with in situ direct measurement of shear dynamics. Appl. Nanosci. 2019, 9, 67–76.

31

An, S.; Jhe, W. Nanopipette/nanorod-combined quartz tuning fork-atomic force microscope. Sensors 2019, 19, 1794.

32

Lee, M.; Jhe, W. General theory of amplitude-modulation atomic force microscopy. Phys. Rev. Lett. 2006, 97, 036104.

33

Lee, M.; Jahng, J.; Kim, K.; Jhe, W. Quantitative atomic force measurement with a quartz tuning fork. Appl. Phys. Lett. 2007, 91, 023117.

34

Lee, M.; Sung, B.; Hashemi, N.; Jhe, W. Study of a nanoscale water cluster by atomic force microscopy. Faraday Discuss. 2009, 141, 415–421.

35

An, S.; Sung, B.; Noh, H.; Stambaugh, C.; Kwon, S.; Lee, K.; Kim, B.; Kim, Q.; Jhe, W. Position-resolved surface characterization and nanofabrication using an optical microscope combined with a nanopipette/quartz tuning fork atomic force microscope. Nano-Micro Lett. 2014, 6, 70–79.

36

Sahagún, E.; García-Mochales, P.; Sacha, G. M.; Sáenz, J. J. Energy dissipation due to capillary interactions: Hydrophobicity maps in force microscopy. Phys. Rev. Lett. 2007, 98, 176106.

37

Goertz, M. P.; Houston, J. E.; Zhu, X. Y. Hydrophilicity and the viscosity of interfacial water. Langmuir 2007, 23, 5491–5497.

38

Li, T. D.; Gao, J. P.; Szoszkiewicz, R.; Landman, U.; Riedo, E. Structured and viscous water in subnanometer gaps. Phys. Rev. B 2007, 75, 115415.

39

Mirsaidov, U. M.; Zheng, H. M.; Bhattacharya, D.; Casana, Y.; Matsudaira, P. Direct observation of stick-slip movements of water nanodroplets induced by an electron beam. Proc. Natl. Acad. Sci. USA 2012, 109, 7187–7190.

40

Wang, F. C.; Wu, H. Molecular origin of contact line stick-slip motion during droplet evaporation. Sci. Rep. 2015, 5, 17521.

41

Patek, S. N. Spiny lobsters stick and slip to make sound. Nature 2001, 411, 153–154.

File
12274_2022_4348_MOESM1_ESM.pdf (2.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 January 2022
Revised: 20 March 2022
Accepted: 22 March 2022
Published: 18 May 2022
Issue date: August 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science, ICT & Future Planning, MSIP) (Nos. 2016R1A3B1908660 and 2017R1C1B5076655) and (Ministry of Education and Science Technology, MEST) (No. 2020R1I1A1A01070755).

Return