Journal Home > Volume 15 , Issue 11

Chemical vapor deposition (CVD) has emerged as a promising approach for the controlled growth of graphene films with appealing scalability, controllability, and uniformity. However, the synthesis of high-quality graphene films still suffers from low production capacity and high energy consumption in the conventional hot-wall CVD system. In contrast, owing to the different heating mode, cold-wall CVD (CW-CVD) system exhibits promising potential for the industrial-scale production, but the quality of as-received graphene remains inferior with limited domain size and high defect density. Herein, we demonstrated an efficient method for the batch synthesis of high-quality graphene films with millimeter-sized domains based on CW-CVD system. With reduced defect density and improved properties, the as-received graphene was proven to be promising candidate material for electronics and anti-corrosion application. This study provides a new insight into the quality improvement of graphene derived from CW-CVD system, and paves a new avenue for the industrial production of high-quality graphene films for potential commercial applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Toward batch synthesis of high-quality graphene by cold-wall chemical vapor deposition approach

Show Author's information Kaicheng Jia1,2,§Ziteng Ma1,2,§Wendong Wang3,§Yongliang Wen4,§Huanxin Li4,5Yeshu Zhu1,2,6Jiawei Yang7Yuqing Song1,2Jiaxin Shao1,2,6Xiaoting Liu1,2,6Qi Lu2,8Yixuan Zhao1,2Jianbo Yin2Luzhao Sun2Hailin Peng1,2Jincan Zhang2,5( )Li Lin9( )Zhongfan Liu1,2( )
Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
Beijing Graphene Institute, Beijing 100095, China
School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK
State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
Department of Engineering, University of Cambridge, Cambridge CB3 0FA, UK
Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
Key Laboratory of Opto-Electronics Technology, Ministry of Education, College of Electronic Science and Technology, Faculty of Information Technology, Beijing University of Technology, Beijing 100024, China
State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
School of Materials Science and Engineering, Peking University, Beijing 100871, China

§ Kaicheng Jia, Ziteng Ma, Wendong Wang, and Yongliang Wen contributed equally to this work.

Abstract

Chemical vapor deposition (CVD) has emerged as a promising approach for the controlled growth of graphene films with appealing scalability, controllability, and uniformity. However, the synthesis of high-quality graphene films still suffers from low production capacity and high energy consumption in the conventional hot-wall CVD system. In contrast, owing to the different heating mode, cold-wall CVD (CW-CVD) system exhibits promising potential for the industrial-scale production, but the quality of as-received graphene remains inferior with limited domain size and high defect density. Herein, we demonstrated an efficient method for the batch synthesis of high-quality graphene films with millimeter-sized domains based on CW-CVD system. With reduced defect density and improved properties, the as-received graphene was proven to be promising candidate material for electronics and anti-corrosion application. This study provides a new insight into the quality improvement of graphene derived from CW-CVD system, and paves a new avenue for the industrial production of high-quality graphene films for potential commercial applications.

Keywords: graphene, defects, cold-wall chemical vapor deposition (CVD), electrical performance

References(38)

[1]

Lin, L.; Deng, B.; Sun, J. Y.; Peng, H. L.; Liu, Z. F. Bridging the gap between reality and ideal in chemical vapor deposition growth of graphene. Chem. Rev. 2018, 118, 9281–9343.

[2]

Novoselov, K. S.; Fal’ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200.

[3]

Hao, Y. F.; Bharathi, M. S.; Wang, L.; Liu, Y. Y.; Chen, H.; Nie, S.; Wang, X. H.; Chou, H.; Tan, C.; Fallahazad, B. et al. The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 2013, 342, 720–723.

[4]

Lin, L.; Zhang, J. C.; Su, H. S.; Li, J. Y.; Sun, L. Z.; Wang, Z. H.; Xu, F.; Liu, C.; Lopatin, S.; Zhu, Y. H. et al. Towards super-clean graphene. Nat. Commun. 2019, 10, 1912.

[5]

Zhang, J. C.; Sun, L. Z.; Jia, K. C.; Liu, X. T.; Cheng, T.; Peng, H. L.; Lin, L.; Liu, Z. F. New growth frontier: Superclean graphene. ACS Nano 2020, 14, 10796–10803.

[6]

Yuan, G. W.; Lin, D. J.; Wang, Y.; Huang, X. L.; Chen, W.; Xie, X. D.; Zong, J. Y.; Yuan, Q. Q.; Zheng, H.; Wang, D. et al. Proton-assisted growth of ultra-flat graphene films. Nature 2020, 577, 204–208.

[7]

Kong, W.; Kum, H.; Bae, S. H.; Shim, J.; Kim, H.; Kong, L. P.; Meng, Y.; Wang, K. J.; Kim, C.; Kim, J. Path towards graphene commercialization from lab to market. Nat. Nanotechnol. 2019, 14, 927–938.

[8]

Jia, K. C.; Zhang, J. C.; Zhu, Y. S.; Sun, L. Z.; Lin, L.; Liu, Z. F. Toward the commercialization of chemical vapor deposition graphene films. Appl. Phys. Rev. 2021, 8, 041306.

[9]

Lin, L.; Peng, H. L.; Liu, Z. F. Synthesis challenges for graphene industry. Nat. Mater. 2019, 18, 520–524.

[10]

Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578.

[11]

Xu, J. B.; Hu, J. X.; Li, Q.; Wang, R. B.; Li, W. W.; Guo, Y. F.; Zhu, Y. B.; Liu, F. K.; Ullah, Z.; Dong, G. C. et al. Fast batch production of high-quality graphene films in a sealed thermal molecular movement system. Small 2017, 13, 1700651.

[12]

Zhang, Y. N.; Huang, D. P.; Duan, Y. W.; Chen, H.; Tang, L. L.; Shi, M. Q.; Li, Z. C.; Shi, H. F. Batch production of uniform graphene films via controlling gas-phase dynamics in confined space. Nanotechnology 2021, 32, 105603.

[13]

Jo, I.; Park, S.; Kim, D.; Moon, J. S.; Park, W. B.; Kim, T. H.; Kang, J. H.; Lee, W.; Kim, Y.; Lee, D. N. et al. Tension-controlled single-crystallization of copper foils for roll-to-roll synthesis of high-quality graphene films. 2D Mater. 2018, 5, 024002.

[14]

Kobayashi, T.; Bando, M.; Kimura, N.; Shimizu, K.; Kadono, K.; Umezu, N.; Miyahara, K.; Hayazaki, S.; Nagai, S.; Mizuguchi, Y. at al. Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process. Appl. Phys. Lett. 2013, 102, 023112.

[15]

Sun, L. Z.; Yuan, G. W.; Gao, L. B.; Yang, J.; Chhowalla, M.; Gharahcheshmeh, M. H.; Gleason, K. K.; Choi, Y. S.; Hong, B. H.; Liu, Z. F. Chemical vapour deposition. Nat. Rev. Methods Primers 2021, 1, 5.

[16]

Jia, K. C.; Ci, H. N.; Zhang, J. C.; Sun, Z. T.; Ma, Z. T.; Zhu, Y. S.; Liu, S. N.; Liu, J. L.; Sun, L. Z.; Liu, X. T. et al. Superclean growth of graphene using a cold-wall chemical vapor deposition approach. Angew. Chem., Int. Ed. 2020, 59, 17214–17218.

[17]

Kim, S. M.; Kim, J. H.; Kim, K. S.; Hwangbo, Y.; Yoon, J. H.; Lee, E. K.; Ryu, J.; Lee, H. J.; Cho, S.; Lee, S. M. Synthesis of CVD-graphene on rapidly heated copper foils. Nanoscale 2014, 6, 4728–4734.

[18]

Alnuaimi, A.; Almansouri, I.; Saadat, I.; Nayfeh, A. Toward fast growth of large area high quality graphene using a cold-wall CVD reactor. RSC Adv. 2017, 7, 51951–51957.

[19]

Bointon, T. H.; Barnes, M. D.; Russo, S.; Craciun, M. F. High quality monolayer graphene synthesized by resistive heating cold wall chemical vapor deposition. Adv. Mater. 2015, 27, 4200–4206.

[20]

Huang, P. Y.; Ruiz-Vargas, C. S.; van der Zande, A. M.; Whitney, W. S.; Levendorf, M. P.; Kevek, J. W.; Garg, S.; Alden, J. S.; Hustedt, C. J.; Zhu, Y. et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 2011, 469, 389–392.

[21]

Ma, T.; Liu, Z. B.; Wen, J. X.; Gao, Y.; Ren, X. B.; Chen, H. J.; Jin, C. H.; Ma, X. L.; Xu, N. S.; Cheng, H. M. et al. Tailoring the thermal and electrical transport properties of graphene films by grain size engineering. Nat. Commun. 2017, 8, 14486.

[22]

Ryu, J.; Kim, Y.; Won, D.; Kim, N.; Park, J. S.; Lee, E. K.; Cho, D.; Cho, S. P.; Kim, S. J.; Ryu, G. H. et al. Fast synthesis of high-performance graphene films by hydrogen-free rapid thermal chemical vapor deposition. ACS Nano 2014, 8, 950–956.

[23]

Luo, B. R.; Whelan, P. R.; Shivayogimath, A.; Mackenzie, D. M. A.; Bøggild, P.; Booth, T. J. Copper oxidation through nucleation sites of chemical vapor deposited graphene. Chem. Mater. 2016, 28, 3789–3795.

[24]

Ferrari, A. C.; Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235–246.

[25]

Shah, S.; Chiou, Y. C.; Lai, C. Y.; Apostoleris, H.; Rahman, M.; Younes, H.; Almansouri, I.; Al Ghaferi, A.; Chiesa, M. Impact of short duration, high-flow H2 annealing on graphene synthesis and surface morphology with high spatial resolution assessment of coverage. Carbon 2017, 125, 318–326.

[26]

Arjmandi-Tash, H.; Lebedev, N.; van Deursen, P. M. G.; Aarts, J.; Schneider, G. F. Hybrid cold and hot-wall reaction chamber for the rapid synthesis of uniform graphene. Carbon 2017, 118, 438–442.

[27]

Cançado, L. G.; Jorio, A.; Ferreira, E. H. M.; Stavale, F.; Achete, C. A.; Capaz, R. B.; Moutinho, M. V. O.; Lombardo, A.; Kulmala, T. S.; Ferrari, A. C. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 2011, 11, 3190–3196.

[28]

Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722–726.

[29]

Lee, J. E.; Ahn, G.; Shim, J.; Lee, Y. S.; Ryu, S. Optical separation of mechanical strain from charge doping in graphene. Nat. Commun. 2012, 3, 1024.

[30]

Piner, R.; Li, H. F.; Kong, X. H.; Tao, L.; Kholmanov, I. N.; Ji, H. X.; Lee, W. H.; Suk, J. W.; Ye, J.; Hao, Y. F. et al. Graphene synthesis via magnetic inductive heating of copper substrates. ACS Nano 2013, 7, 7495–7499.

[31]

Miseikis, V.; Bianco, F.; David, J.; Gemmi, M.; Pellegrini, V.; Romagnoli, M.; Coletti, C. Deterministic patterned growth of high-mobility large-crystal graphene: A path towards wafer scale integration. 2D Mater. 2017, 4, 021004.

[32]

Lin, L.; Li, J. Y.; Ren, H. Y.; Koh, A. L.; Kang, N.; Peng, H. L.; Xu, H. Q.; Liu, Z. F. Surface engineering of copper foils for growing centimeter-sized single-crystalline graphene. ACS Nano 2016, 10, 2922–2929.

[33]

Banszerus, L.; Schmitz, M.; Engels, S.; Dauber, J.; Oellers, M.; Haupt, F.; Watanabe, K.; Taniguchi, T.; Beschoten, B.; Stampfer, C. Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper. Sci. Adv. 2015, 1, e1500222.

[34]

Zhao, Z. J.; Hou, T. Y.; Wu, N. N.; Jiao, S. P.; Zhou, K.; Yin, J.; Suk, J. W.; Cui, X.; Zhang, M. F.; Li, S. P. et al. Polycrystalline few-layer graphene as a durable anticorrosion film for copper. Nano Lett. 2021, 21, 1161–1168.

[35]

Chang, C.; Chen, W.; Chen, Y.; Chen, Y. H.; Chen, Y.; Ding, F.; Fan, C. H.; Fan, H. J.; Fan, Z. X.; Gong, C. et al. Recent progress on two-dimensional materials. Acta Phys. Chim. Sin. 2021, 37, 2108017.

[36]

Xu, X. Z.; Yi, D.; Wang, Z. C.; Yu, J. C.; Zhang, Z. H.; Qiao, R. X.; Sun, Z. H.; Hu, Z. H.; Gao, P.; Peng, H. L. et al. Greatly enhanced anticorrosion of Cu by commensurate graphene coating. Adv. Mater. 2018, 30, 1702944.

[37]

Kirkland, N. T.; Schiller, T.; Medhekar, N.; Birbilis, N. Exploring graphene as a corrosion protection barrier. Corros. Sci. 2012, 56, 1–4.

[38]

Ye, X. H.; Lin, Z.; Zhang, H. J.; Zhu, H. W.; Liu, Z.; Zhong, M. L. Protecting carbon steel from corrosion by laser in situ grown graphene films. Carbon 2015, 94, 326–334.

File
12274_2022_4347_MOESM1_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 20 December 2021
Revised: 21 March 2022
Accepted: 22 March 2022
Published: 29 April 2022
Issue date: November 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. T2188101, 21525310, and 52072042), the National Key R&D Program of China (No. 2018YFA0703502), Beijing National Laboratory for Molecular Sciences (No. BNLMS-CXTD-202001), and Beijing Municipal Science & Technology Commission (Nos. Z181100004818001, Z18110300480001, Z18110300480002, Z191100000819005, Z191100000819007, and Z201100008720005).

Return