Journal Home > Volume 15 , Issue 7

Metal–organic frameworks (MOFs) are being investigated as the potential materials for future drug delivery and gene therapy systems thanks to their tunable functionality and biocompatibility. However, the structure of MOFs could be altered in a biological environment or in a buffer solution. It is of great importance to evaluate the stability of MOFs and understand the degradation processes for the sake of the biomedical applications. In this work, we investigate the stability of UiO-66, a generally-perceived stable MOF, in different amino acid solutions. We find that UiO-66 loses crystallinity in relatively mild basic conditions (when pH ≥ 9) in the presence of amino acids. The instability is more pronounced in the lysine and arginine solutions which have stronger basicity. It can be attributed to the accelerated ligand exchange of UiO-66 under basic conditions. With a combination of techniques, we show that the amino acids can replace the organic linkers and form zirconium-amino acid complexes. Our research reveals one possible mechanism of MOF degradation in biological environment, yet such degradability could be also an important designable property for MOFs in biomedical applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

The instability of a stable metal–organic framework in amino acid solutions

Show Author's information Yiran Wang1,§Jinglin Yin1,§Weicheng Cao1Yao Fu1( )Xueqian Kong1,2,3( )
Department of Chemistry, Zhejiang University, Hangzhou 310027, China
Department of Rehabilitation, Sir Run Run Shaw HospitalSchool of Medicine, Zhejiang University, Hangzhou 310027, China
Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou 310027, China

§ Yiran Wang and Jinglin Yin contributed equally to this work.

Abstract

Metal–organic frameworks (MOFs) are being investigated as the potential materials for future drug delivery and gene therapy systems thanks to their tunable functionality and biocompatibility. However, the structure of MOFs could be altered in a biological environment or in a buffer solution. It is of great importance to evaluate the stability of MOFs and understand the degradation processes for the sake of the biomedical applications. In this work, we investigate the stability of UiO-66, a generally-perceived stable MOF, in different amino acid solutions. We find that UiO-66 loses crystallinity in relatively mild basic conditions (when pH ≥ 9) in the presence of amino acids. The instability is more pronounced in the lysine and arginine solutions which have stronger basicity. It can be attributed to the accelerated ligand exchange of UiO-66 under basic conditions. With a combination of techniques, we show that the amino acids can replace the organic linkers and form zirconium-amino acid complexes. Our research reveals one possible mechanism of MOF degradation in biological environment, yet such degradability could be also an important designable property for MOFs in biomedical applications.

Keywords: biomedical applications, stability, amino acids, metal–organic frameworks, solid-state nuclear magnetic resonance (NMR)

References(61)

1

Yaghi, O. M.; O’Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature 2003, 423, 705–714.

2

Kirchon, A.; Feng, L.; Drake, H. F.; Joseph, E. A.; Zhou, H. C. From fundamentals to applications: A toolbox for robust and multifunctional MOF materials. Chem. Soc. Rev. 2018, 47, 8611–8638.

3

Siegelman, R. L.; Kim, E. J.; Long, J. R. Porous materials for carbon dioxide separations. Nat. Mater. 2021, 20, 1060–1072.

4

Hanikel, N.; Prévot, M. S.; Yaghi, O. M. MOF water harvesters. Nat. Nanotechnol. 2020, 15, 348–355.

5

Ding, M. L.; Flaig, R. W.; Jiang, H. L.; Yaghi, O. M. Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chem. Soc. Rev. 2019, 48, 2783–2828.

6

Sheberla, D.; Bachman, J. C.; Elias, J. S.; Sun, C. J.; Shao-Horn, Y.; Dincă, M. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 2017, 16, 220–224.

7

Gong, X.; Shu, Y. F.; Jiang, Z.; Lu, L. X.; Xu, X. H.; Wang, C.; Deng, H. X. Metal–organic frameworks for the exploitation of distance between active sites in efficient photocatalysis. Angew. Chem., Int. Ed. 2020, 59, 5326–5331.

8

Cai, G. R.; Yan, P.; Zhang, L. L.; Zhou, H. C.; Jiang, H. L. Metal–organic framework-based hierarchically porous materials: Synthesis and applications. Chem. Rev. 2021, 121, 12278–12326.

9

Li, X. M.; Wang, J. Y.; Xue, F. F.; Wu, Y. C.; Xu, H. L.; Yi, T.; Li, Q. W. An imine-linked metal–organic framework as a reactive oxygen species generator. Angew. Chem., Int. Ed. 2021, 60, 2534–2540.

10

He, C. B.; Lu, K. D.; Liu, D. M.; Lin, W. B. Nanoscale metal–organic frameworks for the Co-delivery of cisplatin and pooled sirnas to enhance therapeutic efficacy in drug-resistant ovarian cancer cells. J. Am. Chem. Soc. 2014, 136, 5181–5184.

11

Abánades Lázaro, I.; Wells, C. J. R.; Forgan, R. S. Multivariate modulation of the Zr MOF UiO-66 for defect-controlled combination anticancer drug delivery. Angew. Chem., Int. Ed. 2020, 59, 5211–5217.

12

Chen, X.; Zhuang, Y. H.; Rampal, N.; Hewitt, R.; Divitini, G.; O’Keefe, C. A.; Liu, X. W.; Whitaker, D. J.; Wills, J. W.; Jugdaohsingh, R. et al. Formulation of metal–organic framework-based drug carriers by controlled coordination of methoxy PEG phosphate: Boosting colloidal stability and redispersibility. J. Am. Chem. Soc. 2021, 143, 13557–13572.

13

Teplensky, M. H.; Fantham, M.; Li, P.; Wang, T. C.; Mehta, J. P.; Young, L. J.; Moghadam, P. Z.; Hupp, J. T.; Farha, O. K.; Kaminski, C. F. et al. Temperature treatment of highly porous zirconium-containing metal–organic frameworks extends drug delivery release. J. Am. Chem. Soc. 2017, 139, 7522–7532.

14

Li, Y.; Ling, W.; Liu, X. Y.; Shang, X.; Zhou, P.; Chen, Z. R.; Xu, H.; Huang, X. Metal–organic frameworks as functional materials for implantable flexible biochemical sensors. Nano Res. 2021, 14, 2981–3009.

15

Chong, G. W.; Zang, J.; Han, Y.; Su, R. P.; Weeranoppanant, N.; Dong, H. Q.; Li, Y. Y. Bioengineering of nano metal–organic frameworks for cancer immunotherapy. Nano Res. 2021, 14, 1244–1259.

16

Bondarenko, O.; Mortimer, M.; Kahru, A.; Feliu, N.; Javed, I.; Kakinen, A.; Lin, S. J.; Xia, T.; Song, Y.; Davis, T. P. et al. Nanotoxicology and nanomedicine: The Yin and Yang of nano-bio interactions for the new decade. Nano Today 2021, 39, 101184.

17

McKinlay, A. C.; Morris, R. E.; Horcajada, P.; Férey, G.; Gref, R.; Couvreur, P.; Serre, C. BioMOFs: Metal–organic frameworks for biological and medical applications. Angew. Chem., Int. Ed. 2010, 49, 6260–6266.

18

Wang, J.; Li, Y. Y.; Nie, G. J.; Zhao, Y. L. Precise design of nanomedicines: Perspectives for cancer treatment. Natl. Sci. Rev. 2019, 6, 1107–1110.

19

Ding, M. L.; Cai, X. C.; Jiang, H. L. Improving MOF stability: Approaches and applications. Chem. Sci. 2019, 10, 10209–10230.

20

Yang, J.; Yang, Y. W. Metal–organic frameworks for biomedical applications. Small 2020, 16, 1906846.

21

Yuan, S.; Feng, L.; Wang, K. C.; Pang, J. D.; Bosch, M.; Lollar, C.; Sun, Y. J.; Qin, J. S.; Yang, X. Y.; Zhang, P. et al. Stable metal–organic frameworks: Design, synthesis, and applications. Adv. Mater. 2018, 30, 1704303.

22

Pang, Y. C.; Fu, Y.; Li, C.; Wu, Z. X.; Cao, W. C.; Hu, X.; Sun, X. C.; He, W. X.; Cao, X. K.; Ling, D. S. et al. Metal–organic framework nanoparticles for ameliorating breast cancer-associated osteolysis. Nano Lett. 2020, 20, 829–840.

23

Yao, T.; Asayama, Y. Animal-cell culture media: History, characteristics, and current issues. Reprod. Med. Biol. 2017, 16, 99–117.

24

Della Rocca, J.; Liu, D. M.; Lin, W. B. Nanoscale metal–organic frameworks for biomedical imaging and drug delivery. Acc. Chem. Res. 2011, 44, 957–968.

25

He, C. B.; Lu, K. D.; Lin, W. B. Nanoscale metal–organic frameworks for real-time intracellular pH sensing in live cells. J. Am. Chem. Soc. 2014, 136, 12253–12256.

26

Lyu, H.; Chen, O. I. F.; Hanikel, N.; Hossain, M. I.; Flaig, R. W.; Pei, X. K.; Amin, A.; Doherty, M. D.; Impastato, R. K.; Glover, T. G. et al. Carbon dioxide capture chemistry of amino acid functionalized metal–organic frameworks in humid flue gas. J. Am. Chem. Soc. 2022, 144, 2387–2396.

27

Gutov, O. V.; Molina, S.; Escudero-Adán, E. C.; Shafir, A. Modulation by amino acids: Toward superior control in the synthesis of zirconium metal–organic frameworks. Chem.—Eur. J. 2016, 22, 13582–13587.

28

Marshall, R. J.; Hobday, C. L.; Murphie, C. F.; Griffin, S. L.; Morrison, C. A.; Moggach, S. A.; Forgan, R. S. Amino acids as highly efficient modulators for single crystals of zirconium and hafnium metal–organic frameworks. J. Mater. Chem. A 2016, 4, 6955–6963.

29

Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 2008, 130, 13850–13851.

30

Fu, Y.; Kang, Z. Z.; Cao, W. C.; Yin, J. L.; Tu, Y. Q.; Li, J. H.; Guan, H. X.; Wang, Y. R.; Wang, Q.; Kong, X. Q. Defect-assisted loading and docking conformations of pharmaceuticals in metal–organic frameworks. Angew. Chem., Int. Ed. 2021, 60, 7719–7727.

31

Zhu, X. Y.; Gu, J. L.; Wang, Y.; Li, B.; Li, Y. S.; Zhao, W. R.; Shi, J. L. Inherent anchorages in UiO-66 nanoparticles for efficient capture of alendronate and its mediated release. Chem. Commun. 2014, 50, 8779–8782.

32

Morris, W.; Wang, S. Z.; Cho, D.; Auyeung, E.; Li, P.; Farha, O. K.; Mirkin, C. A. Role of modulators in controlling the colloidal stability and polydispersity of the UiO-66 metal–organic framework. ACS Appl. Mater. Interfaces 2017, 9, 33413–33418.

33

Abánades Lázaro, I.; Haddad, S.; Rodrigo-Muñoz, J. M.; Orellana-Tavra, C.; del Pozo, V.; Fairen-Jimenez, D.; Forgan, R. S. Mechanistic investigation into the selective anticancer cytotoxicity and immune system response of surface-functionalized, dichloroacetate-loaded, UiO-66 nanoparticles. ACS Appl. Mater. Interfaces 2018, 10, 5255–5268.

34

Wang, Z. J.; Fu, Y.; Kang, Z. Z.; Liu, X. G.; Chen, N.; Wang, Q.; Tu, Y. Q.; Wang, L. H.; Song, S. P.; Ling, D. S. et al. Organelle-specific triggered release of immunostimulatory oligonucleotides from intrinsically coordinated DNA-metal–organic frameworks with soluble exoskeleton. J. Am. Chem. Soc. 2017, 139, 15784–15791.

35

Abánades Lázaro, I.; Forgan, R. S. Application of zirconium MOFs in drug delivery and biomedicine. Coord. Chem. Rev. 2019, 380, 230–259.

36

Orellana-Tavra, C.; Marshall, R. J.; Baxter, E. F.; Lázaro, I. A.; Tao, A. D.; Cheetham, A. K.; Forgan, R. S.; Fairen-Jimenez, D. Drug delivery and controlled release from biocompatible metal–organic frameworks using mechanical amorphization. J. Mater. Chem. B 2016, 4, 7697–7707.

37

Kandiah, M.; Nilsen, M. H.; Usseglio, S.; Jakobsen, S.; Olsbye, U.; Tilset, M.; Larabi, C.; Quadrelli, E. A.; Bonino, F.; Lillerud, K. P. Synthesis and stability of tagged UiO-66 Zr-MOFs. Chem. Mater. 2010, 22, 6632–6640.

38

Mondloch, J. E.; Katz, M. J.; Planas, N.; Semrouni, D.; Gagliardi, L.; Hupp, J. T.; Farha, O. K. Are Zr6-based MOFs water stable? Linker hydrolysis vs. capillary-force-driven channel collapse. Chem. Commun. 2014, 50, 8944–8946.

39

Hobday, C. L.; Marshall, R. J.; Murphie, C. F.; Sotelo, J.; Richards, T.; Allan, D. R.; Düren, T.; Coudert, F. X.; Forgan, R. S.; Morrison, C. A. et al. A computational and experimental approach linking disorder, high-pressure behavior, and mechanical properties in UiO frameworks. Angew. Chem., Int. Ed. 2016, 55, 2401–2405.

40

Bůžek, D.; Adamec, S.; Lang, K.; Demel, J. Metal–organic frameworks vs. buffers: Case study of UiO-66 stability. Inorg. Chem. Front. 2021, 8, 720–734.

41

Bůžek, D.; Demel, J.; Lang, K. Zirconium metal–organic framework UiO-66: Stability in an aqueous environment and its relevance for organophosphate degradation. Inorg. Chem. 2018, 57, 14290–14297.

42

Wang, S. J.; Wahiduzzaman, M.; Davis, L.; Tissot, A.; Shepard, W.; Marrot, J.; Martineau-Corcos, C.; Hamdane, D.; Maurin, G.; Devautour-Vinot, S. et al. A robust zirconium amino acid metal–organic framework for proton conduction. Nat. Commun. 2018, 9, 4937.

43

Vaidhyanathan, R.; Bradshaw, D.; Rebilly, J. N.; Barrio, J. P.; Gould, J. A.; Berry, N. G.; Rosseinsky, M. J. A family of nanoporous materials based on an amino acid backbone. Angew. Chem., Int. Ed. 2006, 45, 6495–6499.

44

Anokhina, E. V.; Go, Y. B.; Lee, Y.; Vogt, T.; Jacobson, A. J. Chiral three-dimensional microporous nickel aspartate with extended Ni–O–Ni bonding. J. Am. Chem. Soc. 2006, 128, 9957–9962.

45

Anderson, S. L.; Stylianou, K. C. Biologically derived metal organic frameworks. Coord. Chem. Rev. 2017, 349, 102–128.

46

Imaz, I.; Rubio-Martínez, M.; An, J.; Solé-Font, I.; Rosi, N. L.; Maspoch, D. Metal–biomolecule frameworks (MBioFs). Chem. Commun. 2011, 47, 7287–7302.

47

Chen, L.; Bu, X. H. Histidine-controlled two-dimensional assembly of zinc phosphite four-ring units. Chem. Mater. 2006, 18, 1857–1860.

48

Terzopoulou, A.; Wang, X. P.; Chen, X. Z.; Palacios-Corella, M.; Pujante, C.; Herrero-Martín, J.; Qin, X. H.; Sort, J.; deMello, A. J.; Nelson, B. J. et al. Biodegradable metal–organic framework-based microrobots (MOFBOTS). Adv. Healthc. Mater. 2020, 9, 2001031.

49

Wu, M. X.; Yang, Y. W. Metal–organic framework (MOF)-based drug/cargo delivery and cancer therapy. Adv. Mater. 2017, 29, 1606134.

50

Huxford, R. C.; Della Rocca, J.; Lin, W. B. Metal–organic frameworks as potential drug carriers. Curr. Opin. Chem. Biol. 2010, 14, 262–268.

51

Miller, S. R.; Heurtaux, D.; Baati, T.; Horcajada, P.; Grenèche, J. M.; Serre, C. Biodegradable therapeutic MOFs for the delivery of bioactive molecules. Chem. Commun. 2010, 46, 4526–4528.

52

Shearer, G. C.; Chavan, S.; Bordiga, S.; Svelle, S.; Olsbye, U.; Lillerud, K. P. Defect engineering: Tuning the porosity and composition of the metal–organic framework UiO-66 via modulated synthesis. Chem. Mater. 2016, 28, 3749–3761.

53

Kim, M.; Cahill, J. F.; Su, Y. X.; Prather, K. A.; Cohen, S. M. Postsynthetic ligand exchange as a route to functionalization of “inert” metal–organic frameworks. Chem. Sci. 2012, 3, 126–130.

54

Li, Z. H.; Rayder, T. M.; Luo, L. S.; Byers, J. A.; Tsung, C. K. Aperture-opening encapsulation of a transition metal catalyst in a metal–organic framework for CO2 hydrogenation. J. Am. Chem. Soc. 2018, 140, 8082–8085.

55

Pan, L.; Heddy, R.; Li, J.; Zheng, C.; Huang, X. Y.; Tang, X. Z.; Kilpatrick, L. Synthesis and structural determination of a hexanuclear zirconium glycine compound formed in aqueous solution. Inorg. Chem. 2008, 47, 5537–5539.

56

Fan, X. Y.; Gong, X.; Ma, M. Y.; Wang, R.; Walsh, P. J. Visible light-promoted CO2 fixation with imines to synthesize diaryl α-amino acids. Nat. Commun. 2018, 9, 4936.

57

Dos, A.; Schimming, V.; Chan-Huot, M.; Limbach, H. H. Effects of hydration on the acid-base interactions and secondary structures of poly-L-lysine probed by 15N and 13C solid state NMR. Phys. Chem. Chem. Phys. 2010, 12, 10235–10245.

58

Mohanapriya, S.; Raj, V. Tuning biological properties of poly(vinyl alcohol) with amino acids and studying its influence on osteoblastic cell adhesion. Mater. Sci. Eng. C 2018, 86, 70–82.

59

Ghosh, T.; Mondal, A.; Vyas, A.; Mishra, S. A “one-tube” synthesis of a selective fluorescence “turn off/on” DNA probe based on a c-phycocyanin-graphene oxide (CPC-GO) bio composite. Int. J. Biol. Macromol. 2020, 163, 977–984.

60

Sarikokba, S.; Tiwari, D.; Prasad, S. K.; Kim, D. J.; Choi, S. S.; Lee, S. M. Bio-composite materials precursor to chitosan in the development of electrochemical sensors: A critical overview of its use with micro-pollutants and heavy metals detection. Appl. Chem. Eng. 2020, 31, 237–257.

61

Dhandapani, E.; Suganthi, S.; Vignesh, S.; Dhanalakshmi, M.; Kalyana Sundar, J.; Raj, V. Fabrication and physicochemical assessment of L-histidine cross-linked PVA/CMC bio-composite membranes for antibacterial and food-packaging applications. Mater. Technol. 2022, 37, 124–134.

File
12274_2022_4346_MOESM1_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 16 February 2022
Revised: 18 March 2022
Accepted: 21 March 2022
Published: 20 April 2022
Issue date: July 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21922410, 22072133, and 21673206), Zhejiang Provincial Natural Science Foundation (No. LR19B050001), and the Leading Innovation and Entrepreneurship Team of Zhejiang Province (No. 2020R01003).

Return