Journal Home > Volume 15 , Issue 12

Bi is one of the most fascinating catalysts for the formation of HCOO towards CO2 electroreduction. Herein, we developed electrodeposited angular-shaped Bi microparticles (Bi MP) with exposed surfaces of {003} and {101} planes as efficient catalyst for the electroreduction of CO2 into HCOO. During CO2 electroreduction, Bi MP achieved a Faraday efficiency (FE) for HCOO of higher than 95% over a wide range of applied potential from −0.6 to −1.1 V versus reversible hydrogen electrode (vs. RHE), whereas the FE for HCOO of Bi nanoflakes (Bi NF) with exposed surfaces of {104} and {110} planes was around 70%. At −1.1 V vs. RHE, the partial current density for HCOO of Bi MP was −271.7 mA·cm−2, 1.56 times as high as that of Bi NF. According to kinetic analysis and mechanistic study, highly-oriented surface of Bi MP not only facilitated Faradaic process and accelerated reaction kinetics via enhancing the CO2 activation, but also restrained competing hydrogen evolution reaction, thus boosting catalytic performance of the electroreduction of CO2 into HCOO.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Electrodeposited highly-oriented bismuth microparticles for efficient CO2 electroreduction into formate

Show Author's information Chen LinYan LiuXiangdong KongZhigang Geng( )Jie Zeng( )
Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China

Abstract

Bi is one of the most fascinating catalysts for the formation of HCOO towards CO2 electroreduction. Herein, we developed electrodeposited angular-shaped Bi microparticles (Bi MP) with exposed surfaces of {003} and {101} planes as efficient catalyst for the electroreduction of CO2 into HCOO. During CO2 electroreduction, Bi MP achieved a Faraday efficiency (FE) for HCOO of higher than 95% over a wide range of applied potential from −0.6 to −1.1 V versus reversible hydrogen electrode (vs. RHE), whereas the FE for HCOO of Bi nanoflakes (Bi NF) with exposed surfaces of {104} and {110} planes was around 70%. At −1.1 V vs. RHE, the partial current density for HCOO of Bi MP was −271.7 mA·cm−2, 1.56 times as high as that of Bi NF. According to kinetic analysis and mechanistic study, highly-oriented surface of Bi MP not only facilitated Faradaic process and accelerated reaction kinetics via enhancing the CO2 activation, but also restrained competing hydrogen evolution reaction, thus boosting catalytic performance of the electroreduction of CO2 into HCOO.

Keywords: CO2 electroreduction, electrodeposited Bi, formate product, highly-oriented bismuth surface

References(43)

[1]

Kibria, M. G.; Edwards, J. P.; Gabardo, C. M.; Dinh, C. T.; Seifitokaldani, A.; Sinton, D.; Sargent, E. H. Electrochemical CO2 reduction into chemical feedstocks: From mechanistic electrocatalysis models to system design. Adv. Mater. 2019, 31, 1807166.

[2]

Zhang, L.; Zhao, Z. J.; Gong, J. L. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms. Angew. Chem., Int. Ed. 2017, 56, 11326–11353.

[3]

Kim, C.; Möller, T.; Schmidt, J.; Thomas, A.; Strasser, P. Suppression of competing reaction channels by Pb adatom decoration of catalytically active Cu surfaces during CO2 electroreduction. ACS Catal. 2019, 9, 1482–1488.

[4]

Gu, J.; Héroguel, F.; Luterbacher, J.; Hu, X. L. Densely packed, ultra small SnO nanoparticles for enhanced activity and selectivity in electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2018, 57, 2943–2947.

[5]

Fang, Y. X.; Flake, J. C. Electrochemical reduction of CO2 at functionalized Au electrodes. J. Am. Chem. Soc. 2017, 139, 3399–3405.

[6]

Liu, S.; Yang, H. B.; Hung, S. F.; Ding, J.; Cai, W. Z.; Liu, L. H.; Gao, J. J.; Li, X. N.; Ren, X. Y.; Kuang, Z. C. et al. Elucidating the electrocatalytic CO2 reduction reaction over a model single-atom nickel catalyst. Angew. Chem., Int. Ed. 2020, 59, 798–803.

[7]

Jiang, K.; Siahrostami, S.; Zheng, T. T.; Hu, Y. F.; Hwang, S.; Stavitski, E.; Peng, Y. D.; Dynes, J.; Gangisetty, M.; Su, D. et al. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ. Sci. 2018, 11, 893–903.

[8]

Kong, X. D.; Liu, Y.; Li, P.; Ke, J. W.; Liu, Z. Y.; Ahmad, F.; Yan, W. S.; Li, Z. Y.; Geng, Z. G.; Zeng, J. Coordinate activation in heterogeneous carbon dioxide reduction on Co-based molecular catalysts. Appl. Catal. B: Environ. 2020, 268, 118452.

[9]

Gu, J.; Hsu, C. S.; Bai, L. C.; Chen, H. M.; Hu, X. L. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 2019, 364, 1091–1094.

[10]

Han, Z. J.; Kortlever, R.; Chen, H. Y.; Peters, J. C.; Agapie, T. CO2 reduction selective for C≥ 2 products on polycrystalline copper with N-substituted pyridinium additives. ACS Central Sci. 2017, 3, 853–859.

[11]

Wakerley, D.; Lamaison, S.; Ozanam, F.; Menguy, N.; Mercier, D.; Marcus, P.; Fontecave, M.; Mougel, V. Bio-inspired hydrophobicity promotes CO2 reduction on a Cu surface. Nat. Mater. 2019, 18, 1222–1227.

[12]

Zheng, Y.; Vasileff, A.; Zhou, X. L.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts. J. Am. Chem. Soc. 2019, 141, 7646–7659.

[13]

Varandili, S. B.; Huang, J. F.; Oveisi, E.; De Gregorio, G. L.; Mensi, M.; Strach, M.; Vavra, J.; Gadiyar, C.; Bhowmik, A.; Buonsanti, R. Synthesis of Cu/CeO2−x nanocrystalline heterodimers with interfacial active sites to promote CO2 electroreduction. ACS Catal. 2019, 9, 5035–5046.

[14]

Raciti, D.; Wang, C. Recent advances in CO2 reduction electrocatalysis on copper. ACS Energy Lett. 2018, 3, 1545–1556.

[15]

Zhang, A.; Liang, Y. X.; Li, H. P.; Zhao, X. Y.; Chen, Y. L.; Zhang, B. Y.; Zhu, W. G.; Zeng, J. Harmonizing the electronic structures of the adsorbate and catalysts for efficient CO2 reduction. Nano Lett. 2019, 19, 6547–6553.

[16]

Geng, Z. G.; Kong, X. D.; Chen, W. W.; Su, H. Y.; Liu, Y.; Cai, F.; Wang, G. X.; Zeng, J. Oxygen vacancies in ZnO nanosheets enhance CO2 electrochemical reduction to CO. Angew. Chem., Int. Ed. 2018, 57, 6054–6059.

[17]

Tomboc, G. M.; Choi, S.; Kwon, T.; Hwang, Y. J.; Lee, K. Potential link between Cu surface and selective CO2 electroreduction: Perspective on future electrocatalyst designs. Adv. Mater. 2020, 32, 1908398.

[18]

Ji, L.; Li, L.; Ji, X. Q.; Zhang, Y.; Mou, S. Y.; Wu, T. W.; Liu, Q.; Li, B. H.; Zhu, X. J.; Luo, Y. L. et al. Highly selective electrochemical reduction of CO2 to alcohols on an FeP nanoarray. Angew. Chem., Int. Ed. 2020, 59, 758–762.

[19]

Kong, X. D.; Wang, C.; Zheng, H.; Geng, Z. G.; Bao, J.; Zeng, J. Enhance the activity of multi-carbon products for Cu via P doping towards CO2 reduction. Sci. China Chem. 2021, 64, 1096–1102.

[20]

Zheng, X. L.; De Luna, P.; García de Arquer, F. P.; Zhang, B.; Becknell, N.; Ross, M. B.; Li, Y. F.; Banis, M. N.; Li, Y. Z.; Liu, M. et al. Sulfur-modulated tin sites enable highly selective electrochemical reduction of CO2 to formate. Joule 2017, 1, 794–805.

[21]

Reda, T.; Plugge, C. M.; Abram, N. J.; Hirst, J. Reversible interconversion of carbon dioxide and formate by an electroactive enzyme. Proc. Natl. Acad. Sci. USA 2008, 105, 10654–10658.

[22]

Mellmann, D.; Sponholz, P.; Junge, H.; Beller, M. Formic acid as a hydrogen storage material-development of homogeneous catalysts for selective hydrogen release. Chem. Soc. Rev. 2016, 45, 3954–3988.

[23]

Verma, S.; Kim, B.; Jhong, H. R. M.; Ma, S. C.; Kenis, P. J. A. A gross-margin model for defining technoeconomic benchmarks in the electroreduction of CO2. ChemSusChem 2016, 9, 1972–1979.

[24]

Jiang, B.; Zhang, X. G.; Jiang, K.; Wu, D. Y.; Cai, W. B. Boosting formate production in electrocatalytic CO2 reduction over wide potential window on Pd surfaces. J. Am. Chem. Soc. 2018, 140, 2880–2889.

[25]

Shang, H. S.; Wang, T.; Pei, J. J.; Jiang, Z. L.; Zhou, D. N.; Wang, Y.; Li, H. J.; Dong, J. C.; Zhuang, Z. B.; Chen, W. X. et al. Design of a single-atom indiumδ+–N4 interface for efficient electroreduction of CO2 to formate. Angew. Chem., Int. Ed. 2020, 59, 22465–22469.

[26]

Hori, Y.; Kikuchi, K.; Suzuki, S. Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogencarbonate solution. Chem. Lett. 1985, 14, 1695–1698.

[27]

Zhu, Q. G.; Ma, J.; Kang, X. C.; Sun, X. F.; Liu, H. Z.; Hu, J. Y.; Liu, Z. M.; Han, B. X. Efficient reduction of CO2 into formic acid on a lead or tin electrode using an ionic liquid catholyte mixture. Angew. Chem., Int. Ed. 2016, 55, 9012–9016.

[28]

Yang, H.; Han, N.; Deng, J.; Wu, J. H.; Wang, Y.; Hu, Y. P.; Ding, P.; Li, Y. F.; Li, Y. G.; Lu, J. Selective CO2 reduction on 2D mesoporous Bi nanosheets. Adv. Energy Mater. 2018, 8, 1801536.

[29]

Zhang, E. H.; Wang, T.; Yu, K.; Liu, J.; Chen, W. X.; Li, A.; Rong, H. P.; Lin, R.; Ji, S. F.; Zheng, X. S. et al. Bismuth single atoms resulting from transformation of metal-organic frameworks and their use as electrocatalysts for CO2 reduction. J. Am. Chem. Soc. 2019, 141, 16569–16573.

[30]

Wang, Z. Y.; Wang, C.; Hu, Y. D.; Yang, S.; Yang, J.; Chen, W. X.; Zhou, H.; Zhou, F. Y.; Wang, L. X.; Du, J. Y. et al. Simultaneous diffusion of cation and anion to access N, S co-coordinated Bi-sites for enhanced CO2 electroreduction. Nano Res. 2021, 14, 2790–2796.

[31]
Meng, L. Z.; Zhang, E. H.; Peng, H. Y.; Wang, Y.; Wang, D. S.; Rong, H. P.; Zhang, J. T. Bi/Zn dual single-atom catalysts for electroreduction of CO2 to syngas. ChemCatChem, in press, https://doi.org/10.1002/cctc.202101801.
[32]

Zhang, Z. Y.; Chi, M. F.; Veith, G. M.; Zhang, P. F.; Lutterman, D. A.; Rosenthal, J.; Overbury, S. H.; Dai, S.; Zhu, H. Y. Rational design of Bi nanoparticles for efficient electrochemical CO2 reduction: The elucidation of size and surface condition effects. ACS Catal. 2016, 6, 6255–6264.

[33]

Yu, X.; Fautrelle, Y.; Ren, Z. M.; Li, X. PVA-assisted synthesis and characterization of core–shell Bi nanobelts. Mater. Lett. 2015, 161, 144–148.

[34]

Walker, E. S.; Na, S. R.; Jung, D.; March, S. D.; Kim, J. S.; Trivedi, T.; Li, W.; Tao, L.; Lee, M. L.; Liechti, K. M. et al. Large-area dry transfer of single-crystalline epitaxial bismuth thin films. Nano Lett. 2016, 16, 6931–6938.

[35]

Zhang, X. L.; Sun, X. H.; Guo, S. X.; Bond, A. M.; Zhang, J. Formation of lattice-dislocated bismuth nanowires on copper foam for enhanced electrocatalytic CO2 reduction at low overpotential. Energy Environ. Sci. 2019, 12, 1334–1340.

[36]

Mohan, R. Green bismuth. Nat. Chem. 2010, 2, 336.

[37]

Han, N.; Wang, Y.; Yang, H.; Deng, J.; Wu, J. H.; Li, Y. F.; Li, Y. G. Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate. Nat. Commun. 2018, 9, 1320.

[38]

Xing, Y. L.; Chen, H. H.; Liu, Y.; Sheng, Y. L.; Zeng, J.; Geng, Z. G.; Bao, J. A phosphate-derived bismuth catalyst with abundant grain boundaries for efficient reduction of CO2 to HCOOH. Chem. Commun. 2021, 57, 1502–1505.

[39]

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

[40]

Hofmann, P. The surfaces of bismuth: Structural and electronic properties. Prog. Surf. Sci. 2006, 81, 191–245.

[41]

Ahila, M.; Malligavathy, M.; Subramanian, E.; Padiyan, D. P. Controllable synthesis of α and β-Bi2O3 through anodization of thermally evaporated bismuth and its characterization. Solid State Ion. 2016, 298, 23–34.

[42]

Lei, F. C.; Liu, W.; Sun, Y. F.; Xu, J. Q.; Liu, K. T.; Liang, L.; Yao, T.; Pan, B. C.; Wei, S. Q.; Xie, Y. Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction. Nat. Commun. 2016, 7, 12697.

[43]

Zhang, J. B.; Yin, R. G.; Shao, Q.; Zhu, T.; Huang, X. Q. Oxygen vacancies in amorphous InOx nanoribbons enhance CO2 adsorption and activation for CO2 electroreduction. Angew. Chem., Int. Ed. 2019, 58, 5609–5613.

File
12274_2022_4345_MOESM1_ESM.pdf (1.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 February 2022
Revised: 19 March 2022
Accepted: 21 March 2022
Published: 26 April 2022
Issue date: December 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Nos. 2021YFA1500500 and 2019YFA0405600), National Science Fund for Distinguished Young Scholars (No. 21925204), the National Natural Science Foundation of China (Nos. U1932146, 92061111, and U19A2015), Fundamental Research Funds for the Central Universities, Provincial Key Research and Development Program of Anhui (No. 202004a05020074), China Postdoctoral Program for Innovative Talents (No. BX20200324), K. C. Wong Education Foundation (No. GJTD-2020-15), the DNL Cooperation Fund, CAS (No. DNL202003), and USTC Research Funds of the Double First-Class Initiative (No. YD2340002002).

Return