Journal Home > Volume 15 , Issue 8

Owing to the relatively short hole diffusion length, severe charge recombination in the bulk of bismuth vanadate (BiVO4) is the key issue for photoelectrochemical water splitting. Herein, we design a nanoporous MoO3−x/BiVO4 heterojunction photoanode to promote charge separation. The efficient electron transport properties of oxygen deficient MoO3−x and the nanoporous structure are beneficial for charge separation, leading to a significantly enhanced PEC performance. The optimized MoO3−x/BiVO4 heterojunction photoanode exhibits a photocurrent density of 5.07 mA·cm−2 for Na2SO3 oxidation. By depositing FeOOH/NiOOH dual oxygen evolution cocatalysts to promote surface kinetics, a high photocurrent density of 4.81 mA·cm−2 can be achieved for PEC water splitting, exhibiting an excellent applied bias photon-to-current efficiency of 1.57%. Moreover, stable overall water splitting is achieved under consecutive light illumination for 10 h. We provide a proof of concept for the design of efficient BiVO4-based heterojunction photoanodes for stable PEC water splitting.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Nanoporous MoO3−x/BiVO4 photoanodes promoting charge separation for efficient photoelectrochemical water splitting

Show Author's information Songcan Wang( )Boyan LiuXin WangYingjuan ZhangWei Huang( )
Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE), Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi’an 710072, China

Abstract

Owing to the relatively short hole diffusion length, severe charge recombination in the bulk of bismuth vanadate (BiVO4) is the key issue for photoelectrochemical water splitting. Herein, we design a nanoporous MoO3−x/BiVO4 heterojunction photoanode to promote charge separation. The efficient electron transport properties of oxygen deficient MoO3−x and the nanoporous structure are beneficial for charge separation, leading to a significantly enhanced PEC performance. The optimized MoO3−x/BiVO4 heterojunction photoanode exhibits a photocurrent density of 5.07 mA·cm−2 for Na2SO3 oxidation. By depositing FeOOH/NiOOH dual oxygen evolution cocatalysts to promote surface kinetics, a high photocurrent density of 4.81 mA·cm−2 can be achieved for PEC water splitting, exhibiting an excellent applied bias photon-to-current efficiency of 1.57%. Moreover, stable overall water splitting is achieved under consecutive light illumination for 10 h. We provide a proof of concept for the design of efficient BiVO4-based heterojunction photoanodes for stable PEC water splitting.

Keywords: charge separation, heterojunction, water splitting, oxygen vacancies, bismuth vanadate

References(48)

1

Kim, J. H.; Lee, J. S. Elaborately modified BiVO4 photoanodes for solar water splitting. Adv. Mater. 2019, 31, 1806938.

2

Park, Y.; McDonald, K. J.; Choi, K. S. Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem. Soc. Rev. 2013, 42, 2321–2337.

3

Wang, L.; Zhang, T.; Su, J. Z.; Guo, L. J. Room-temperature photodeposition of conformal transition metal based cocatalysts on BiVO4 for enhanced photoelectrochemical water splitting. Nano Res. 2020, 13, 231–237.

4

Kang, Y. Y.; Chen, R.; Zhen, C.; Wang, L. Z.; Liu, G.; Cheng, H. M. An integrated thermoelectric-assisted photoelectrochemical system to boost water splitting. Sci. Bull. 2020, 65, 1163–1169.

5

Wang, S. C.; Wang, L. Z.; Huang, W. Bismuth-based photocatalysts for solar energy conversion. J. Mater. Chem. A 2020, 8, 24307–24352.

6

Abdi, F. F.; Savenije, T. J.; May, M. M.; Dam, B. Van De Krol, R. The origin of slow carrier transport in BiVO4 thin film photoanodes: A time-resolved microwave conductivity study. J. Phys. Chem. Lett. 2013, 4, 2752–2757.

7

McDonald, K. J.; Choi, K. S. A new electrochemical synthesis route for a BiOI electrode and its conversion to a highly efficient porous BiVO4 photoanode for solar water oxidation. Energy Environ. Sci. 2012, 5, 8553–8557.

8

Kim, T. W.; Choi, K. S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 2014, 343, 990–994.

9

Kuang, Y. B.; Jia, Q. X.; Nishiyama, H.; Yamada, T.; Kudo, A.; Domen, K. A front-illuminated nanostructured transparent BiVO4 photoanode for >2% efficient water splitting. Adv. Energy Mater. 2016, 6, 1501645.

10

Wang, S. C.; Chen, P.; Yun, J. H.; Hu, Y. X.; Wang, L. Z. An electrochemically treated BiVO4 photoanode for efficient photoelectrochemical water splitting. Angew. Chem., Int. Ed. 2017, 56, 8500–8504.

11

Kim, C. W.; Son, Y. S.; Kang, M. J.; Kim, D. Y.; Kang, Y. S. (040)-crystal facet engineering of BiVO4 plate photoanodes for solar fuel production. Adv. Energy Mater. 2016, 6, 1501754.

12

Han, H. S.; Shin, S.; Kim, D. H.; Park, I. J.; Kim, J. S.; Huang, P. S.; Lee, J. K.; Cho, I. S.; Zheng, X. L. Boosting the solar water oxidation performance of a BiVO4 photoanode by crystallographic orientation control. Energy Environ. Sci. 2018, 11, 1299–1306.

13

Wang, S. C.; Liu, G.; Wang, L. Z. Crystal facet engineering of photoelectrodes for photoelectrochemical water splitting. Chem. Rev. 2019, 119, 5192–5247.

14

Wang, S. C.; Wang, X.; Liu, B. Y.; Guo, Z. C.; Ostrikov, K. K.; Wang, L. Z.; Huang, W. Vacancy defect engineering of BiVO4 photoanodes for photoelectrochemical water splitting. Nanoscale 2021, 13, 17989–18009.

15

Gao, R. T.; Wang, L. Stable Cocatalyst-Free BiVO4 photoanodes with passivated surface states for photocorrosion inhibition. Angew. Chem., Int. Ed. 2020, 59, 23094–23099.

16

Feng, S. J.; Wang, T.; Liu, B.; Hu, C. L.; Li, L. L.; Zhao, Z. J.; Gong, J. L. Enriched surface oxygen vacancies of photoanodes by photoetching with enhanced charge separation. Angew. Chem., Int. Ed. 2020, 59, 2044–2048.

17

Abdi, F. F.; Han, L. H.; Smets, A. H. M.; Zeman, M.; Dam, B. Van De Krol, R. Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nat. Commun. 2013, 4, 2195.

18

Shi, Y. M.; Yu, Y. F.; Yu, Y.; Huang, Y.; Zhao, B. H.; Zhang, B. Boosting photoelectrochemical water oxidation activity and stability of Mo-doped BiVO4 through the uniform assembly coating of NiFe-phenolic networks. ACS Energy Lett. 2018, 3, 1648–1654.

19

Kuang, Y. B.; Jia, Q. X.; Ma, G. J.; Hisatomi, T.; Minegishi, T.; Nishiyama, H.; Nakabayashi, M.; Shibata, N.; Yamada, T.; Kudo, A. et al. Ultrastable low-bias water splitting photoanodes via photocorrosion inhibition and in situ catalyst regeneration. Nat. Energy 2016, 2, 16191.

20

Jin, B. J.; Cho, Y.; Park, C.; Jeong, J.; Kim, S.; Jin, J.; Kim, W.; Wang, L. Y.; Lu, S. Y.; Zhang, S. L. et al. A two-photon tandem black phosphorus quantum dot-sensitized BiVO4 photoanode for solar water splitting. Energy Environ. Sci. 2022, 15, 672–679.

21

Ye, S.; Shi, W. W.; Liu, Y.; Li, D. F.; Yin, H.; Chi, H. B.; Luo, Y. L.; Ta, N.; Fan, F. T.; Wang, X. L. et al. Unassisted photoelectrochemical cell with multimediator modulation for solar water splitting exceeding 4% solar-to-hydrogen efficiency. J. Am. Chem. Soc. 2021, 143, 12499–12508.

22

Zhang, K.; Jin, B. J.; Park, C.; Cho, Y.; Song, X. F.; Shi, X. J.; Zhang, S. L.; Kim, W.; Zeng, H. B.; Park, J. H. Black phosphorene as a hole extraction layer boosting solar water splitting of oxygen evolution catalysts. Nat. Commun. 2019, 10, 2001.

23

Ye, K. H.; Li, H. B.; Huang, D.; Xiao, S.; Qiu, W. T.; Li, M. Y.; Hu, Y. W.; Mai, W.; Ji, H. B.; Yang, S. H. Enhancing photoelectrochemical water splitting by combining work function tuning and heterojunction engineering. Nat. Commun. 2019, 10, 3687.

24

Zhou, Y. G.; Zhang, L. Y.; Lin, L. H.; Wygant, B. R.; Liu, Y.; Zhu, Y.; Zheng, Y. B.; Mullins, C. B.; Zhao, Y.; Zhang, X. H. et al. Highly efficient photoelectrochemical water splitting from hierarchical WO3/BiVO4 nanoporous sphere arrays. Nano Lett. 2017, 17, 8012–8017.

25

Hong, S. J.; Lee, S.; Jang, J. S.; Lee, J. S. Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation. Energy Environ. Sci. 2011, 4, 1781–1787.

26

Pihosh, Y.; Turkevych, I.; Mawatari, K.; Uemura, J.; Kazoe, Y.; Kosar, S.; Makita, K.; Sugaya, T.; Matsui, T.; Fujita, D. et al. Photocatalytic generation of hydrogen by core-shell WO3/BiVO4 nanorods with ultimate water splitting efficiency. Sci. Rep. 2015, 5, 11141.

27

Guo, H.; Guo, P. F.; Yang, X. K.; Zhang, J.; Yu, H. W.; Zhao, W. H.; Ye, Q.; Wang, H. Y.; Wang, H. Q. Embedding of WO3 nanocrystals with rich oxygen-vacancies in solution processed perovskite film for improved photovoltaic performance. J. Power Sources 2020, 461, 228175.

28

Zhang, Y. F.; Zhu, Y. K.; Lv, C. X.; Lai, S. J.; Xu, W. J.; Sun, J.; Sun, Y. Y.; Yang, D. J. Enhanced visible-light photoelectrochemical performance via chemical vapor deposition of Fe2O3 on a WO3 film to form a heterojunction. Rare Met. 2020, 39, 841–849.

29

Rao, P. M.; Cai, L. L.; Liu, C.; Cho, I. S.; Lee, C. H.; Weisse, J. M.; Yang, P. D.; Zheng, X. L. Simultaneously efficient light absorption and charge separation in WO3/BiVO4 core/shell nanowire photoanode for photoelectrochemical water oxidation. Nano Lett. 2014, 14, 1099–1105.

30

Hanson, E. D.; Lajaunie, L.; Hao, S. Q.; Myers, B. D.; Shi, F. Y.; Murthy, A. A.; Wolverton, C.; Arenal, R.; Dravid, V. P. Systematic study of oxygen vacancy tunable transport properties of few-layer MoO3−x enabled by vapor-based synthesis. Adv. Funct. Mater. 2017, 27, 1605380.

31

Balendhran, S.; Deng, J. K.; Ou, J. Z.; Walia, S.; Scott, J.; Tang, J. S.; Wang, K. L.; Field, M. R.; Russo, S.; Zhuiykov, S. et al. Enhanced charge carrier mobility in two-dimensional high dielectric molybdenum oxide. Adv. Mater. 2013, 25, 109–114.

32

Chuang, S.; Battaglia, C.; Azcatl, A.; McDonnell, S.; Kang, J. S.; Yin, X. T.; Tosun, M.; Kapadia, R.; Fang, H.; Wallace, R. M. et al. MoS2 P-type transistors and diodes enabled by high work function MoOx contacts. Nano Lett. 2014, 14, 1337–1342.

33

He, H. C.; Zhou, Y.; Ke, G. L.; Zhong, X. H.; Yang, M. J.; Bian, L.; Lv, K. L.; Dong, F. Q. Improved surface charge transfer in MoO3/BiVO4 heterojunction film for photoelectrochemical water oxidation. Electrochim. Acta 2017, 257, 181–191.

34

Chen, Y. Q.; Yang, M. J.; Du, J. Y.; Ke, G. L.; Zhong, X. H.; Zhou, Y.; Dong, F. Q.; Bian, L.; He, H. C. MoO3/BiVO4 heterojunction film with oxygen vacancies for efficient and stable photoelectrochemical water oxidation. J. Mater. Sci. 2019, 54, 671–682.

35

Xiao, X.; Zhang, W. D. Facile synthesis of nanostructured BiOI microspheres with high visible light-induced photocatalytic activity. J. Mater. Chem. 2010, 20, 5866–5870.

36

Xu, C.; Zou, D. B.; Wang, L. H.; Luo, H.; Ying, T. K. γ-Bi2MoO6 nanoplates: Surfactant-assisted hydrothermal synthesis and optical properties. Ceram. Int. 2009, 35, 2099–2102.

37

Chandar, N. R.; Agilan, S.; Thangarasu, R.; Muthukumarasamy, N.; Ganesh, R. Influence of the annealing temperature on the formation of Mo17O47 and MoO3 nanoparticles and their Photocatalytic performances for the degradation of MB dye. J. Mater. Sci. :Mater. Electron. 2020, 31, 7378–7388.

38

Wang, S. C.; He, T. W.; Yun, J. H.; Hu, Y. X.; Xiao, M.; Du, A. J.; Wang, L. Z. New iron-cobalt oxide catalysts promoting BiVO4 films for photoelectrochemical water splitting. Adv. Funct. Mater. 2018, 28, 1802685.

39

Wang, S. C.; He, T. W.; Chen, P.; Du, A. J.; Ostrikov, K. K.; Huang, W.; Wang, L. Z. In situ formation of oxygen vacancies achieving near-complete charge separation in planar BiVO4 photoanodes. Adv. Mater. 2020, 32, 2001385.

40

Kim, M.; Lee, B.; Ju, H.; Kim, J. Y.; Kim, J.; Lee, S. W. Oxygen-vacancy-introduced BaSnO3−δ photoanodes with tunable band structures for efficient solar-driven water splitting. Adv. Mater. 2019, 31, 1903316.

41

Ning, F. Y.; Shao, M. F.; Xu, S. M.; Fu, Y.; Zhang, R. K.; Wei, M.; Evans, D. G.; Duan, X. TiO2/graphene/NiFe-layered double hydroxide nanorod array photoanodes for efficient photoelectrochemical water splitting. Energy Environ. Sci. 2016, 9, 2633–2643.

42

Silversmit, G.; Depla, D.; Poelman, H.; Marin, G. B.; De Gryse, R. Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+). J. Electron Spectrosc. Relat. Phenom. 2004, 135, 167–175.

43

Jin, S.; Ma, X. X.; Pan, J.; Zhu, C. Y.; Saji, S. E.; Hu, J. G.; Xu, X. Y.; Sun, L. T.; Yin, Z. Y. Oxygen vacancies activating surface reactivity to favor charge separation and transfer in nanoporous BiVO4 photoanodes. Appl. Catal. B Environ. 2021, 281, 119477.

44

Zhong, W.; Deng, S. B.; Wang, K.; Li, G. J.; Li, G. Y.; Chen, R. S.; Kwok, H. S. Feasible Route for a Large Area Few-Layer MoS2 with Magnetron Sputtering. Nanomaterials (Basel) 2018, 8, 590.

45

Wang, S. C.; Chen, P.; Bai, Y.; Yun, J. H.; Liu, G.; Wang, L. Z. New BiVO4 dual photoanodes with enriched oxygen vacancies for efficient solar-driven water splitting. Adv. Mater. 2018, 30, 1800486.

46

Wang, S. C.; Chen, H. J.; Gao, G. P.; Butburee, T.; Lyu, M.; Thaweesak, S.; Yun, J. H.; Du, A. J.; Liu, G.; Wang, L. Z. Synergistic crystal facet engineering and structural control of WO3 films exhibiting unprecedented photoelectrochemical performance. Nano Energy 2016, 24, 94–102.

47

Ruan, Q. S.; Miao, T. N.; Wang, H.; Tang, J. W. Insight on shallow trap states-introduced photocathodic performance in n-type polymer photocatalysts. J. Am. Chem. Soc. 2020, 142, 2795–2802.

48

Huang, H. W.; Cao, R. R.; Yu, S. X.; Xu, K.; Hao, W. C.; Wang, Y. G.; Dong, F.; Zhang, T. R.; Zhang, Y. H. Single-unit-cell layer established Bi2WO6 3D hierarchical architectures: Efficient adsorption, photocatalysis and dye-sensitized photoelectrochemical performance. Appl. Catal. B Environ. 2017, 219, 526–537.

File
12274_2022_4344_MOESM1_ESM.pdf (924.9 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 06 February 2022
Revised: 16 March 2022
Accepted: 18 March 2022
Published: 11 May 2022
Issue date: August 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

The authors would like to acknowledge the financial support from the National Natural Science Foundation of China (No. 52002328), the Fundamental Research Funds for the Central Universities, the Joint Research Funds of Department of Science & Technology of Shaanxi Province, and Northwestern Polytechnical University (No. 2020GXLH-Z-018).

Return