Journal Home > Volume 15 , Issue 8

With the continuous study of metal halide perovskite, geometry-confined technologies have been widely applied to reduce the material dimensionality and to produce pre-designed structures, which can tune optical reflectance, scattering, and absorption, thereby optimizing the performance of perovskite-based optoelectronic devices and improving their commercial competitiveness. The morphologies of perovskite active layer play a pivotal role in optoelectronic properties and the resulting device performances. In this review, we systematically summarized recent progress in the preparation and manufacture of various perovskite geometry-confined morphologies, as well as their promising advances in different optoelectronic applications, including photodetectors, solar cells (SCs), lasers, and light-emitting diodes (LEDs). In addition, the remaining challenges and further improvements of preparation unique geometry-confined perovskite morphologies for next-generation high quality optoelectronic devices are discussed.


menu
Abstract
Full text
Outline
About this article

A review of geometry-confined perovskite morphologies: From synthesis to efficient optoelectronic applications

Show Author's information Jinshuai Zhang1Perry Ping Shum2Lei Su1( )
School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
College of Engineering, Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China

Abstract

With the continuous study of metal halide perovskite, geometry-confined technologies have been widely applied to reduce the material dimensionality and to produce pre-designed structures, which can tune optical reflectance, scattering, and absorption, thereby optimizing the performance of perovskite-based optoelectronic devices and improving their commercial competitiveness. The morphologies of perovskite active layer play a pivotal role in optoelectronic properties and the resulting device performances. In this review, we systematically summarized recent progress in the preparation and manufacture of various perovskite geometry-confined morphologies, as well as their promising advances in different optoelectronic applications, including photodetectors, solar cells (SCs), lasers, and light-emitting diodes (LEDs). In addition, the remaining challenges and further improvements of preparation unique geometry-confined perovskite morphologies for next-generation high quality optoelectronic devices are discussed.

Keywords: optoelectronics, metal halide perovskite, controllable morphology, geometry confinement

References(255)

1

Mitzi, D. B.; Feild, C. A.; Harrison, W. T. A.; Guloy, A. M. Conducting tin halides with a layered organic-based perovskite structure. Nature 1994, 369, 467–469.

2

Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.

3

Dong, Q. F.; Fang, Y. J.; Shao, Y. C.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J. S. Solar cells. Electron–hole diffusion lengths > 175 μm in solution-grown CH 3NH3PbI3 single crystals. Science 2015, 347, 969–970.

4

Crespo-Quesada, M.; Pazos-Outón, L. M.; Warnan, J.; Kuehnel, M. F.; Friend, R. H.; Reisner, E. Metal-encapsulated organolead halide perovskite photocathode for solar-driven hydrogen evolution in water. Nat. Commun. 2016, 7, 12555.

5

Park, S.; Chang, W. J.; Lee, C. W.; Park, S.; Ahn, H. Y.; Nam, K. T. Photocatalytic hydrogen generation from hydriodic acid using methylammonium lead iodide in dynamic equilibrium with aqueous solution. Nat. Energy 2016, 2, 16185.

6

Xu, Y. F.; Yang, M. Z.; Chen, B. X.; Wang, X. D.; Chen, H. Y.; Kuang, D. B.; Su, C. Y. A CsPbBr3 perovskite quantum dot/graphene oxide composite for photocatalytic CO2 reduction. J. Am. Chem. Soc. 2017, 139, 5660–5663.

7

Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 2015, 348, 1234–1237.

8

Saidaminov, M. I.; Adinolfi, V.; Comin, R.; Abdelhady, A. L.; Peng, W.; Dursun, I.; Yuan, M. J.; Hoogland, S.; Sargent, E. H.; Bakr, O. M. Planar-integrated single-crystalline perovskite photodetectors. Nat. Commun. 2015, 6, 8724.

9

Xiao, Z. G.; Bi, C.; Shao, Y. C.; Dong, Q. F.; Wang, Q.; Yuan, Y. B.; Wang, C. G.; Gao, Y. L.; Huang, J. S. Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy Environ. Sci. 2014, 7, 2619–2623.

10

Zhang, C. X.; Kuang, D. B.; Wu, W. Q. A review of diverse halide perovskite morphologies for efficient optoelectronic applications. Small Methods 2020, 4, 1900662.

11

Zhong, J. X.; Wu, W. Q.; Liao, J. F.; Feng, W. H.; Jiang, Y.; Wang, L. Z.; Kuang, D. B. The rise of textured perovskite morphology: Revolutionizing the pathway toward high-performance optoelectronic devices. Adv. Energy Mater. 2020, 10, 1902256.

12

Dou, L. T.; Wong, A. B.; Yu, Y.; Lai, M. L.; Kornienko, N.; Eaton, S. W.; Fu, A. H.; Bischak, C. G.; Ma, J.; Ding, J. et al. Atomically thin two-dimensional organic–inorganic hybrid perovskites. Science 2015, 349, 1518–1521.

13

Liu, T. H.; Hu, Q.; Wu, J.; Chen, K.; Zhao, L. C.; Liu, F.; Wang, C.; Lu, H.; Jia, S.; Russell, T. et al. Mesoporous PbI2 scaffold for high-performance planar heterojunction perovskite solar cells. Adv. Energy Mater. 2016, 6, 1501890.

14

Xue, J.; Gu, Y.; Shan, Q. S.; Zou, Y. S.; Song, J. Z.; Xu, L. M.; Dong, Y. H.; Li, J. H.; Zeng, H. B. Constructing mie-scattering porous interface-fused perovskite films to synergistically boost light harvesting and carrier transport. Angew., Chem. Int. Ed. 2017, 56, 5232–5236.

15

Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 2014, 13, 897–903.

16

Jiang, Q.; Zhao, Y.; Zhang, X. W.; Yang, X. L.; Chen, Y.; Chu, Z. M.; Ye, Q. F.; Li, X. X.; Yin, Z. G.; You, J. B. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 2019, 13, 460–466.

17

Huang, L.; Gao, Q. G.; Sun, L. D.; Dong, H.; Shi, S.; Cai, T.; Liao, Q.; Yan, C. H. Composition-graded cesium lead halide perovskite nanowires with tunable dual-color lasing performance. Adv. Mater. 2018, 30, 1800596.

18

Liao, J. F.; Wu, W. Q.; Jiang, Y.; Kuang, D. B.; Wang, L. Z. Maze-like halide perovskite films for efficient electron transport layer-free perovskite solar cells. Solar RRL 2019, 3, 1800268.

19

Lu, Y. A.; Chang, T. H.; Wu, S. H.; Liu, C. C.; Lai, K. W.; Chang, Y. C.; Chang, Y. C.; Lu, H. C.; Chu, C. W.; Ho, K. C. Coral-like perovskite nanostructures for enhanced light-harvesting and accelerated charge extraction in perovskite solar cells. Nano Energy 2019, 58, 138–146.

20

Wang, Q.; Jin, Z. W.; Chen, D.; Bai, D. L.; Bian, H.; Sun, J.; Zhu, G.; Wang, G.; Liu, S. Z. µ-graphene crosslinked CsPbI3 quantum dots for high efficiency solar cells with much improved stability. Adv. Energy Mater. 2018, 8, 1800007.

21

Yang, Z.; Wang, M. Q.; Qiu, H. W.; Yao, X.; Lao, X. Z.; Xu, S. J.; Lin, Z. H.; Sun, L. Y.; Shao, J. Y. Engineering the exciton dissociation in quantum-confined 2D CsPbBr3 nanosheet films. Adv. Funct. Mater. 2018, 28, 1705908.

22

Zhu, P. C.; Gu, S.; Shen, X. P.; Xu, N.; Tan, Y. L.; Zhuang, S. D.; Deng, Y.; Lu, Z. D.; Wang, Z. L.; Zhu, J. Direct conversion of perovskite thin films into nanowires with kinetic control for flexible optoelectronic devices. Nano Lett. 2016, 16, 871–876.

23

Zhang, J. S.; Guo, Q.; Li, X.; Li, C.; Wu, K.; Abrahams, I.; Yan, H. X.; Knight, M. M.; Humphreys, C. J.; Su, L. Solution-processed epitaxial growth of arbitrary surface nanopatterns on hybrid perovskite monocrystalline thin films. ACS Nano 2020, 14, 11029–11039.

24

Fu, K.; Lu, Y.; Dirican, M.; Chen, C.; Yanilmaz, M.; Shi, Q.; Bradford, P. D.; Zhang, X. W. Chamber-confined silicon–carbon nanofiber composites for prolonged cycling life of Li-ion batteries. Nanoscale 2014, 6, 7489–7495.

25

Kim, T. Y.; Park, N. M.; Kim, K. H.; Sung, G. Y.; Ok, Y. W.; Seong, T. Y.; Choi, C. J. Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films. Appl. Phys. Lett. 2004, 85, 5355–5357.

26

Han, W. Q.; Fan, S. S.; Li, Q. Q.; Gu, B. L.; Zhang, X. B.; Yu, D. P. Synthesis of silicon nitride nanorods using carbon nanotube as a template. Appl. Phys. Lett. 1997, 71, 2271–2273.

27

Wang, X.; Ma, Y. C.; Sheng, X.; Wang, Y. C.; Xu, H. X. Ultrathin polypyrrole nanosheets via space-confined synthesis for efficient photothermal therapy in the second near-infrared window. Nano Lett. 2018, 18, 2217–2225.

28

Xie, C. Y.; Jiang, S. L.; Zou, X. L.; Sun, Y. W.; Zhao, L. Y.; Hong, M.; Chen, S. L.; Huan, Y. H.; Shi, J. P.; Zhou, X. B. et al. Space-confined growth of monolayer ReSe2 under a graphene layer on Au foils. Nano Res. 2019, 12, 149–157.

29

Zheng, X. L.; Xu, J. B.; Yan, K. Y.; Wang, H.; Wang, Z. L.; Yang, S. H. Space-confined growth of MoS2 nanosheets within graphite: The layered hybrid of MoS2 and graphene as an active catalyst for hydrogen evolution reaction. Chem. Mater. 2014, 26, 2344–2353.

30

Zhou, S. S.; Gan, L.; Wang, D. L.; Li, H. Q.; Zhai, T. Y. Space-confined vapor deposition synthesis of two dimensional materials. Nano Res. 2018, 11, 2909–2931.

31

Liu, W. C.; Zhou, H. H.; Chen, G. Z. Patterned lead halide perovskite crystals fabricated by microstructured templates. Cryst. Growth Des. 2020, 20, 2803–2816.

32

Balilonda, A.; Li, Q.; Tebyetekerwa, M.; Tusiime, R.; Zhang, H.; Jose, R.; Zabihi, F.; Yang, S. Y.; Ramakrishna, S.; Zhu, M. F. Perovskite solar fibers: Current status, issues and challenges. Adv. Fiber Mater. 2019, 1, 101–125.

33

Chen, J. N.; Zhou, S. S.; Jin, S. Y.; Li, H. Q.; Zhai, T. Y. Crystal organometal halide perovskites with promising optoelectronic applications. J. Mater. Chem. C 2016, 4, 11–27.

34

Yang, X. Y.; Wu, J.; Liu, T. H.; Zhu, R. Patterned perovskites for optoelectronic applications. Small Methods 2018, 2, 1800110.

35

Liu, Y. C.; Zhang, Y. X.; Yang, Z.; Yang, D.; Ren, X. D.; Pang, L. Q.; Liu, S. Z. Thinness-and shape-controlled growth for ultrathin single-crystalline perovskite wafers for mass production of superior photoelectronic devices. Adv. Mater. 2016, 28, 9204–9209.

36

Chen, Z. L.; Dong, Q. F.; Liu, Y.; Bao, C. X.; Fang, Y. J.; Lin, Y.; Tang, S.; Wang, Q.; Xiao, X.; Bai, Y. et al. Thin single crystal perovskite solar cells to harvest below-bandgap light absorption. Nat. Commun. 2017, 8, 1890.

37

Gui, P. B.; Zhou, H.; Yao, F.; Song, Z. H.; Li, B. R.; Fang, G. J. Space-confined growth of individual wide bandgap single crystal CsPbCl3 microplatelet for near-ultraviolet photodetection. Small 2019, 15, 1902618.

38

Chen, Y. X.; Ge, Q. Q.; Shi, Y.; Liu, J.; Xue, D. J.; Ma, J. Y.; Ding, J.; Yan, H. J.; Hu, J. S.; Wan, L. J. General space-confined on-substrate fabrication of thickness-adjustable hybrid perovskite single-crystalline thin Films. J. Am. Chem. Soc. 2016, 138, 16196–16199.

39

Liu, Y. C.; Yang, Z.; Liu, S. Z. Recent progress in single-crystalline perovskite research including crystal preparation, property evaluation, and applications. Adv. Sci. 2018, 5, 1700471.

40

Wang, X. D.; Li, W. G.; Liao, J. F.; Kuang, D. B. Recent advances in halide perovskite single-crystal thin films: Fabrication methods and optoelectronic applications. Solar RRL 2019, 3, 1800294.

41

Saidaminov, M. I.; Abdelhady, A. L.; Murali, B.; Alarousu, E.; Burlakov, V. M.; Peng, W.; Dursun, I.; Wang, L. F.; He, Y.; Maculan, G. et al. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nat. Commun. 2015, 6, 7586.

42

Liu, Y. C.; Yang, Z.; Cui, D.; Ren, X. D.; Sun, J. K.; Liu, X. J.; Zhang, J. R.; Wei, Q. B.; Fan, H. B.; Yu, F. Y. et al. Two-inch-sized perovskite CH3NH3PbX3 (X = Cl, Br, I) crystals: Growth and characterization. Adv. Mater. 2015, 27, 5176–5183.

43

Wang, Q.; Bai, D. L.; Jin, Z. W.; Liu, S. Z. Single-crystalline perovskite wafers with a Cr blocking layer for broad and stable light detection in a harsh environment. RSC Adv. 2018, 8, 14848–14853.

44

Rao, H. S.; Li, W. G.; Chen, B. X.; Kuang, D. B.; Su, C. Y. In situ growth of 120 cm2 CH3NH3PbBr3 perovskite crystal film on FTO glass for narrowband-photodetectors. Adv. Mater. 2017, 29, 1602639.

45

Rao, H. S.; Chen, B. X.; Wang, X. D.; Kuang, D. B.; Su, C. Y. A micron-scale laminar MAPbBr3 single crystal for an efficient and stable perovskite solar cell. Chem. Commun. 2017, 53, 5163–5166.

46

Bi, C.; Wang, Q.; Shao, Y. C.; Yuan, Y. B.; Xiao, Z. G.; Huang, J. S. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat. Commun. 2015, 6, 7747.

47

Yang, Z. Q.; Deng, Y. H.; Zhang, X. W.; Wang, S.; Chen, H. Z.; Yang, S.; Khurgin, J.; Fang, N. X.; Zhang, X.; Ma, R. M. High-performance single-crystalline perovskite thin-film photodetector. Adv. Mater. 2018, 30, 1704333.

48

Liu, Y. C.; Sun, J. K.; Yang, Z.; Yang, D.; Ren, X. D.; Xu, H.; Yang, Z. P.; Liu, S. Z. 20-mm-large single-crystalline formamidinium-perovskite wafer for mass production of integrated photodetectors. Adv. Opt. Mater. 2016, 4, 1829–1837.

49

Yue, H. L.; Sung, H. H.; Chen, F. C. Seeded space-limited crystallization of CH3NH3PbI3 single-crystal plates for perovskite solar cells. Adv. Electron. Mater. 2018, 4, 1700655.

50

Dang, Y. Y.; Liu, Y.; Sun, Y. X.; Yuan, D. S.; Liu, X. L.; Lu, W. Q.; Liu, G. F.; Xia, H. B.; Tao, X. T. Bulk crystal growth of hybrid perovskite material CH3NH3PbI3. CrystEngComm 2015, 17, 665–670.

51

Su, J.; Chen, D. P.; Lin, C. T. Growth of large CH3NH3PbX3 (X = I, Br) single crystals in solution. J. Cryst. Growth 2015, 422, 75–79.

52

Dang, Y. Y.; Zhou, Y.; Liu, X. L.; Ju, D. X.; Xia, S. Q.; Xia, H. B.; Tao, X. T. Formation of hybrid perovskite tin iodide single crystals by top-seeded solution growth. Angew. Chem., Int. Ed. 2016, 55, 3447–3450.

53

Niu, G. D.; Li, W. Z.; Li, J. W.; Wang, L. D. Progress of interface engineering in perovskite solar cells. Sci. China Mater. 2016, 59, 728–742.

54

Li, S. G.; Zhang, C.; Song, J. J.; Xie, X. H.; Meng, J. Q.; Xu, S. J. Metal halide perovskite single crystals: From growth process to application. Crystals 2018, 8, 220.

55

Lian, Z. P.; Yan, Q. F.; Gao, T. T.; Ding, J.; Lv, Q. R.; Ning, C. G.; Li, Q.; Sun, J. L. Perovskite CH3NH3PbI3(Cl) single crystals: Rapid solution growth, unparalleled crystalline quality, and low trap density toward 108 cm−3. J. Am. Chem. Soc. 2016, 138, 9409–9412.

56

Stoumpos, C. C.; Cao, D. H.; Clark, D. J.; Young, J.; Rondinelli, J. M.; Jang, J. I.; Hupp, J. T.; Kanatzidis, M. G. Ruddlesden–Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem. Mater. 2016, 28, 2852–2867.

57

Luo, S. Q.; Wang, J. F.; Yang, B.; Yuan, Y. B. Recent advances in controlling the crystallization of two-dimensional perovskites for optoelectronic device. Front. Phys. 2019, 14, 53401.

58

Wang, K.; Wu, C. C.; Yang, D.; Jiang, Y. Y.; Priya, S. Quasi-two-dimensional halide perovskite single crystal photodetector. ACS Nano 2018, 12, 4919–4929.

59

Xiao, X.; Dai, J.; Fang, Y. J.; Zhao, J. J.; Zheng, X. P.; Tang, S.; Rudd, P. N.; Zeng, X. C.; Huang, J. S. Suppressed ion migration along the in-plane direction in layered perovskites. ACS Energy Lett. 2018, 3, 684–688.

60

Liao, W. Q.; Zhang, Y.; Hu, C. L.; Mao, J. G.; Ye, H. Y.; Li, P. F.; Huang, S. D.; Xiong, R. G. A lead-halide perovskite molecular ferroelectric semiconductor. Nat. Commun. 2015, 6, 7338.

61

Daub, M.; Hillebrecht, H. Synthesis, single-crystal structure and characterization of (CH3NH3)2Pb(SCN)2I2. Angew. Chem., Int. Ed. 2015, 54, 11016–11017.

62

Nguyen, V. C.; Katsuki, H.; Sasaki, F.; Yanagi, H. Optically pumped lasing in single crystals of organometal halide perovskites prepared by cast-capping method. Appl. Phys. Lett. 2016, 108, 261105.

63

Nguyen, V. C.; Katsuki, H.; Sasaki, F.; Yanagi, H. Single-crystal perovskites prepared by simple solution process: Cast-capping method. J. Cryst. Growth 2017, 468, 796–799.

64

Sasaki, F.; Zhou, Y.; Sonoda, Y.; Azumi, R.; Mochizuki, H.; Nguyen, V. C.; Yanagi, H. Optically pumped lasing in solution-processed perovskite semiconducting materials: Self-assembled Fabry–Pérot microcavity. Jpn. J. Appl. Phys. 2017, 56, 04CL07.

65

Huang, Y.; Zhang, Y.; Sun, J. L.; Wang, X. G.; Sun, J. L.; Chen, Q.; Pan, C. F.; Zhou, H. P. The exploration of carrier behavior in the inverted mixed perovskite single-crystal solar cells. Adv. Mater. Interfaces 2018, 5, 1800224.

66

Liu, Y. C.; Zhang, Y. X.; Yang, Z.; Ye, H. C.; Feng, J. S.; Xu, Z.; Zhang, X.; Munir, R.; Liu, J.; Zuo, P. et al. Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors. Nat. Commun. 2018, 9, 5302.

67

Shi, D.; Adinolfi, V.; Comin, R.; Yuan, M. J.; Alarousu, E.; Buin, A.; Chen, Y.; Hoogland, S.; Rothenberger, A.; Katsiev, K. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 2015, 347, 519–522.

68

Lédée, F.; Trippé-Allard, G.; Diab, H.; Audebert, P.; Garrot, D.; Lauret, J. S.; Deleporte, E. Fast growth of monocrystalline thin films of 2D layered hybrid perovskite. CrystEngComm 2017, 19, 2598–2602.

69

Yao, F.; Peng, J. L.; Li, R. M.; Li, W. J.; Gui, P. B.; Li, B. R.; Liu, C.; Tao, C.; Lin, Q. Q.; Fang, G. J. Room-temperature liquid diffused separation induced crystallization for high-quality perovskite single crystals. Nat. Commun. 2020, 11, 1194.

70

Deng, W.; Zhang, X. J.; Huang, L. M.; Xu, X. Z.; Wang, L.; Wang, J. C.; Shang, Q. X.; Lee, S. T.; Jie, J. S. Aligned single-crystalline perovskite microwire arrays for high-performance flexible image sensors with long-term stability. Adv. Mater. 2016, 28, 2201–2208.

71

Im, J. H.; Luo, J. S.; Franckevičius, M.; Pellet, N.; Gao, P.; Moehl, T.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Grätzel, M.; Park, N. G. Nanowire perovskite solar cell. Nano Lett. 2015, 15, 2120–2126.

72

Kollek, T.; Gruber, D.; Gehring, J.; Zimmermann, E.; Schmidt-Mende, L.; Polarz, S. Porous and shape-anisotropic single crystals of the semiconductor perovskite CH3NH3PbI3 from a single-source precursor. Angew. Chem., Int. Ed. 2015, 54, 1341–1346.

73

Saliba, M.; Wood, S. M.; Patel, J. B.; Nayak, P. K.; Huang, J.; Alexander-Webber, J. A.; Wenger, B.; Stranks, S. D.; Hörantner, M. T.; Wang, J. T. W. et al. Structured organic–inorganic perovskite toward a distributed feedback laser. Adv. Mater. 2016, 28, 923–929.

74

Cha, H.; Bae, S.; Lee, M.; Jeon, H. Two-dimensional photonic crystal bandedge laser with hybrid perovskite thin film for optical gain. Appl. Phys. Lett. 2016, 108, 181104.

75

Chen, S. T.; Roh, K.; Lee, J.; Chong, W. K.; Lu, Y.; Mathews, N.; Sum, T. C.; Nurmikko, A. A photonic crystal laser from solution based organo-lead iodide perovskite thin films. ACS Nano 2016, 10, 3959–3967.

76

Wang, K.; Wang, S.; Xiao, S.; Song, Q. Recent advances in perovskite micro- and nanolasers. Adv. Opt. Mater. 2018, 6, 1800278.

77

Jia, Y. F.; Kerner, R. A.; Grede, A. J.; Brigeman, A. N.; Rand, B. P.; Giebink, N. C. Diode-pumped organo-lead halide perovskite lasing in a metal-clad distributed feedback resonator. Nano Lett. 2016, 16, 4624–4629.

78

Lee, L.; Baek, J.; Park, K. S.; Lee, Y. E.; Shrestha, N. K.; Sung, M. M. Wafer-scale single-crystal perovskite patterned thin films based on geometrically-confined lateral crystal growth. Nat. Commun. 2017, 8, 15882.

79

Deng, K.; Liu, Z.; Wang, M.; Li, L. Nanoimprinted grating‐embedded perovskite solar cells with improved light management. Adv. Funct. Mater. 2019, 29, 1900830.

80

Wang, H. L.; Haroldson, R.; Balachandran, B.; Zakhidov, A.; Sohal, S.; Chan, J. Y.; Zakhidov, A.; Hu, W. Nanoimprinted perovskite nanograting photodetector with improved efficiency. ACS Nano 2016, 10, 10921–10928.

81

Schunemann, S.; Chen, K.;Brittman, S.; Garnett, E.; Tuysuz, H. Preparation of organometal halide perovskite photonic crystal films for potential optoelectronic applications. ACS Appl. Mater. Interfaces 2016, 8, 25489–25495.

82

Kagan, C. R.; Breen, T. L.; Kosbar, L. L. Patterning organic–inorganic thin-film transistors using microcontact printed templates. Appl. Phys. Lett. 2001, 79, 3536–3538.

83

Makarov, S. V.; Milichko, V.; Ushakova, E. V.; Omelyanovich, M.; Pasaran, A. C.; Haroldson, R.; Balachandran, B.; Wang, H. L.; Hu, W.; Kivshar, Y. S. et al. Multifold emission enhancement in nanoimprinted hybrid perovskite metasurfaces. ACS Photonics 2017, 4, 728–735.

84

Pourdavoud, N.; Wang, S.; Mayer, A.; Hu, T.; Chen, Y. W.; Marianovich, A.; Kowalsky, W.; Heiderhoff, R.; Scheer, H. C.; Riedl, T. Photonic nanostructures patterned by thermal nanoimprint directly into organo-metal halide perovskites. Adv. Mater. 2017, 29, 1605003.

85

Jeong, B.; Hwang, I.; Cho, S. H.; Kim, E. H.; Cha, S.; Lee, J.; Kang, H. S.; Cho, S. M.; Choi, H.; Park, C. Solvent-assisted gel printing for micropatterning thin organic–inorganic hybrid perovskite films. ACS Nano 2016, 10, 9026–9035.

86

Liu, P.; He, X. X.; Ren, J. H.; Liao, Q.; Yao, J. N.; Fu, H. B. Organic–inorganic hybrid perovskite nanowire laser arrays. ACS Nano 2017, 11, 5766–5773.

87

He, X. X.; Liu, P.; Zhang, H. H.; Liao, Q.; Yao, J. N.; Fu, H. B. Patterning multicolored microdisk laser arrays of cesium lead halide perovskite. Adv. Mater. 2017, 29, 1604510.

88

Hulteen, J. C.; Van Duyne, R. P. Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces. J. Vac. Sci. Technol. A 1995, 13, 1553–1558.

89

Hörantner, M. T.; Zhang, W.; Saliba, M.; Wojciechowski, K.; Snaith, H. J. Templated microstructural growth of perovskite thin films via colloidal monolayer lithography. Energy Environ. Sci. 2015, 8, 2041–2047.

90

Schünemann, S.; Brittman, S.; Chen, K.; Garnett, E. C.; Tüysüz, H. Halide perovskite 3D photonic crystals for distributed feedback lasers. ACS Photonics 2017, 4, 2522–2528.

91

Xu, J. K.; Xu, S. H.; Qi, Z. Q.; Wang, C. L.; Lu, C. G.; Cui, Y. P. Size-tunable CsPbBr3 perovskite ring arrays for lasing. Nanoscale 2018, 10, 10383–10388.

92

Liu, Y.; Zheng, Y.; Zhu, Y.; Ma, F.; Zheng, X.; Yang, K.; Zheng, X.; Xu, Z.; Ju, S.; Zheng, Y.; Guo, T.; Qian, L.; Li, F. Unclonable perovskite fluorescent dots with fingerprint pattern for multilevel anticounterfeiting. ACS Appl. Mater. Interfaces 2020, 12, 39649–39656.

93

Chen, B. X.; Rao, H. S.; Chen, H. Y.; Li, W. G.; Kuang, D. B.; Su, C. Y. Ordered macroporous CH3NH3PbI3 perovskite semitransparent film for high-performance solar cells. J. Mater. Chem. A 2016, 4, 15662–15669.

94

Zhou, X.; Qiu, L.; Fan, R.; Zhang, J.; Hao, S.; Yang, Y. Heterojunction incorporating perovskite and microporous metal–organic framework nanocrystals for efficient and stable solar cells. Nano-Micro Lett. 2020, 12, 80.

95

Liu, R. H.; Zhou, H.; Song, Z. N.; Yang, X. H.; Wu, D. J.; Song, Z. H.; Wang, H.; Yan, Y. F. Low-reflection, (110)-orientation-preferred CsPbBr3 nanonet films for application in high-performance perovskite photodetectors. Nanoscale 2019, 11, 9302–9309.

96

Wang, K.; Liang, J.; Chen, R.; Gao, Z. H.; Zhang, C.; Yan, Y. L.; Yao, J. N.; Zhao, Y. S. Geometry-programmable perovskite microlaser patterns for two-dimensional optical encryption. Nano Lett. 2021, 21, 6792–6799.

97

Xia, B. Z.; Tu, M.; Pradhan, B.; Ceyssens, F.; Tietze, M. L.; Rubio-Giménez, V.; Wauteraerts, N.; Gao, Y. J.; Kraft, M.; Steele, J. A. et al. Flexible metal halide perovskite photodetector arrays via photolithography and dry lift-off patterning. Adv. Eng. Mater. 2022, 24, 2100930.

98

Li, C.; Li, J. X.; Li, C. Y.; Wang, J.; Tong, X. W.; Zhang, Z. X.; Yin, Z. P.; Wu, D.; Luo, L. B. Sensitive photodetector arrays based on patterned CH3NH3PbBr3 single crystal microplate for image sensing application. Adv. Opt. Mater. 2021, 9, 2100371.

99

Wang, H.; Kim, D. H. Perovskite-based photodetectors: materials and devices. Chem. Soc. Rev. 2017, 46, 5204–5236.

100

Duan, Z. H.; Wang, Y. J.; Li, G.; Wang, S.; Yi, N. B.; Liu, S.; Xiao, S. M.; Song, Q. H. Chip-scale fabrication of uniform lead halide perovskites microlaser array and photodetector array. Laser Photonics Rev. 2018, 12, 1700234.

101

Rodriguez, I.; Fenollosa, R.; Ramiro-Manzano, F.; García-Aboal, R.; Atienzar, P.; Meseguer, F. J. Groove-assisted solution growth of lead bromide perovskite aligned nanowires: A simple method towards photoluminescent materials with guiding light properties. Mater. Chem. Front. 2019, 3, 1754–1760.

102

Wu, J.; Ye, F. J.; Yang, W. Q.; Xu, Z. J.; Luo, D. Y.; Su, R.; Zhang, Y. F.; Zhu, R.; Gong, Q. H. Perovskite single-crystal microarrays for efficient photovoltaic devices. Chem. Mater. 2018, 30, 4590–4596.

103

Abe, R.; Suzuki, A.; Watanabe, K.; Kikuchi, A. Fabrication of CH3NH3PbBr3-based perovskite single-crystal arrays by spin-coating method using hydrophobic patterned substrate. Phys. Status Solidi A 2020, 217, 1900511.

104

Duan, M.; Feng, Z. Y.; Wu, Y. W.; Yin, Y. M.; Hu, Z. P.; Peng, W. X.; Li, D. Z.; Chen, S. J.; Lee, C. Y.; Lien, A. Inkjet-printed micrometer-thick patterned perovskite quantum dot films for efficient blue-to-green photoconversion. Adv. Mater. Technol. 2019, 4, 1900779.

105

Wu, C. Y.; Wang, Z. Y.; Liang, L.; Gui, T. J.; Zhong, W.; Du, R. C.; Xie, C.; Wang, L.; Luo, L. B. Graphene-assisted growth of patterned perovskite films for sensitive light detector and optical image sensor application. Small 2019, 15, 1900730.

106

Wu, W. Q.; Wang, X. D.; Han, X.; Yang, Z.; Gao, G. Y.; Zhang, Y. F.; Hu, J. F.; Tan, Y. W.; Pan, A. L.; Pan, C. F. Flexible photodetector arrays based on patterned CH3NH3PbI3−xClx perovskite film for real-time photosensing and imaging. Adv. Mater. 2019, 31, 1805913.

107

Du, H. G.; Wang, K. Y.; Zhao, L. D.; Xue, C.; Zhang, M. Y.; Wen, W. J.; Xing, G. C.; Wu, J. B. Size-controlled patterning of single-crystalline perovskite arrays toward a tunable high-performance microlaser. ACS Appl. Mater. Interfaces 2020, 12, 2662–2670.

108

Horváth, E.; Spina, M.; Szekrényes, Z.; Kamarás, K.; Gaal, R.; Gachet, D.; Forró, L. Nanowires of methylammonium lead iodide (CH3NH3PbI3) prepared by low temperature solution-mediated crystallization. Nano Lett. 2014, 14, 6761–6766.

109

Spina, M.; Lehmann, M.; Náfrádi, B.; Bernard, L.; Bonvin, E.; Gaál, R.; Magrez, A.; Forró, L.; Horváth, E. Microengineered CH3NH3PbI3 nanowire/graphene phototransistor for low-intensity light detection at room temperature. Small 2015, 11, 4824–4828.

110

Spina, M.; Bonvin, E.; Sienkiewicz, A.; Náfrádi, B.; Forró, L.; Horváth, E. Controlled growth of CH3NH3PbI3 nanowires in arrays of open nanofluidic channels. Sci. Rep. 2016, 6, 19834.

111

Yang, D.; Krasowska, M.; Priest, C.; Ralston, J. Dynamics of capillary-driven liquid-liquid displacement in open microchannels. Phys. Chem. Chem. Phys. 2014, 16, 24473–24478.

112

Deng, W.; Huang, L. M.; Xu, X. Z.; Zhang, X. J.; Jin, X. C.; Lee, S. T.; Jie, J. S. Ultrahigh-responsivity photodetectors from perovskite nanowire arrays for sequentially tunable spectral measurement. Nano Lett. 2017, 17, 2482–2489.

113

Yuan, J.; Liu, D.; Zhao, H.; Lin, B.; Zhou, X.; Naveed, H. B.; Zhao, C.; Zhou, K.; Tang, Z.; Chen, F.; Ma, W. Patterned blade coating strategy enables the enhanced device reproducibility and optimized morphology of organic solar cells. Adv. Energy Mater. 2020, 11, 2100098.

114

Gu, L. L.; Tavakoli, M. M.; Zhang, D. Q.; Zhang, Q. P.; Waleed, A.; Xiao, Y. Q.; Tsui, K. H.; Lin, Y. J.; Liao, L.; Wang, J. N. et al. 3D arrays of 1024-pixel image sensors based on lead halide perovskite nanowires. Adv. Mater. 2016, 28, 9713–9721.

115

Ashley, M. J.; O'Brien, M. N.; Hedderick, K. R.; Mason, J. A.; Ross, M. B.; Mirkin, C. A. Templated synthesis of uniform perovskite nanowire arrays. J. Am. Chem. Soc. 2016, 138, 10096–10099.

116

Oener, S. Z.; Khoram, P.; Brittman, S.; Mann, S. A.; Zhang, Q. P.; Fan, Z. Y.; Boettcher, S. W.; Garnett, E. C. Perovskite nanowire extrusion. Nano Lett. 2017, 17, 6557–6563.

117

Waleed, A.; Tavakoli, M. M.; Gu, L. L.; Hussain, S.; Zhang, D. Q.; Poddar, S.; Wang, Z. Y.; Zhang, R. J.; Fan, Z. Y. All inorganic cesium lead iodide perovskite nanowires with stabilized cubic phase at room temperature and nanowire array-based photodetectors. Nano Lett. 2017, 17, 4951–4957.

118

Waleed, A.; Tavakoli, M. M.; Gu, L. L.; Wang, Z. Y.; Zhang, D. Q.; Manikandan, A.; Zhang, Q. P.; Zhang, R. J.; Chueh, Y. L.; Fan, Z. Y. Lead-free perovskite nanowire array photodetectors with drastically improved stability in nanoengineering templates. Nano Lett. 2017, 17, 523–530.

119

Ashley, M. J.; Kluender, E. J.; Mirkin, C. A. Fast charge extraction in perovskite-based core–shell nanowires. ACS Nano 2018, 12, 7206–7212.

120

Gu, L. L.; Zhang, D. Q.; Kam, M.; Zhang, Q. P.; Poddar, S.; Fu, Y.; Mo, X. L.; Fan, Z. Y. Significantly improved black phase stability of FAPbI3 nanowires via spatially confined vapor phase growth in nanoporous templates. Nanoscale 2018, 10, 15164–15172.

121

Khoram, P.; Oener, S. Z.; Zhang, Q. P.; Fan, Z. Y.; Garnett, E. C. Surface recombination velocity of methylammonium lead bromide nanowires in anodic aluminium oxide templates. Mol. Syst. Des. Eng. 2018, 3, 723–728.

122

Zhang, D. Q.; Gu, L. L.; Zhang, Q. P.; Lin, Y. J.; Lien, D. H.; Kam, M.; Poddar, S.; Garnett, E. C.; Javey, A.; Fan, Z. Y. Increasing photoluminescence quantum yield by nanophotonic design of quantum-confined halide perovskite nanowire arrays. Nano Lett. 2019, 19, 2850–2857.

123

Ahn, Y. C.; Park, S. K.; Kim, G. T.; Hwang, Y. J.; Lee, C. G.; Shin, H. S.; Lee, J. K. Development of high efficiency nanofilters made of nanofibers. Curr. Appl. Phys. 2006, 6, 1030–1035.

124

Lannutti, J.; Reneker, D.; Ma, T.; Tomasko, D.; Farson, D. Electrospinning for tissue engineering scaffolds. Mater. Sci. Eng. C 2007, 27, 504–509.

125

Hunley, M. T.; Long, T. E. Electrospinning functional nanoscale fibers: A perspective for the future. Polym. Int. 2008, 57, 385–389.

126

Reneker, D. H.; Yarin, A. L. Electrospinning jets and polymer nanofibers. Polymer 2008, 49, 2387–2425.

127

Bhardwaj, N.; Kundu, S. C. Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv. 2010, 28, 325–347.

128

Zussman, E.; Theron, A.; Yarin, A. L. Formation of nanofiber crossbars in electrospinning. Appl. Phys. Lett. 2003, 82, 973–975.

129

He, J. H.; Wan, Y. Q.; Yu, J. Y. Scaling law in electrospinning: Relationship between electric current and solution flow rate. Polymer 2005, 46, 2799–2801.

130

Murphy, J. P.; Ross, B. M.; Andriolo, J. M.; Skinner, J. L. Hybrid organic–inorganic perovskite composite fibers produced via melt electrospinning. J. Vac. Sci. Technol. B 2016, 34, 06KM01.

131

Wang, Y. W.; Zhu, Y. H.; Huang, J. F.; Cai, J.; Zhu, J. R.; Yang, X. L.; Shen, J. H.; Jiang, H.; Li, C. Z. CsPbBr3 perovskite quantum dots-based monolithic electrospun fiber membrane as an ultrastable and ultrasensitive fluorescent sensor in aqueous medium. J. Phys. Chem. Lett. 2016, 7, 4253–4258.

132

Murphy, J. P.; Andriolo, J. M.; Sutton, N. J.; Brockway, M. C.; Skinner, J. L. Coaxial hybrid perovskite fibers: Synthesis and encapsulation in situ via electrospinning. J. Vac. Sci. Technol. B 2017, 35, 06G402.

133

Wang, Y. W.; Zhu, Y. H.; Huang, J. F.; Cai, J.; Zhu, J. R.; Yang, X. L.; Shen, J. H.; Li, C. Z. Perovskite quantum dots encapsulated in electrospun fiber membranes as multifunctional supersensitive sensors for biomolecules, metal ions and pH. Nanoscale Horiz. 2017, 2, 225–232.

134

Liang, S.; Zhang, M.; Biesold, G. M.; Choi, W.;He, Y.; Li, Z.; Shen, D.; Lin, Z. Recent advances in synthesis, properties, and applications of metal halide perovskite nanocrystals/polymer nanocomposites. Adv. Mater. 2021, 33, 2005888.

135

Lin, C. C.; Jiang, D. H.; Kuo, C. C.; Cho, C. J.; Tsai, Y. H.; Satoh, T.; Su, C. C. Water-resistant efficient stretchable perovskite-embedded fiber membranes for light-emitting diodes. ACS Appl. Mater. Interfaces 2018, 10, 2210–2215.

136

Tsai, P. C.; Chen, J. Y.; Ercan, E.; Chueh, C. C.; Tung, S. H.; Chen, W. C. Uniform luminous perovskite nanofibers with color-tunability and improved stability prepared by one-step core/shell electrospinning. Small 2018, 14, 1704379.

137

Cha, J. H.; Kim, H.; Lee, Y.; Kim, S. J.; Lee, M. W.; Kim, J.; Jung, D. Y. Nanoscale optical imaging of perovskite nanocrystals directly embedded in polymer fiber. Compos. Sci. Technol. 2019, 181, 107666.

138

Kumar, P.; Ganesh, N.; Narayan, K. S. Electrospun fibers containing emissive hybrid perovskite quantum dots. ACS Appl. Mater. Interfaces 2019, 11, 24468–24477.

139

Li, G. L.; Jiang, Z. H.; Wang, W. L.; Chu, Z. Y.; Zhang, Y.; Wang, C. H. Electrospun PAN/MAPbI3 composite fibers for flexible and broadband photodetectors. Nanomaterials 2019, 9, 50.

140

Lu, X.; Hu, Y.; Guo, J. Z.; Wang, C. F.; Chen, S. Fiber-spinning-chemistry method toward in situ generation of highly stable halide perovskite nanocrystals. Adv. Sci. 2019, 6, 1901694.

141

Meng, L. H.; Yang, C. G.; Meng, J. J.; Wang, Y. Z.; Ge, Y.; Shao, Z. Q.; Zhang, G. F.; Rogach, A. L.; Zhong, H. Z. In-situ fabricated anisotropic halide perovskite nanocrystals in polyvinylalcohol nanofibers: Shape tuning and polarized emission. Nano Res. 2019, 12, 1411–1416.

142

Papagiorgis, P. G.; Manoli, A.; Alexiou, A.; Karacosta, P.; Karagiorgis, X.; Papaparaskeva, G.; Bernasconi, C.; Bodnarchuk, M. I.; Kovalenko, M. V.; Krasia-Christoforou, T. et al. Robust hydrophobic and hydrophilic polymer fibers sensitized by inorganic and hybrid lead halide perovskite nanocrystal emitters. Front. Chem. 2019, 7, 87.

143

Murphy, J. P.; Andriolo, J. M.; Ross, B. M.; Wyss, G. F.; Zander, N. E.; Skinner, J. L. Organometallic halide perovskite synthesis in polymer melt for improved stability in high humidity. MRS Adv. 2016, 1, 3207–3213.

144

Du, X. Y.; Li, Q.; Wu, G.; Chen, S. Multifunctional micro/nanoscale fibers based on microfluidic spinning technology. Adv. Mater. 2019, 31, 1903733.

145

Camposeo, A.; Di Benedetto, F.; Stabile, R.; Cingolani, R.; Pisignano, D. Electrospun dye-doped polymer nanofibers emitting in the near infrared. Appl. Phys. Lett. 2007, 90, 143115.

146

Yu, H. Q.; Zhang, R.; Li, B. J. Optical properties of quantum-dot-decorated polymer nanofibers. Nanotechnology 2011, 22, 335202.

147

Meng, C.; Xiao, Y.; Wang, P.; Zhang, L.; Liu, Y. X.; Tong, L. M. Quantum-dot-doped polymer nanofibers for optical sensing. Adv. Mater. 2011, 23, 3770–3774.

148

Zhang, R.; Yu, H. Q.; Li, B. J. Active nanowaveguides in polymer doped with CdSe-ZnS core–shell quantum dots. Nanoscale 2012, 4, 5856–5859.

149

Deng, F.; Ren, Y. J.; Wang, Z. M.; Xia, S. Y.; Gu, Z. Y.; Wang, Y. Microfibers doped with perovskite nanocrystals for ultralow-loss waveguides. ACS Appl. Nano Mater. 2019, 2, 6585–6591.

150

Qiu, L. B.; Deng, J.; Lu, X.; Yang, Z. B.; Peng, H. S. Integrating perovskite solar cells into a flexible fiber. Angew. Chem. , Int. Ed. 2014, 53, 10425–10428.

151

Deng, J.; Qiu, L. B.; Lu, X.; Yang, Z. B.; Guan, G. Z.; Zhang, Z. T.; Peng, H. S. Elastic perovskite solar cells. J. Mater. Chem. A 2015, 3, 21070–21076.

152

Lee, M.; Ko, Y.; Jun, Y. Efficient fiber-shaped perovskite photovoltaics using silver nanowires as top electrode. J. Mater. Chem. A 2015, 3, 19310–19313.

153

Li, R.; Xiang, X.; Tong, X.; Zou, J. Y.; Li, Q. W. Wearable double-twisted fibrous perovskite solar cell. Adv. Mater. 2015, 27, 3831–3835.

154

Peng, M.; Zou, D. C. Flexible fiber/wire-shaped solar cells in progress: Properties, materials, and designs. J. Mater. Chem. A 2015, 3, 20435–20458.

155

Hu, H.; Yan, K.; Peng, M.; Yu, X.; Chen, S.; Chen, B. X.; Dong, B.; Gao, X.; Zou, D. C. Fiber-shaped perovskite solar cells with 5.3% efficiency. J. Mater. Chem. A 2016, 4, 3901–3906.

156

Qiu, L. B.; He, S. S.; Yang, J. H.; Deng, J.; Peng, H. S. Fiber-shaped perovskite solar cells with high power conversion efficiency. Small 2016, 12, 2419–2424.

157

Wang, X. Y.; Kulkarni, S. A.; Li, Z.; Xu, W. J.; Batabyal, S. K.; Zhang, S.; Cao, A. Y.; Wong, L. H. Wire-shaped perovskite solar cell based on TiO2 nanotubes. Nanotechnology 2016, 27, 20LT01.

158

Yan, K.; Chen, B. X.; Hu, H.; Chen, S.; Dong, B.; Gao, X.; Xiao, X. Y.; Zhou, J. B.; Zou, D. C. First fiber-shaped non-volatile memory device based on hybrid organic–inorganic perovskite. Adv. Electron. Mater. 2016, 2, 1600160.

159

Chen, B. X.; Chen, S.; Dong, B.; Gao, X.; Xiao, X. Y.; Zhou, J. B.; Hu, J.; Tang, S.; Yan, K.; Hu, H. et al. Electrical heating-assisted multiple coating method for fabrication of high-performance perovskite fiber solar cells by thickness control. Adv. Mater. Interfaces 2017, 4, 1700833.

160

Hu, H.; Dong, B.; Chen, B. X.; Gao, X.; Zou, D. C. High performance fiber-shaped perovskite solar cells based on lead acetate precursor. Sustainable Energy Fuels 2018, 2, 79–84.

161

Sun, H. X.; Tian, W.; Cao, F. R.; Xiong, J.; Li, L. Ultrahigh-performance self-powered flexible double-twisted fibrous broadband perovskite photodetector. Adv. Mater. 2018, 30, 1706986.

162

Sutherland, B. R.; Sargent, E. H. Perovskite photonic sources. Nat. Photonics 2016, 10, 295–302.

163

Zhou, X.; Li, M. Z.; Wang, K.; Li, H. Z.; Li, Y. N.; Li, C.; Yan, Y. L.; Zhao, Y. S.; Song, Y. L. Strong photonic-band-gap effect on the spontaneous emission in 3D lead halide perovskite photonic crystals. ChemPhysChem 2018, 19, 2101–2106.

164

Malgras, V.; Henzie, J.; Takei, T.; Yamauchi, Y. Hybrid methylammonium lead halide perovskite nanocrystals confined in gyroidal silica templates. Chem. Commun. 2017, 53, 2359–2362.

165

Bansal, P.; Khan, Y.; Nim, G. K.; Kar, P. Surface modulation of solution processed organolead halide perovskite quantum dots to large nanocrystals integrated with silica gel G. Chem. Commun. 2018, 54, 3508–3511.

166

Liu, Z. Q.; Zhang, Y. Q.; Fan, Y.; Chen, Z. Q.; Tang, Z. B.; Zhao, J. L.; Lv, Y.; Lin, J.; Guo, X. Y.; Zhang, J. H. et al. Toward highly luminescent and stabilized silica-coated perovskite quantum dots through simply mixing and stirring under room temperature in air. ACS Appl. Mater. Interfaces 2018, 10, 13053–13061.

167

Malgras, V.; Henzie, J.; Takei, T.; Yamauchi, Y. Stable blue luminescent CsPbBr3 perovskite nanocrystals confined in mesoporous thin films. Angew. Chem., Int. Ed. 2018, 57, 8881–8885.

168

Su, M.; Wu, D.; Fan, B.; Wang, F.; Wang, K.; Luo, Z. K. Synthesis of highly efficient and stable CH3NH3PbBr3 perovskite nanocrystals within mesoporous silica through excess CH3NH3Br method. Dyes Pigm. 2018, 155, 23–29.

169

Ghosh, J.; Ghosh, R.; Giri, P. K. Strong cathodoluminescence and fast photoresponse from embedded CH3NH3PbBr3 nanoparticles exhibiting high ambient stability. ACS Appl. Mater. Interfaces 2019, 11, 14917–14931.

170

He, Y. J.; Yoon, Y. J.; Harn, Y. W.; Biesold-McGee, G. V.; Liang, S.; Lin, C. H.; Tsukruk, V. V.; Thadhani, N.; Kang, Z. T.; Lin, Z. Q. Unconventional route to dual-shelled organolead halide perovskite nanocrystals with controlled dimensions, surface chemistry, and stabilities. Sci. Adv. 2019, 5, eaax4424.

171

Hu, Y. Q.; Fan, L. J.; Hui, H. Y.; Wen, H. Q.; Yang, D. S.; Feng, G. D. Monodisperse bismuth-halide double perovskite nanocrystals confined in mesoporous silica templates. Inorg. Chem. 2019, 58, 8500–8505.

172

Huang, X. J.; Guo, Q. Y.; Yang, D. D.; Xiao, X. D.; Liu, X. F.; Xia, Z. G.; Fan, F. J.; Qiu, J. R.; Dong, G. P. Reversible 3D laser printing of perovskite quantum dots inside a transparent medium. Nat. Photonics 2020, 14, 82–88.

173

Huang, Y. P.; Li, F. M.; Qiu, L. H.; Lin, F. Y.; Lai, Z. W.; Wang, S. Y.; Lin, L. H.; Zhu, Y. M.; Wang, Y. R.; Jiang, Y. Q. et al. Enhancing the stability of CH3NH3PbBr3 nanoparticles using double hydrophobic shells of SiO2 and poly(vinylidene fluoride). ACS Appl. Mater. Interfaces 2019, 11, 26384–26391.

174

Hui, L. S.; Beswick, C.; Getachew, A.; Heilbrunner, H.; Liang, K.; Hanta, G.; Arbi, R.; Munir, M.; Dawood, H.; Goktas, N. I. et al. Reverse micelle templating route to ordered monodispersed spherical organo-lead halide perovskite nanoparticles for light emission. ACS Appl. Nano Mater. 2019, 2, 4121–4132.

175

Li, Z. X.; Yu, C. C.; Wen, Y. Y.; Wei, Z. T.; Chu, J. M.; Xing, X. F.; Zhang, X.; Hu, M. L.; He, M. MOF-confined sub-2 nm stable CsPbX3 perovskite quantum dots. Nanomaterials 2019, 9, 1147.

176

Mollick, S.; Mandal, T. N.; Jana, A.; Fajal, S.; Desai, A. V.; Ghosh, S. K. Ultrastable luminescent hybrid bromide perovskite@MOF nanocomposites for the degradation of organic pollutants in water. ACS Appl. Nano Mater. 2019, 2, 1333–1340.

177

Pan, A. Z.; Wu, Y. S.; Yan, K.; Yu, Y.; Jurow, M. J.; Ren, B. Y.; Zhang, C.; Ding, S. J.; He, L.; Liu, Y. Stable luminous nanocomposites of confined Mn2+-doped lead halide perovskite nanocrystals in mesoporous silica nanospheres as orange fluorophores. Inorg. Chem. 2019, 58, 3950–3958.

178

Takhellambam, D.; Meena, T. R.; Jana, D. Room temperature synthesis of blue and green emitting CsPbBr3 perovskite nanocrystals confined in mesoporous alumina film. Chem. Commun. 2019, 55, 4785–4788.

179

Gonzalez-Rodriguez, R.; Costa, V. C. P.; Delport, G.; Frohna, K.; Hoye, R. L. Z.; Stranks, S. D.; Coffer, J. L. Structural and spectroscopic studies of a nanostructured silicon-perovskite interface. Nanoscale 2020, 12, 4498–4505.

180

Li, Z. T.; Song, C. J.; Li, J. S.; Liang, G. W.; Rao, L. S.; Yu, S. D.; Ding, X. R.; Tang, Y.; Yu, B. H.; Ou, J. Z. et al. Highly efficient and water-stable lead halide perovskite quantum dots using superhydrophobic aerogel inorganic matrix for white light-emitting diodes. Adv. Mater. Technol. 2020, 5, 1900941.

181

Rubino, A.; Caliò, L.; García-Bennett, A.; Calvo, M. E.; Míguez, H. Mesoporous matrices as hosts for metal halide perovskite nanocrystals. Adv. Opt. Mater. 2020, 8, 1901868.

182

Zong, Y. X.; Yang, T. Q.; Hao, P.; Shan, B. Q.; Peng, B.; Hu, X. D.; Tao, R.; Chen, X. Q.; Wu, P.; Zhang, K. Spatial and chemical confined ultra-small CsPbBr3 perovskites in dendritic mesoporous silica nanospheres with enhanced stability. Microporous Mesoporous Mater. 2020, 302, 110229.

183

Lee, K.; Moon, J.; Jeong, J.; Hong, S. W. Spatially ordered arrays of colloidal inorganic metal halide perovskite nanocrystals via controlled droplet evaporation in a confined geometry. Materials 2021, 14, 6824.

184

Zhuo, S. F.; Zhang, J. F.; Shi, Y. M.; Huang, Y.; Zhang, B. Self-template-directed synthesis of porous perovskite nanowires at room temperature for high-performance visible-light photodetectors. Angew. Chem. , Int. Ed. 2015, 54, 5693–5696.

185

Meng, K.; Gao, S. S.; Wu, L. L.; Wang, G.; Liu, X.; Chen, G.; Liu, Z.; Chen, G. Two-dimensional organic–inorganic hybrid perovskite photonic films. Nano Lett. 2016, 16, 4166–4173.

186

Wu, J.; Chen, J. Y.; Zhang, Y. F.; Xu, Z. J.; Zhao, L. C.; Liu, T. H.; Luo, D. Y.; Yang, W. Q.; Chen, K.; Hu, Q. et al. Pinhole-free hybrid perovskite film with arbitrarily-shaped micro-patterns for functional optoelectronic devices. Nano Lett. 2017, 17, 3563–3569.

187

Wang, Y.; Wang, P.; Zhou, X.; Li, C.; Li, H. Z.; Hu, X. T.; Li, F. Y.; Liu, X. P.; Li, M. Z.; Song, Y. L. Diffraction-grated perovskite induced highly efficient solar cells through nanophotonic light trapping. Adv. Energy Mater. 2018, 8, 1702960.

188

Kim, B. J.; Jang, J. H.; Kim, J.; Oh, K. S.; Choi, E. Y.; Park, N. Efficiency and stability enhancement of organic–inorganic perovskite solar cells through micropatterned norland optical adhesive and polyethylene terephthalate encapsulation. Mater. Today Commun. 2019, 20, 100537.

189

Nanz, S.; Schmager, R.; Abebe, M. G.; Willig, C.; Wickberg, A.; Abass, A.; Gomard, G.; Wegener, M.; Paetzold, U. W.; Rockstuhl, C. Photon recycling in nanopatterned perovskite thin-films for photovoltaic applications. APL Photonics 2019, 4, 076102.

190

Schmager, R.; Gomard, G.; Richards, B. S.; Paetzold, U. W. Nanophotonic perovskite layers for enhanced current generation and mitigation of lead in perovskite solar cells. Sol. Energy Mater. Sol. Cells 2019, 192, 65–71.

191

Wang, Y.; Li, M. Z.; Li, H. Z.; Lan, Y. J.; Zhou, X.; Li, C.; Hu, X. T.; Song, Y. L. Patterned wettability surface for competition-driving large-grained perovskite solar cells. Adv. Energy Mater. 2019, 9, 1900838.

192

Zhang, Y. P.; Lim, C. K.; Dai, Z. G.; Yu, G. N.; Haus, J. W.; Zhang, H.; Prasad, P. N. Photonics and optoelectronics using nano-structured hybrid perovskite media and their optical cavities. Phys. Rep. 2019, 795, 1–51.

193

Zhao, J. J.; Kong, G. L.; Chen, S. L.; Li, Q.; Huang, B. Y.; Liu, Z. H.; San, X. Y.; Wang, Y. J.; Wang, C.; Zhen, Y. C. et al. Single crystalline CH3NH3PbI3 self-grown on FTO/TiO2 substrate for high efficiency perovskite solar cells. Sci. Bull. 2017, 62, 1173–1176.

194

Liu, Y.; Dong, Q. F.; Fang, Y. J.; Lin, Y. Z.; Deng, Y. H.; Huang, J. S. Fast growth of thin MAPbI3 crystal wafers on aqueous solution surface for efficient lateral-structure perovskite solar cells. Adv. Funct. Mater. 2019, 29, 1807707.

195

Sung, H. H.; Kuo, C. C.; Chiang, H. S.; Yue, H. L.; Chen, F. C. Differential space-limited crystallization of mixed-cation lead iodide single-crystal micro-plates enhances the performance of perovskite solar cells. Solar RRL 2019, 3, 1900130.

196

Xiong, T. P.; Fang, X.; Mi, Q. X. Sandwiched growth of micron-thick MAPbI3 crystals for waterproof perovskite solar cells. Chem. Lett. 2019, 48, 690–692.

197

Song, Y. L.; Bi, W. H.; Wang, A. R.; Liu, X. T.; Kang, Y. F.; Dong, Q. F. Efficient lateral-structure perovskite single crystal solar cells with high operational stability. Nat. Commun. 2020, 11, 274.

198

Miao, J. L.; Zhang, F. J. Recent progress on highly sensitive perovskite photodetectors. J. Mater. Chem. C 2019, 7, 1741–1791.

199

Babu, R.; Giribabu, L.; Singh, S. P. Recent advances in halide-based perovskite crystals and their optoelectronic applications. Cryst. Growth Des. 2018, 18, 2645–2664.

200

Wang, K.; Wu, C. C.; Hou, Y. C.; Yang, D.; Priya, S. Monocrystalline perovskite wafers/thin films for photovoltaic and transistor applications. J. Mater. Chem. A 2019, 7, 24661–24690.

201

Wang, W. H.; Ma, Y. R.; Qi, L. M. High-performance photodetectors based on organometal halide perovskite nanonets. Adv. Funct. Mater. 2017, 27, 1603653.

202

Chun, D. H.; Choi, Y. J.; In, Y.; Nam, J. K.; Choi, Y. J.; Yun, S.; Kim, W.; Choi, D.; Kim, D.; Shin, H. et al. Halide perovskite nanopillar photodetector. ACS Nano 2018, 12, 8564–8571.

203

Zeng, J. P.; Li, X. M.; Wu, Y.; Yang, D. D.; Sun, Z. G.; Song, Z. H.; Wang, H.; Zeng, H. B. Space-confined growth of CsPbBr3 film achieving photodetectors with high performance in all figures of merit. Adv. Funct. Mater. 2018, 28, 1804394.

204

Zhan, Y.; Wang, Y.; Cheng, Q. F.; Li, C.; Li, K. X.; Li, H. Z.; Peng, J. S.; Lu, B.; Wang, Y.; Song, Y. L. et al. A butterfly-inspired hierarchical light-trapping structure towards a high-performance polarization-sensitive perovskite photodetector. Angew. Chem., Int. Ed. 2019, 58, 16456–16462.

205

Feng, J. G.; Yan, X. X.; Liu, Y.; Gao, H. F.; Wu, Y. C.; Su, B.; Jiang, L. Crystallographically aligned perovskite structures for high-performance polarization-sensitive photodetectors. Adv. Mater. 2017, 29, 1605993.

206

Gao, H. F.; Feng, J. G.; Pi, Y. Y.; Zhou, Z. H.; Zhang, B.; Wu, Y. C.; Wang, X. D.; Jiang, X. Y.; Jiang, L. Bandgap engineering of single-crystalline perovskite arrays for high-performance photodetectors. Adv. Funct. Mater. 2018, 28, 1804349.

207

Deng, W.; Jie, J. S.; Xu, X. Z.; Xiao, Y. L.; Lu, B.; Zhang, X. J.; Zhang, X. H. A microchannel-confined crystallization strategy enables blade coating of perovskite single crystal arrays for device integration. Adv. Mater. 2020, 32, 1908340.

208

Bao, C. X.; Chen, Z. L.; Fang, Y. J.; Wei, H. T.; Deng, Y. H.; Xiao, X.; Li, L. L.; Huang, J. S. Low-noise and large-linear-dynamic-range photodetectors based on hybrid-perovskite thin-single-crystals. Adv. Mater. 2017, 29, 1703209.

209

Wang, G. M.; Li, D. H.; Cheng, H. C.; Li, Y. J.; Chen, C. Y.; Yin, A. X.; Zhao, Z. P.; Lin, Z. Y.; Wu, H.; He, Q. Y. et al. Wafer-scale growth of large arrays of perovskite microplate crystals for functional electronics and optoelectronics. Sci. Adv. 2015, 1, e1500613.

210

Wang, Y. G.; Gan, L.; Chen, J. N.; Yang, R.; Zhai, T. Y. Achieving highly uniform two-dimensional PbI2 flakes for photodetectors via space confined physical vapor deposition. Sci. Bull. 2017, 62, 1654–1662.

211

Fu, X. W.; Dong, N.; Lian, G.; Lv, S.; Zhao, T. Y.; Wang, Q. L.; Cui, D. L.; Wong, C. P. High-quality CH3NH3PbI3 films obtained via a pressure-assisted space-confined solvent-engineering strategy for ultrasensitive photodetectors. Nano Lett. 2018, 18, 1213–1220.

212

Gu, Z. K.; Huang, Z. D.; Li, C.; Li, M. Z.; Song, Y. L. A general printing approach for scalable growth of perovskite single-crystal films. Sci. Adv. 2018, 4, eaat2390.

213

He, X. X.; Wang, Y. G.; Li, K.; Wang, X.; Liu, P.; Yang, Y. J.; Liao, Q.; Zhai, T. Y.; Yao, J. N.; Fu, H. B. Oriented growth of ultrathin single crystals of 2D ruddlesden-popper hybrid lead iodide perovskites for high-performance photodetectors. ACS Appl. Mater. Interfaces 2019, 11, 15905–15912.

214

Lim, S.; Ha, M.; Lee, Y.; Ko, H. Large-area, solution-processed, hierarchical MAPbI3 nanoribbon arrays for self-powered flexible photodetectors. Adv. Opt. Mater. 2018, 6, 1800615.

215

Yang, Z.; Xu, Q.; Wang, X. D.; Lu, J. F.; Wang, H.; Li, F. T.; Zhang, L.; Hu, G. F.; Pan, C. F. Large and ultrastable all-inorganic CsPbBr3 monocrystalline films: Low-temperature growth and application for high-performance photodetectors. Adv. Mater. 2018, 30, 1802110.

216

Zhou, Q. T.; Park, J. G.; Nie, R. M.; Thokchom, A. K.; Ha, D.; Pan, J.; Seok, S. I.; Kim, T. Nanochannel-assisted perovskite nanowires: From growth mechanisms to photodetector applications. ACS Nano 2018, 12, 8406–8414.

217

Cao, F. R.; Tian, W.; Wang, M.; Cao, H. P.; Li, L. Semitransparent, flexible, and self-powered photodetectors based on ferroelectricity-assisted perovskite nanowire arrays. Adv. Funct. Mater. 2019, 29, 1901280.

218

Chen, G. S.; Feng, J. G.; Gao, H. F.; Zhao, Y. J.; Pi, Y. Y.; Jiang, X. Y.; Wu, Y. C.; Jiang, L. Stable α-CsPbI3 perovskite nanowire arrays with preferential crystallographic orientation for highly sensitive photodetectors. Adv. Funct. Mater. 2019, 29, 1808741.

219

Chen, L. Y.; Cai, J. X.; Li, J. Z.; Feng, S. P.; Wei, G. D.; Li, W. D. Nanostructured texturing of CH3NH3PbI3 perovskite thin film on flexible substrate for photodetector application. Org. Electron. 2019, 71, 284–289.

220

Dai, Z. G.; Ou, Q. D.; Wang, C. J.; Si, G. Y.; Shabbir, B.; Zheng, C. X.; Wang, Z. Y.; Zhang, Y. P.; Huang, Y. M.; Dong, Y. M. et al. Capillary-bridge mediated assembly of aligned perovskite quantum dots for high-performance photodetectors. J. Mater. Chem. C 2019, 7, 5954–5961.

221

Bai, Y.; Zhang, H. X.; Zhang, M. J.; Wang, D.; Zeng, H.; Zhao, J.; Xue, H.; Wu, G. Z.; Su, J.; Xie, Y. et al. Liquid-phase growth and optoelectronic properties of two-dimensional hybrid perovskites CH3NH3PbX3 (X = Cl, Br, I). Nanoscale 2020, 12, 1100–1108.

222

Li, N.; Lan, W. X.; Lau, Y. S.; Cai, L. F.; Syed, A. A.; Zhu, F. R. Enhanced long wavelength omnidirectional photoresponses in photonic-structured perovskite photodetectors. J. Mater. Chem. C 2019, 7, 9573–9580.

223

Lee, W.; Lee, J.; Yun, H.; Kim, J.; Park, J.; Choi, C.; Kim, D. C.; Seo, H.; Lee, H.; Yu, J. W. et al. High-resolution spin-on-patterning of perovskite thin films for a multiplexed image sensor array. Adv. Mater. 2017, 29, 1702902.

224

Gao, J.; Liang, Q. B.; Li, G. H.; Ji, T.; Liu, Y. C.; Fan, M. M.; Hao, Y. Y.; Liu, S. Z.; Wu, Y. C.; Cui, Y. X. Single-crystalline lead halide perovskite wafers for high performance photodetectors. J. Mater. Chem. C 2019, 7, 8357–8363.

225

Zhang, Q.; Su, R.; Du, W. N.; Liu, X. F.; Zhao, L. Y.; Ha, S. T.; Xiong, Q. H. Advances in small perovskite-based lasers. Small Methods 2017, 1, 1700163.

226

Zhang, H. H.; Liao, Q.; Wu, Y. S.; Zhang, Z. Y.; Gao, Q. G.; Liu, P.; Li, M. L.; Yao, J. N.; Fu, H. B. 2D ruddlesden-popper perovskites microring laser array. Adv. Mater. 2018, 30, 1706186.

227

Sutherland, B. R.; Hoogland, S.; Adachi, M. M.; Wong, C. T. O.; Sargent, E. H. Conformal organohalide perovskites enable lasing on spherical resonators. ACS Nano 2014, 8, 10947–10952.

228

Tian, C.;Guo, T.; Zhao, S. Q.; Zhai, W. H.; Ge, C. Y.; Ran, G. Z. Low-threshold room-temperature continuous-wave optical lasing of single-crystalline perovskite in a distributed reflector microcavity. RSC Adv. 2019, 9, 35984–35989.

229

Brenner, P.; Stulz, M.; Kapp, D.; Abzieher, T.; Paetzold, U. W.; Quintilla, A.; Howard, I. A.; Kalt, H.; Lemmer, U. Highly stable solution processed metal-halide perovskite lasers on nanoimprinted distributed feedback structures. Appl. Phys. Lett. 2016, 109, 141106.

230

Whitworth, G. L.; Harwell, J. R.; Miller, D. N.; Hedley, G. J.; Zhang, W.; Snaith, H. J.; Turnbull, G. A.; Samuel, I. D. W. Nanoimprinted distributed feedback lasers of solution processed hybrid perovskites. Opt. Express 2016, 24, 23677–23684.

231

Harwell, J. R.; Whitworth, G. L.; Turnbull, G. A.; Samuel, I. D. W. Green perovskite distributed feedback lasers. Sci. Rep. 2017, 7, 11727.

232

Li, Z. T.; Moon, J.; Gharajeh, A.; Haroldson, R.; Hawkins, R.; Hu, W.; Zakhidov, A.; Gu, Q. Room-temperature continuous-wave operation of organometal halide perovskite lasers. ACS Nano 2018, 12, 10968–10976.

233

Mathies, F.; Brenner, P.; Hernandez-Sosa, G.; Howard, I. A.; Paetzold, U. W.; Lemmer, U. Inkjet-printed perovskite distributed feedback lasers. Opt. Express 2018, 26, A144–A152.

234

Pourdavoud, N.; Mayer, A.; Buchmüller, M.; Brinkmann, K.; Häger, T.; Hu, T.; Heiderhoff, R.; Shutsko, I.; Görrn, P.; Chen, Y. W. et al. Distributed feedback lasers based on MAPbBr3. Adv. Mater. Technol. 2018, 3, 1700253.

235

Zhang, H. H.; Wu, Y. S.; Liao, Q.; Zhang, Z. Y.; Liu, Y. P.; Gao, Q. G.; Liu, P.; Li, M. L.; Yao, J. N.; Fu, H. B. A two-dimensional ruddlesden-popper perovskite nanowire laser array based on ultrafast light-harvesting quantum wells. Angew. Chem., Int. Ed. 2018, 57, 7748–7752.

236

Leyden, M. R.; Matsushima, T.; Bencheikh, F.; Adachi, C. Film transfer of structured organo-lead-halide perovskite for low-cost lasing applications. Appl. Phys. Lett. 2019, 115, 141106.

237

Era, M.; Morimoto, S.; Tsutsui, T.; Saito, S. Organic–inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4. Appl. Phys. Lett. 1994, 65, 676–678.

238

Tan, Z. K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 2014, 9, 687–692.

239

Li, S. J.; Ding, H. Y.; Cai, H. B.; Zhao, H.; Zhao, Y. L.; Yang, J. L.; Jin, Y.; Pan, N.; Wang, X. P. Realizing CsPbBr3 light-emitting diode arrays based on PDMS template confined solution growth of single-crystalline perovskite. J. Phys. Chem. Lett. 2020, 11, 8275–8282.

240

Mao, J.; Sha, W. E. I.; Zhang, H.; Ren, X. G.; Zhuang, J. Q.; Roy, V. A. L.; Wong, K. S.; Choy, W. C. H. Novel direct nanopatterning approach to fabricate periodically nanostructured perovskite for optoelectronic applications. Adv. Funct. Mater. 2017, 27, 1606525.

241

Zhang, Q. P.; Tavakoli, M. M.; Gu, L. L.; Zhang, D. Q.; Tang, L.; Gao, Y.; Guo, J.; Lin, Y. J.; Leung, S. F.; Poddar, S. et al. Efficient metal halide perovskite light-emitting diodes with significantly improved light extraction on nanophotonic substrates. Nat. Commun. 2019, 10, 727.

242

Raja, S. N.; Bekenstein, Y.; Koc, M. A.; Fischer, S.; Zhang, D. D.; Lin, L. W.; Ritchie, R. O.; Yang, P. D.; Alivisatos, A. P. Encapsulation of perovskite nanocrystals into macroscale polymer matrices: Enhanced stability and polarization. ACS Appl. Mater. Interfaces 2016, 8, 35523–35533.

243

Lin, H. R.; Zhou, C. K.; Tian, Y.; Siegrist, T.; Ma, B. W. Low-dimensional organometal halide perovskites. ACS Energy Lett. 2018, 3, 54–62.

244

Ma, K. Z.; Du, X. Y.; Zhang, Y. W.; Chen, S. In situ fabrication of halide perovskite nanocrystals embedded in polymer composites via microfluidic spinning microreactors. J. Mater. Chem. C 2017, 5, 9398–9404.

245

Bao, Z.; Wang, H. C.; Jiang, Z. F.; Chung, R. J.; Liu, R. S. Continuous synthesis of highly stable Cs4PbBr6 perovskite microcrystals by a microfluidic system and their application in white-light-emitting diodes. Inorg. Chem. 2018, 57, 13071–13074.

246

Liao, H.; Guo, S. B.; Cao, S.; Wang, L.; Gao, F. M.; Yang, Z. B.; Zheng, J. J.; Yang, W. Y. A general strategy for in situ growth of all-inorganic CsPbX3 (X = Br, I, and Cl) perovskite nanocrystals in polymer fibers toward significantly enhanced water/thermal stabilities. Adv. Opt. Mater. 2018, 6, 1800346.

247

Yu, D. J.; Cao, F.; Gao, Y. J.; Xiong, Y. H.; Zeng, H. B. Room-temperature ion-exchange-mediated self-assembly toward formamidinium perovskite nanoplates with finely tunable, ultrapure green emissions for achieving rec. 2020 displays. Adv. Funct. Mater. 2018, 28, 1800248.

248

Liang, P. T.; Zhang, P.; Pan, A. Z.; Yan, K.; Zhu, Y. S.; Yang, M. Y.; He, L. Unusual stability and temperature-dependent properties of highly emissive CsPbBr3 perovskite nanocrystals obtained from in situ crystallization in poly(vinylidene difluoride). ACS Appl. Mater. Interfaces 2019, 11, 22786–22793.

249

Mei, M.; Han, Z. D.; Liu, P. Z.; Fang, F.; Chen, W.; Hao, J. J.; Wu, D.; Pan, R. K.; Cao, W. Q.; Wang, K. Silica encapsulation of metal perovskite nanocrystals in a photoluminescence type display application. Nanotechnology 2019, 30, 395702.

250

Tong, J. Y.; Wu, J. J.; Shen, W.; Zhang, Y. K.; Liu, Y.; Zhang, T.; Nie, S. M.; Deng, Z. T. Direct hot-injection synthesis of lead halide perovskite nanocubes in acrylic monomers for ultrastable and bright nanocrystal-polymer composite films. ACS Appl. Mater. Interfaces 2019, 11, 9317–9325.

251

Chen, C. Y.; Lin, H. Y.; Chiang, K. M.; Tsai, W. L.; Huang, Y. C.; Tsao, C. S.; Lin, H. W. All-vacuum-deposited stoichiometrically balanced inorganic cesium lead halide perovskite solar cells with stabilized efficiency exceeding 11%. Adv. Mater. 2017, 29, 1605290.

252

Zhao, X.; Kim, H. S.; Seo, J. Y.; Park, N. G. Effect of selective contacts on the thermal stability of perovskite solar cells. ACS Appl. Mater. Interfaces 2017, 9, 7148–7153.

253

Wang, K.; Yang, D.; Wu, C. C.; Shapter, J.; Priya, S. Mono-crystalline perovskite photovoltaics toward ultrahigh efficiency. Joule 2019, 3, 311–316.

254

Chen, Y.; Zeng, H. B.; Ma, P. P.; Chen, G. Y.; Jian, J.; Sun, X.; Li, X. M.; Wang, H. Y.; Yin, W. J.; Jia, Q. X. et al. Overcoming the anisotropic growth limitations of free-standing single-crystal halide perovskite films. Angew. Chem., Int. Ed. 2021, 60, 2629–2636.

255

Jeong, B.; Han, H.; Park, C. Micro- and nanopatterning of halide perovskites where crystal engineering for emerging photoelectronics meets integrated device array technology. Adv. Mater. 2020, 32, 2000597.

Publication history
Copyright
Acknowledgements

Publication history

Received: 22 January 2022
Revised: 12 March 2022
Accepted: 18 March 2022
Published: 09 June 2022
Issue date: August 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

L. S. gratefully acknowledges the financial support from the Engineering and Physical Sciences Research Council (Nos. EP/L022559/1, EP/L022559/2, EP/V050311/1, and EP/W004399/1), Royal Society (Nos. RG130230 and IE161214), H2020 Marie Skłodowska-Curie Actions (No. 790666). J. S. Z. was supported by a PhD Studentship provided by Queen Mary University of London and China Scholarship Council (CSC).

Return