Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The diffusion-controlled growth mode is widely used to narrow the size distribution of colloidal quantum dots. However, this growth mode always suffers from size broadening at the later growth stage. By monitoring the growth process of CdS colloidal quantum dots, we show the size broadening is a result of different growth rates of CdS colloidal quantum dots (CQDs) with different morphologies. Monomer concentration-dependent growth experiments demonstrate the different growth rates are caused by the different ligand permeabilities of CdS CQDs. The cubic ones have lower ligand permeability but higher saturated surface reaction rate than the noncubic ones, leading to unexpected narrower size distribution under higher monomer concentration. More efficient narrowing can be obtained by the addition of chloride ions, which can increase the ligand permeability of all CdS CQDs, as well as the opposite discrepancies in ligand permeability and surface reaction between cubic and noncubic CdS CQDs. The photoluminescence (PL) full width at half maximum (FWHM) of CdS CQDs can be narrowed down to below 80 meV for PL peaks from 430 to 500 nm. Given the inevitable usage of the ligands in the solution synthesis of colloidal nanocrystals, the influence of morphology difference on growth rate should be common. Our results can provide an alternative solution to realize size focusing for the synthesis of colloidal nanocrystals.
Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933–937.
de Arquer, F. P. G.; Talapin, D. V.; Klimov, V. I.; Arakawa, Y.; Bayer, M.; Sargent, E. H. Semiconductor quantum dots: Technological progress and future challenges. Science 2021, 373, eaaz8541.
Shirasaki, Y.; Supran, G. J.; Bawendi, M. G.; Bulovic, V. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photonics 2013, 7, 13–23.
Kim, T.; Kim, K. H.; Kim, S.; Choi, S. M.; Jang, H.; Seo, H. K.; Lee, H.; Chung, D. Y.; Jang, E. Efficient and stable blue quantum dot light-emitting diode. Nature 2020, 586, 385–389.
Shu, Y. F.; Lin, X.; Qin, H. Y.; Hu, Z.; Jin, Y. Z.; Peng, X. G. Quantum dots for display applications. Angew. Chem., Int. Ed. 2020, 59, 22312–22323.
Bang, J. H.; Kamat, P. V. Quantum dot sensitized solar cells. A tale of two semiconductor nanocrystals: CdSe and CdTe. ACS Nano 2009, 3, 1467–1476.
Kagan, C. R.; Lifshitz, E.; Sargent, E. H.; Talapin, D. V. Building devices from colloidal quantum dots. Science 2016, 353, aac5523.
Liu, M. X.; Yazdani, N.; Yarema, M.; Jansen, M.; Wood, V.; Sargent, E. H. Colloidal quantum dot electronics. Nat. Electron. 2021, 4, 548–558.
Bruchez, M. Jr.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281, 2013–2016.
Nie, W. C. W.; Nie S. M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281, 2016–2018.
Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 2008, 5, 763–775.
Wang, Z. G.; Liu, S. L.; Pang, D. W. Quantum dots: A promising fluorescent label for probing virus trafficking. Acc. Chem. Res. 2021, 54, 2991–3002.
Huang, J.; Mulfort, K. L.; Du, P. W.; Chen, L. X. Photodriven charge separation dynamics in CdSe/ZnS core/shell quantum dot/cobaloxime hybrid for efficient hydrogen production. J. Am. Chem. Soc. 2012, 134, 16472–16475.
Han, Z. J.; Qiu, F.; Eisenberg, R.; Holland, P. L.; Krauss, T. D. Robust photogeneration of H2 in water using semiconductor nanocrystals and a nickel catalyst. Science 2012, 338, 1321–1324.
Li, X. B.; Tung, C. H.; Wu, L. Z. Semiconducting quantum dots for artificial photosynthesis. Nat. Rev. Chem. 2018, 2, 160–173.
Jiang, Y. S.; Wang, C.; Rogers, C. R.; Kodaimati, M. S.; Weiss, E. A. Regio- and diastereoselective intermolecular [2+2] cycloadditions photocatalysed by quantum dots. Nat. Chem. 2019, 11, 1034–1040.
Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 2000, 30, 545–610.
Cao, Y. C.; Wang, J. H. One-pot synthesis of high-quality Zinc-blende CdS nanocrystals. J. Am. Chem. Soc. 2004, 126, 14336–14337.
Chen, O.; Zhao, J.; Chauhan, V. P.; Cui, J.; Wong, C.; Harris, D. K.; Wei, H.; Han, H. S.; Fukumura, D.; Jain, R. K. et al. Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat. Mater. 2013, 12, 445–451.
Tamang, S.; Lincheneau, C.; Hermans, Y.; Jeong, S.; Reiss, P. Chemistry of InP nanocrystal syntheses. Chem. Mater. 2016, 28, 2491–2506.
Lv, L. L.; Li, J. Z.; Wang, Y. H.; Shu, Y. F.; Peng, X. G. Monodisperse CdSe quantum dots encased in six (100) facets via ligand-controlled nucleation and growth. J. Am. Chem. Soc. 2020, 142, 19926–19935.
Kim, T.; Park, S.; Jeong, S. Diffusion dynamics controlled colloidal synthesis of highly monodisperse InAs nanocrystals. Nat. Commun. 2021, 12, 3013.
Zhou, J. H.; Pu, C. D.; Jiao, T. Y.; Hou, X. Q.; Peng, X. G. A two-step synthetic strategy toward monodisperse colloidal CdSe and CdSe/CdS core/shell nanocrystals. J. Am. Chem. Soc. 2016, 138, 6475–6483.
Park, J. P.; Lee, J. J.; Kim, S. W. Highly luminescent InP/GaP/ZnS QDs emitting in the entire color range via a heating up process. Scientific Reports 2016, 6, 30094.
Ramasamy, P.; Kim, N.; Kang, Y. S.; Ramirez, O.; Lee, J. S. Tunable, bright, and narrow-band luminescence from colloidal indium phosphide quantum dots. Chem. Mater. 2017, 29, 6893–6899.
Xu, Z. H.; Li, Y.; Li, J. Z.; Pu, C. D.; Zhou, J. H.; Lv, L. L.; Peng, X. G. Formation of size-tunable and nearly monodisperse InP nanocrystals: Chemical reactions and controlled synthesis. Chem. Mater. 2019, 31, 5331–5341.
Xie, R. G.; Rutherford, M.; Peng, X. G. Formation of high-quality I-III-VI semiconductor nanocrystals by tuning relative reactivity of cationic precursors. J. Am. Chem. Soc. 2009, 131, 5691–5697.
Li, L.; Pandey, A.; Werder, D. J.; Khanal, B. P.; Pietryga, J. M.; Klimov, V. I. Efficient synthesis of highly luminescent copper indium sulfide-based core/shell nanocrystals with surprisingly long-lived emission. J. Am. Chem. Soc. 2011, 133, 1176–1179.
Yu, W. W.; Peng, X. G. Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: Tunable reactivity of monomers. Angew. Chem., Int. Ed. 2002, 41, 2368–2371.
Pu, C. D.; Zhou, J. H.; Lai, R. C.; Niu, Y.; Nan, W. N.; Peng, X. G. Highly reactive, flexible yet green Se precursor for metal selenide nanocrystals: Se-octadecene suspension (Se-SUS). Nano Res. 2013, 6, 652–670.
Lin, S. X.; Li, J. Z.; Pu, C. D.; Lei, H. R.; Zhu, M. Y.; Qin, H. Y.; Peng, X. G. Surface and intrinsic contributions to extinction properties of ZnSe quantum dots. Nano Res. 2020, 13, 824–831.
Riehle, F. S.; Yu, K. Role of alcohol in the synthesis of CdS quantum dots. Chem. Mater. 2020, 32, 1430–1438.
Johnson, I.; La Mer, V. K. The determination of the particle size of monodispersed systems by the scattering of light. J. Am. Chem. Soc. 1947, 69, 1184–1192.
Reiss, H. The growth of uniform colloidal dispersions. J. Chem. Phys. 1951, 19, 482–487.
Sugimoto, T. Preparation of monodispersed colloidal particles. Adv. Colloid Interface Sci. 1987, 28, 65–108.
Peng, X. G.; Wickham, J.; Alivisatos, A. P. Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: “Focusing” of size distributions. J. Am. Chem. Soc. 1998, 120, 5343–5344.
Kwon, S. G.; Hyeon, T. Formation mechanisms of uniform nanocrystals via hot-injection and heat-up methods. Small 2011, 7, 2685–2702.
Franke, D.; Harris, D. K.; Chen, O.; Bruns, O. T.; Carr, J. A.; Wilson, M. W. B.; Bawendi, M. G. Continuous injection synthesis of indium arsenide quantum dots emissive in the short-wavelength infrared. Nat. Commun. 2016, 7, 12749.
Talapin, D. V.; Rogach, A. L.; Haase, M.; Weller, H. Evolution of an ensemble of nanoparticles in a colloidal solution: Theoretical study. J. Phys. Chem. B 2001, 105, 12278–12285.
Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715.
Niu, Y.; Pu, C. D.; Lai, R. C.; Meng, R. Y.; Lin, W. Z.; Qin, H. Y.; Peng, X. G. One-pot/three-step synthesis of zinc-blende CdSe/CdS core/shell nanocrystals with thick shells. Nano Res. 2017, 10, 1149–1162.
Li, J. J.; Wang, Y. A.; Guo, W. Z.; Keay, J. C.; Mishima, T. D.; Johnson, M. B.; Peng, X. G. Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. J. Am. Chem. Soc. 2003, 125, 12567–12575.
Qi, B.; Ye, L. F.; Stone, R.; Dennis, C.; Crawford, T. M.; Mefford, O. T. Influence of ligand-precursor molar ratio on the size evolution of modifiable iron oxide nanoparticles. J. Phys. Chem. C 2013, 117, 5429–5435.
Hendricks, M. P.; Campos, M. P.; Cleveland, G. T.; Jen-La Plante, I.; Owen, J. S. A tunable library of substituted thiourea precursors to metal sulfide nanocrystals. Science 2015, 348, 1226–1230.
Guo, Y. J.; Marchuk, K.; Sampat, S.; Abraham, R.; Fang, N.; Malko, A. V.; Vela, J. Unique challenges accompany thick-shell CdSe/nCdS (n > 10) nanocrystal synthesis. J. Phys. Chem. C 2012, 116, 2791–2800.
Zhou, J. H.; Zhu, M. Y.; Meng, R. Y.; Qin, H. Y.; Peng, X. G. Ideal CdSe/CdS core/shell nanocrystals enabled by entropic ligands and their core size-, shell thickness-, and ligand-dependent photoluminescence properties. J. Am. Chem. Soc. 2017, 139, 16556–16567.
Lai, R. C.; Pu, C. D.; Peng, X. G. On-surface reactions in the growth of high-quality CdSe nanocrystals in nonpolar solutions. J. Am. Chem. Soc. 2018, 140, 9174–9183.
Qu, L. H.; Peng, Z. A.; Peng, X. G. Alternative routes toward high quality CdSe nanocrystals. Nano Lett. 2001, 1, 333–337.
Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D. A general strategy for nanocrystal synthesis. Nature 2005, 437, 121–124.
Liu, L. P.; Zhuang, Z. B.; Xie, T.; Wang, Y. G.; Li, J.; Peng, Q.; Li, Y. D. Shape control of CdSe nanocrystals with zinc blende structure. J. Am. Chem. Soc. 2009, 131, 16423–16429.
Zherebetskyy, D.; Scheele, M.; Zhang, Y. J.; Bronstein, N.; Thompson, C.; Britt, D.; Salmeron, M.; Alivisatos, P.; Wang, L. W. Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid. Science 2014, 344, 1380–1384.
Drijvers, E.; De Roo, J.; Martins, J. C.; Infante, I.; Hens, Z. Ligand displacement exposes binding site heterogeneity on CdSe nanocrystal surfaces. Chem. Mater. 2018, 30, 1178–1186.
Zhang, J.; Zhang, H. B.; Cao, W. C.; Pang, Z. F.; Li, J. Z.; Shu, Y. F.; Zhu, C. Q.; Kong, X. Q.; Wang, L. J.; Peng, X. G. Identification of facet-dependent coordination structures of carboxylate ligands on CdSe nanocrystals. J. Am. Chem. Soc. 2019, 141, 15675–15683.
Choi, H.; Ko, J. H.; Kim, Y. H.; Jeong, S. Steric-hindrance-driven shape transition in PbS quantum dots: Understanding size-dependent stability. J. Am. Chem. Soc. 2013, 135, 5278–5281.
Li, Y.; Pu, C. D.; Peng, X. G. Surface activation of colloidal indium phosphide nanocrystals. Nano Res. 2017, 10, 941–958.
Ghosh, Y.; Mangum, B. D.; Casson, J. L.; Williams, D. J.; Htoon, H.; Hollingsworth, J. A. New insights into the complexities of shell growth and the strong influence of particle volume in nonblinking "giant" core/shell nanocrystal quantum dots. J. Am. Chem. Soc. 2012, 134, 9634–9643.
Peng, X. G.; Manna, L.; Yang, W. D.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Shape control of CdSe nanocrystals. Nature 2000, 404, 59–61.
Talapin, D. V.; Rogach, A. L.; Shevchenko, E. V.; Kornowski, A.; Haase, M.; Weller, H. Dynamic distribution of growth rates within the ensembles of colloidal II-VI and III-V semiconductor nanocrystals as a factor governing their photoluminescence efficiency. J. Am. Chem. Soc. 2002, 124, 5782–5790.
Wang, C. F.; Peng, D. F.; Zhao, J.; Bao, R. R.; Li, T. F.; Tian, L.; Dong, L.; Shen, C. Y.; Pan, C. F. Cds@SiO2 core–shell electroluminescent nanorod arrays based on a metal-insulator-semiconductor structure. Small 2016, 12, 5734–5740.
Wang, O. Y.; Wang, L.; Li, Z. H.; Xu, Q. L.; Lin, Q. L.; Wang, H. Z.; Du, Z. L.; Shen, H. B.; Li, L. S. High-efficiency, deep blue ZnCdS/CdxZn1-xS/ZnS quantum-dot-light-emitting devices with an EQE exceeding 18%. Nanoscale 2018, 10, 5650–5657.
Wolff, C. M.; Frischmann, P. D.; Schulze, M.; Bohn, B. J.; Wein, R.; Livadas, P.; Carlson, M. T.; Jäckel, F.; Feldmann, J.; Würthner, F. et al. All-in-one visible-light-driven water splitting by combining nanoparticulate and molecular co-catalysts on CdS nanorods. Nat. Energy 2018, 3, 862–869.
Wu, X. J.; Fan, X. T.; Xie, S. J.; Lin, J. C.; Cheng, J.; Zhang, Q. H.; Chen, L. Y.; Wang, Y. Solar energy-driven lignin-first approach to full utilization of lignocellulosic biomass under mild conditions. Nat. Catal. 2018, 1, 772–780.
Wu, X. J.; Xie, S. J.; Liu, C. X.; Zhou, C.; Lin, J. C.; Kang, J. C.; Zhang, Q. H.; Wang, Z. H.; Wang, Y. Ligand-controlled photocatalysis of CdS quantum dots for lignin valorization under visible light. ACS Catal. 2019, 9, 8443–8451.
Thessing, J.; Qian, J. H.; Chen, H. Y.; Pradhan, N.; Peng, X. G. Interparticle influence on size/size distribution evolution of nanocrystals. J. Am. Chem. Soc. 2007, 129, 2736–2737.
Peng, X. G. Mechanisms for the shape-control and shape-evolution of colloidal semiconductor nanocrystals. Adv. Mater. 2003, 15, 459–463.
Talapin, D. V.; Nelson, J. H.; Shevchenko, E. V.; Aloni, S.; Sadtler, B.; Alivisatos, A. P. Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod morphologies. Nano Lett. 2007, 7, 2951–2959.
Christodoulou, S.; Climente, J. I.; Planelles, J.; Brescia, R.; Prato, M.; Martin-Garcia, B.; Khan, A. H.; Moreels, I. Chloride-induced thickness control in CdSe nanoplatelets. Nano Lett. 2018, 18, 6248–6254.
Meerbach, C.; Wu, C.; Erwin, S. C.; Dang, Z. Y.; Prudnikau, A.; Lesnyak, V. Halide-assisted synthesis of cadmium chalcogenide nanoplatelets. Chem. Mater. 2020, 32, 566–574.
Yang, L.; Zhou, X. Q.; Chen, Y. Z.; Qin, Y. F.; Kong, X. Q.; Zhu, H. M.; Pu, C. D.; Peng, X. G. Efficient quasi-stationary charge transfer from quantum dots to acceptors physically-adsorbed in the ligand monolayer. Nano Res. 2022, 15, 617–626.
Prins, P. T.; Montanarella, F.; Dümbgen, K.; Justo, Y.; van der Bok, J. C.; Hinterding, S. O. M.; Geuchies, J. J.; Maes, J.; De Nolf, K.; Deelen, S. et al. Extended nucleation and superfocusing in colloidal semiconductor nanocrystal synthesis. Nano Lett. 2021, 21, 2487–2496.
Saruyama, M.; Kanehara, M.; Teranishi, T. Drastic structural transformation of cadmium chalcogenide nanoparticles using chloride ions and surfactants. J. Am. Chem. Soc. 2010, 132, 3280–3282.
Anderson, N. C.; Hendricks, M. P.; Choi, J. J.; Owen, J. S. Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: Spectroscopic observation of facile metal-carboxylate displacement and binding. J. Am. Chem. Soc. 2013, 135, 18536–18548.
Shen, H. B.; Bai, X. W.; Wang, A. Q.; Wang, H. Z.; Qian, L.; Yang, Y. X.; Titov, A.; Hyvonen, J.; Zheng, Y.; Li, L. S. High-efficient deep-blue light-emitting diodes by using high quality ZnxCd1−xS/ZnS core/shell quantum dots. Adv. Funct. Mater. 2014, 24, 2367–2373.
Thomson, J. W.; Nagashima, K.; Macdonald, P. M.; Ozin, G. A. From sulfur-amine solutions to metal sulfide nanocrystals: Peering into the oleylamine-sulfur black box. J. Am. Chem. Soc. 2011, 133, 5036–5041.
Nakonechnyi, I.; Sluydts, M.; Justo, Y.; Jasieniak, J.; Hens, Z. Mechanistic insights in seeded growth synthesis of colloidal core/shell quantum dots. Chem. Mater. 2017, 29, 4719–4727.
Li, J. Z.; Wang, H. F.; Lin, L.; Fang, Q.; Peng, X. G. Quantitative identification of basic growth channels for formation of monodisperse nanocrystals. J. Am. Chem. Soc. 2018, 140, 5474–5484.