AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

3D printed triboelectric nanogenerator as self-powered human–machine interactive sensor for breathing-based language expression

Pengcheng Zhu§Baosen Zhang§Hongyi WangYiheng WuHengjun CaoLiubing HeChaoyue LiXuepeng LuoXing LiYanchao Mao( )
Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China

§ Pengcheng Zhu and Baosen Zhang contributed equally to this work.

Show Author Information

Graphical Abstract

A three-dimensional (3D) printed breath-driven triboelectric nanogenerator (TENG) serving as a self-powered human–machine interface (HMI) sensor for language expression was successfully demonstrated. A breathing-based language expressing system is further developed, which could extract subjective information from human breathing behaviors and output corresponding language text. This system with breathing-based language expressing method could make HMI interactions become more friendly and fascinating.

Abstract

Human–machine interfaces (HMIs) are important windows for a human to communicate with the outside world. The current HMI devices such as cellphones, tablets, and computers can be used to help people with aphasia for language expression. However, these conventional HMI devices are not friendly to some particular groups who also lose their abilities of physical movements like in the intensive care unit (ICU) or vegetative patients to realize language expression. Herein, we report a breath-driven triboelectric nanogenerator (TENG) acting as a HMI sensor for language expression through human breathing without voice controls or manual operations. The TENG is integrated within a mask and fabricated via a three-dimensional (3D) printing method. When wearing the mask, the TENG can produce responsive electric signals corresponding to the airflow from breathing, which is capable of recognizing human breathing types with different intensities, lengths, and frequencies. On the basis of the breathing recognition ability, a breathing-based language expressing system is further developed through introducing the Morse code as a communication protocol. Compared with conventional language expressing devices, this system can extract subjective information of a person from breathing behaviors and output corresponding language text, which is not relying on voices or physical movements. This research for the first time introduces the self-powered breathing-based language expressing method to the field of HMI technology by using a 3D printed TENG, and could make HMI interactions become more friendly and fascinating.

Electronic Supplementary Material

Video
12274_2022_4339_MOESM2_ESM.avi
12274_2022_4339_MOESM3_ESM.avi
Download File(s)
12274_2022_4339_MOESM1_ESM.pdf (1.8 MB)

References

1
Hublin, J. J. ; Ben-Ncer, A. ; Bailey, S. E. ; Freidline, S. E. ; Neubauer, S. ; Skinner, M. M. ; Bergmann, I. ; Le Cabec, A. ; Benazzi, S. ; Harvati, K. et al. New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens. Nature 2017, 546, 289–292.
2

Scott, S. K. From speech and talkers to the social world: The neural processing of human spoken language. Science 2019, 366, 58–62.

3

Halai, A. D.; Woollams, A. M.; Lambon Ralph, M. A. Investigating the effect of changing parameters when building prediction models for post-stroke aphasia. Nat. Hum. Behav. 2020, 4, 725–735.

4

Luo, Y. Y.; Li, Y. Z.; Sharma, P.; Shou, W.; Wu, K.; Foshey, M.; Li, B. C.; Palacios, T.; Torralba, A.; Matusik, W. Learning human–environment interactions using conformal tactile textiles. Nat. Electron. 2021, 4, 193–201.

5

Lim, C.; Hong, Y. J.; Jung, J.; Shin, Y.; Sunwoo, S. H.; Baik, S.; Park, O. K.; Choi, S. H.; Hyeon, T.; Kim, J. H. et al. Tissue-like skin-device interface for wearable bioelectronics by using ultrasoft, mass-permeable, and low-impedance hydrogels. Sci. Adv. 2021, 7, eabd3716.

6

Lu, L. J.; Jiang, C. P.; Hu, G. S.; Liu, J. Q.; Yang, B. Flexible noncontact sensing for human–machine interaction. Adv. Mater. 2021, 33, 2100218.

7

Li, Q. S.; Chen, G.; Cui, Y. J.; Ji, S. B.; Liu, Z. Y.; Wan, C. J.; Liu, Y. P.; Lu, Y. H.; Wang, C. X.; Zhang, N. et al. Highly thermal-wet comfortable and conformal silk-based electrodes for on-skin sensors with sweat tolerance. ACS Nano 2021, 15, 9955–9966.

8

Wang, H. S.; Hong, S. K.; Han, J. H.; Jung, Y. H.; Jeong, H. K.; Im, T. H.; Jeong, C. K.; Lee, B. Y.; Kim, G.; Yoo, C. D. et al. Biomimetic and flexible piezoelectric mobile acoustic sensors with multiresonant ultrathin structures for machine learning biometrics. Sci. Adv. 2021, 7, eabe5683.

9

Zhu, J. X.; Ren, Z. H.; Lee, C. Toward healthcare diagnoses by machine-learning-enabled volatile organic compound identification. ACS Nano 2021, 15, 894–903.

10

Xiang, S. X.; Liu, D. J.; Jiang, C. C.; Zhou, W. M.; Ling, D.; Zheng, W. T.; Sun, X. P.; Li, X.; Mao, Y. C.; Shan, C. X. Liquid-metal-based dynamic thermoregulating and self-powered electronic skin. Adv. Funct. Mater. 2021, 31, 2100940.

11

Tang, Y. J.; Zhou, H.; Sun, X. P.; Diao, N. H.; Wang, J. B.; Zhang, B. S.; Qin, C.; Liang, E. J.; Mao, Y. C. Triboelectric touch-free screen sensor for noncontact gesture recognizing. Adv. Funct. Mater. 2020, 30, 1907893.

12

Das, P. S.; Chhetry, A.; Maharjan, P.; Rasel, M. S.; Park, J. Y. A laser ablated graphene-based flexible self-powered pressure sensor for human gestures and finger pulse monitoring. Nano Res. 2019, 12, 1789–1795.

13

Chen, C.; Wen, Z.; Shi, J. H.; Jian, X. H.; Li, P. Y.; Yeow, J. T. W.; Sun, X. H. Micro triboelectric ultrasonic device for acoustic energy transfer and signal communication. Nat. Commun. 2020, 11, 4143.

14

Ma, M. Y.; Kang, Z.; Liao, Q. L.; Zhang, Q.; Gao, F. F.; Zhao, X.; Zhang, Z.; Zhang, Y. Development, applications, and future directions of triboelectric nanogenerators. Nano Res. 2018, 11, 2951–2969.

15

Lei, H.; Xiao, J.; Chen, Y. F.; Jiang, J. W.; Xu, R. J.; Wen, Z.; Dong, B.; Sun, X. H. Bamboo-inspired self-powered triboelectric sensor for touch sensing and sitting posture monitoring. Nano Energy 2022, 91, 106670.

16

Liu, L.; Shi, Q. F.; Lee, C. A hybridized electromagnetic-triboelectric nanogenerator designed for scavenging biomechanical energy in human balance control. Nano Res. 2021, 14, 4227–4235.

17

Wang, M.; Zhang, N.; Tang, Y. J.; Zhang, H.; Ning, C.; Tian, L.; Li, W. H.; Zhang, J. H.; Mao, Y. C.; Liang, E. J. Single-electrode triboelectric nanogenerators based on sponge-like porous PTFE thin films for mechanical energy harvesting and self-powered electronics. J. Mater. Chem. A 2017, 5, 12252–12257.

18

Mao, Y. C.; Zhang, N.; Tang, Y. J.; Wang, M.; Chao, M. J.; Liang, E. J. A paper triboelectric nanogenerator for self-powered electronic systems. Nanoscale 2017, 9, 14499–14505.

19

Ning, C.; Tian, L.; Zhao, X. Y.; Xiang, S. X; Tang, Y. J.; Liang, E. J.; Mao, Y. C. Washable textile-structured single-electrode triboelectric nanogenerator for self-powered wearable electronics. J. Mater. Chem. A 2018, 6, 19143–19150.

20

Lei, H.; Chen, Y. F.; Gao, Z. Q.; Wen, Z.; Sun, X. H. Advances in self-powered triboelectric pressure sensors. J. Mater. Chem. A 2021, 9, 20100–20130.

21

Chen, X. P.; Xie, X. K.; Liu, Y. N.; Zhao, C.; Wen, M.; Wen, Z. Advances in healthcare electronics enabled by triboelectric nanogenerators. Adv. Funct. Mater. 2020, 30, 2004673.

22

Wang, S.; Tai, H. L.; Liu, B. H.; Duan, Z. H.; Yuan, Z.; Pan, H.; Su, Y. J.; Xie, G. Z.; Du, X. S.; Jiang, Y. D. A facile respiration-driven triboelectric nanogenerator for multifunctional respiratory monitoring. Nano Energy 2019, 58, 312–321.

23

Rajabi-Abhari, A.; Kim, J. N.; Lee, J.; Tabassian, R.; Mahato, M.; Youn, H. J.; Lee, H.; Oh, I. K. Diatom bio-silica and cellulose nanofibril for bio-triboelectric nanogenerators and self-powered breath monitoring masks. ACS Appl. Mater. Interfaces 2021, 13, 219–232.

24

He, X.; Zou, H. Y.; Geng, Z. S.; Wang, X. F.; Ding, W. D.; Hu, F.; Zi, Y. L.; Xu, C.; Zhang, S. L.; Yu, H. et al. A hierarchically nanostructured cellulose fiber-based triboelectric nanogenerator for self-powered healthcare products. Adv. Funct. Mater. 2018, 28, 1805540.

25

Li, H.; Sun, Y. N.; Su, Y. J.; Li, R. H.; Jiang, H. W.; Xie, Y. X.; Ding, X. R.; Wu, X. Y.; Tang, Y. Multi-scale metal mesh based triboelectric nanogenerator for mechanical energy harvesting and respiratory monitoring. Nano Energy 2021, 89, 106423.

26

Wang, S. H.; Mu, X. J.; Wang, X.; Gu, A. Y.; Wang, Z. L.; Yang, Y. Elasto-aerodynamics-driven triboelectric nanogenerator for scavenging air-flow energy. ACS Nano 2015, 9, 9554–9563.

27

Su, Y. J.; Chen, G. R.; Chen, C. X.; Gong, Q. C.; Xie, G. Z.; Yao, M. L.; Tai, H. L.; Jiang, Y. D.; Chen, J. Self-powered respiration monitoring enabled by a triboelectric nanogenerator. Adv. Mater. 2021, 33, 2101262.

28

Lu, Q.; Chen, H.; Zeng, Y.; Xue, J.; Cao, X.; Wang, N.; Wang, Z. Intelligent facemask based on triboelectric nanogenerator for respiratory monitoring. Nano Energy 2022, 91, 106612.

29

Cao, R.; Wang, J. N.; Zhao, S. Y.; Yang, W.; Yuan, Z. Q.; Yin, Y. Y.; Du, X. Y.; Li, N. W.; Zhang, X. L.; Li, X. Y. et al. Self-powered nanofiber-based screen-print triboelectric sensors for respiratory monitoring. Nano Res. 2018, 11, 3771–3779.

30

Chen, X. P.; Luo, F.; Yuan, M.; Xie, D. L.; Shen, L.; Zheng, K.; Wang, Z. P.; Li, X. D.; Tao, L. Q. A dual-functional graphene-based self-alarm health-monitoring e-skin. Adv. Funct. Mater. 2019, 29, 1904706.

31

Wang, M.; Zhang, J. H.; Tang, Y. J.; Li, J.; Zhang, B. S.; Liang, E. J.; Mao, Y. C.; Wang, X. D. Air-flow-driven triboelectric nanogenerators for self-powered real-time respiratory monitoring. ACS Nano 2018, 12, 6156–6162.

32

Peng, X.; Dong, K.; Ning, C.; Cheng, R. W.; Yi, J.; Zhang, Y. H.; Sheng, F. F.; Wu, Z. Y.; Wang, Z. L. All-nanofiber self-powered skin-interfaced real-time respiratory monitoring system for obstructive sleep apnea-hypopnea syndrome diagnosing. Adv. Funct. Mater. 2021, 31, 2103559.

33

Zhang, B. S.; Tang, Y. J.; Dai, R. R.; Wang, H. Y.; Sun, X. P.; Qin, C.; Pan, Z. F.; Liang, E. J.; Mao, Y. C. Breath-based human–machine interaction system using triboelectric nanogenerator. Nano Energy 2019, 64, 103953.

34

Zou, H. Y.; Zhang, Y.; Guo, L. T.; Wang, P. H.; He, X.; Dai, G. Z.; Zheng, H. W.; Chen, C. Y.; Wang, A. C.; Xu, C. et al. Quantifying the triboelectric series. Nat. Commun. 2019, 10, 1427.

35

Kwak, S. S.; Yoon, H. J.; Kim, S. W. Textile-based triboelectric nanogenerators for self-powered wearable electronics. Adv. Funct. Mater. 2019, 29, 1804533.

36
Nishi, M. Breathing of Humans and Its Simulation. Master Thesis. Friedlich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany, 2004.
Nano Research
Pages 7460-7467
Cite this article:
Zhu P, Zhang B, Wang H, et al. 3D printed triboelectric nanogenerator as self-powered human–machine interactive sensor for breathing-based language expression. Nano Research, 2022, 15(8): 7460-7467. https://doi.org/10.1007/s12274-022-4339-x
Topics:

3175

Views

91

Crossref

94

Web of Science

93

Scopus

0

CSCD

Altmetrics

Received: 20 December 2021
Revised: 16 March 2022
Accepted: 18 March 2022
Published: 05 May 2022
© Tsinghua University Press 2022
Return