Journal Home > Volume 15 , Issue 8

With the rapid development of photo-responsive nanomaterials, photo-triggered therapeutic strategies such as photothermal therapy (PTT) and photodynamic therapy (PDT) have been new alternatives to current cancer therapeutic methods. Herein, we have fabricated oxygen vacancy-engineered BaTiO3 (BTO-Ov) nanoparticles (NPs) for near-infrared (NIR) light-triggered PTT, PDT, and catalytic therapy cooperatively for significantly improving cancer therapy. Compared to pristine BaTiO3 nanoparticles, BTO-Ov has stronger NIR light absorption and narrower band gap structure, which results in superior photothermal conversion and superoxide radical generation capabilities through PTT and PDT. Meanwhile, due to the existence of Ti3+, BTO-Ov also exhibits peroxidase (POD)-like activity to produce hydroxyl radical under tumor environment, which can be further improved under 808 nm light irradiation. Both in vitro and in vivo results demonstrate that such a multifunctional therapeutic nanoplatform can achieve a high therapeutic efficacy triggered by a single NIR light irradiation. The defect engineering strategy can be used as a general approach to fabricate multifunctional cancer therapeutic nanoplatform.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Oxygen vacancy-engineered BaTiO3 nanoparticles for synergistic cancer photothermal, photodynamic, and catalytic therapy

Show Author's information Yiming Ding1,2,§Zhuo Wang2,§Zeyu Zhang1,2Yunchao Zhao1,2Shangyu Yang3,4Yalong Zhang1,2Shuncheng Yao2,3Shaobo Wang1,2Tian Huang1,2Yang Zhang3,4( )Linlin Li1,2,5( )
School of Chemistry and Chemical Engineering, Center on Nanoenergy Research, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
Key Laboratory of Semiconductor Material Sciences, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China

§ Yiming Ding and Zhuo Wang contributed equally to this work.

Abstract

With the rapid development of photo-responsive nanomaterials, photo-triggered therapeutic strategies such as photothermal therapy (PTT) and photodynamic therapy (PDT) have been new alternatives to current cancer therapeutic methods. Herein, we have fabricated oxygen vacancy-engineered BaTiO3 (BTO-Ov) nanoparticles (NPs) for near-infrared (NIR) light-triggered PTT, PDT, and catalytic therapy cooperatively for significantly improving cancer therapy. Compared to pristine BaTiO3 nanoparticles, BTO-Ov has stronger NIR light absorption and narrower band gap structure, which results in superior photothermal conversion and superoxide radical generation capabilities through PTT and PDT. Meanwhile, due to the existence of Ti3+, BTO-Ov also exhibits peroxidase (POD)-like activity to produce hydroxyl radical under tumor environment, which can be further improved under 808 nm light irradiation. Both in vitro and in vivo results demonstrate that such a multifunctional therapeutic nanoplatform can achieve a high therapeutic efficacy triggered by a single NIR light irradiation. The defect engineering strategy can be used as a general approach to fabricate multifunctional cancer therapeutic nanoplatform.

Keywords: oxygen vacancy, BaTiO3, photodynamic therapy, photothermal therapy, peroxidase

References(46)

1

Wu, X. Q.; Jiang, X. F.; Fan, T. J.; Zheng, Z. W.; Liu, Z. Y.; Chen, Y. B.; Cao, L. Q.; Xie, Z. J.; Zhang, D. W.; Zhao, J. Q. et al. Recent advances in photodynamic therapy based on emerging two-dimensional layered nanomaterials. Nano Res. 2020, 13, 1485–1508.

2

Wu, Z. J.; Zeng, F. C.; Zhang, L.; Zhao, S. X.; Wu, L. H.; Qin, H.; Xing, D. Defect-rich titanium nitride nanoparticle with high microwave-acoustic conversion efficiency for thermoacoustic imaging-guided deep tumor therapy. Nano Res. 2021, 14, 2717–2727.

3

Li, X. S.; Lovell, J. F.; Yoon, J.; Chen, X. Y. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol. 2020, 17, 657–674.

4

Zhu, D. M.; Chen, H.; Huang, C. Y.; Li, G. X.; Wang, X.; Jiang, W.; Fan, K. L. H2O2 self-producing single-atom nanozyme hydrogels as light-controlled oxidative stress amplifier for enhanced synergistic therapy by transforming “cold” tumors. Adv. Funct. Mater. 2022, 32, 2110268.

5

Yang, Y.; Zhu, D. M.; Liu, Y.; Jiang, B.; Jiang, W.; Yan, X. Y.; Fan, K. L. Platinum-carbon-integrated nanozymes for enhanced tumor photodynamic and photothermal therapy. Nanoscale 2020, 12, 13548–13557.

6

Ding, H.; Wang, D. J.; Huang, H. B.; Chen, X. Z.; Wang, J.; Sun, J. J.; Zhang, J. L.; Lu, L.; Miao, B. P.; Cai, Y. J. et al. Black phosphorus quantum dots as multifunctional nanozymes for tumor photothermal/catalytic synergistic therapy. Nano Res. 2022, 15, 1554–1563.

7

Zhang, R. F.; Chen, L.; Liang, Q.; Xi, J. Q.; Zhao, H. Q.; Jin, Y. L.; Gao, X. F.; Yan, X. Y.; Gao, L. Z.; Fan, K. L. Unveiling the active sites on ferrihydrite with apparent catalase-like activity for potentiating radiotherapy. Nano Today 2021, 41, 101317.

8

Meng, X. Q.; Li, D. D.; Chen, L.; He, H.; Wang, Q.; Hong, C. Y.; He, J. Y.; Gao, X. F.; Yang, Y. L.; Jiang, B. et al. High-performance self-cascade pyrite nanozymes for apoptosis-ferroptosis synergistic tumor therapy. ACS Nano 2021, 15, 5735–5751.

9

Yao, S. C.; Wang, Z.; Li, L. L. Application of organic frame materials in cancer therapy through regulation of tumor microenvironment. Smart Mater. Med. 2022, 3, 230–242.

10

Ai, K.; Huang, J.; Xiao, Z.; Yang, Y.; Bai, Y.; Peng, J. Localized surface plasmon resonance properties and biomedical applications of copper selenide nanomaterials. Mater. Today Chem. 2021, 20, 100402.

11
Chen, T.; Su, L. C.; Lin, L. S.; Ge, X. G.; Bai, F. C.; Niu, M.; Wang, C. L.; Song, J. B.; Guo, S. L.; Yang, H. H. Mesoporous radiosensitized nanoprobe for enhanced NIR-II photoacoustic imaging-guided accurate radio-chemotherapy. Nano Res., in press, https://doi.org/10.1007/s12274-021-3997-4.
12

Zhang, R. F.; Yan, F.; Chen, Y. Exogenous physical irradiation on titania semiconductors: Materials chemistry and tumor-specific nanomedicine. Adv. Sci. 2018, 5, 1801175.

13

Fujishima, A.; Ohtsuki, J.; Yamashita, T.; Hayakawa, S. Behavior of tumor cells on photoexcited semiconductor surface. Photomed. Photobiol. 1986, 8, 45–46.

14

Ma, K. S.; Qi, G. H.; Wang, B.; Yu, T. F.; Zhang, Y.; Li, H. J.; Kitte, S. A.; Jin, Y. D. Ultrasound-activated Au/ZnO-based trojan nanogenerators for combined targeted electro-stimulation and enhanced catalytic therapy of tumor. Nano Energy 2021, 87, 106208.

15

Wang, J. L.; Sui, L. H.; Huang, J.; Miao, L.; Nie, Y. B.; Wang, K. S.; Yang, Z. C.; Huang, Q.; Gong, X.; Nan, Y. Y. et al. MoS2-based nanocomposites for cancer diagnosis and therapy. Bioact. Mater. 2021, 6, 4209–4242.

16

Yang, L. F.; Ren, C. C.; Xu, M.; Song, Y. L.; Lu, Q. L.; Wang, Y. L.; Zhu, Y.; Wang, X. X.; Li, N. Rod-shape inorganic biomimetic mutual-reinforcing MnO2-Au nanozymes for catalysis-enhanced hypoxic tumor therapy. Nano Res. 2020, 13, 2246–2258.

17

Yang, C. Z.; Chang, M. Y.; Yuan, M.; Jiang, F.; Ding, B. B.; Zhao, Y. J.; Dang, P. P.; Cheng, Z. Y.; Al Kheraif, A. A.; Ma, P. A. et al. NIR-triggered multi-mode antitumor therapy based on Bi2Se3/Au heterostructure with enhanced efficacy. Small 2021, 17, 2100961.

18

Wang, X.; Zhang, C. Y.; Du, J. F.; Dong, X. H.; Jian, S.; Yan, L.; Gu, Z. J.; Zhao, Y. L. Enhanced generation of non-oxygen dependent free radicals by Schottky-type heterostructures of Au–Bi2S3 nanoparticles via X-ray-induced catalytic reaction for radiosensitization. ACS Nano 2019, 13, 5947–5958.

19

Liang, S.; Deng, X. R.; Xu, G. Y.; Xiao, X.; Wang, M. F.; Guo, X. S.; Ma, P. A.; Cheng, Z. Y.; Zhang, D.; Lin, J. A novel Pt–TiO2 heterostructure with oxygen-deficient layer as bilaterally enhanced sonosensitizer for synergistic chemo-sonodynamic cancer therapy. Adv. Funct. Mater. 2020, 30, 1908598.

20

Liang, S.; Deng, X. R.; Chang, Y.; Sun, C. Q.; Shao, S.; Xie, Z. X.; Xiao, X.; Ma, P. A.; Zhang, H. Y.; Cheng, Z. Y. et al. Intelligent hollow Pt-CuS Janus architecture for synergistic catalysis-enhanced sonodynamic and photothermal cancer therapy. Nano Lett. 2019, 19, 4134–4145.

21

Cheng, Y.; Chang, Y.; Feng, Y. L.; Jian, H.; Tang, Z. H.; Zhang, H. Y. Deep-level defect enhanced photothermal performance of bismuth sulfide–gold heterojunction nanorods for photothermal therapy of cancer guided by computed tomography imaging. Angew. Chem., Int. Ed. 2018, 57, 246–251.

22

Yu, B.; Wang, W.; Sun, W. B.; Jiang, C. H.; Lu, L. H. Defect engineering enables synergistic action of enzyme-mimicking active centers for high-efficiency tumor therapy. J. Am. Chem. Soc. 2021, 143, 8855–8865.

23

Shen, H. D.; Yang, M. M.; Hao, L. D.; Wang, J. R.; Strunk, J.; Sun, Z. Y. Photocatalytic nitrogen reduction to ammonia: Insights into the role of defect engineering in photocatalysts. Nano Res. 2022, 15, 2773–2809.

24

Liu, Y.; Wang, Y.; Zhen, W. Y.; Wang, Y. H.; Zhang, S. T.; Zhao, Y.; Song, S. Y.; Wu, Z. J.; Zhang, H. J. Defect modified zinc oxide with augmenting sonodynamic reactive oxygen species generation. Biomaterials 2020, 251, 120075.

25

Dong, Y. S.; Dong, S. M.; Liu, B.; Yu, C. H.; Liu, J.; Yang, D.; Yang, P. P.; Lin, J. 2D piezoelectric Bi2MoO6 nanoribbons for GSH-enhanced sonodynamic therapy. Adv. Mater. 2021, 33, 2106838.

26

Guo, W.; Wang, F.; Ding, D. D.; Song, C. Q.; Guo, C. S.; Liu, S. Q. TiO2−x based nanoplatform for bimodal cancer imaging and NIR-triggered chem/photodynamic/photothermal combination therapy. Chem. Mater. 2017, 29, 9262–9274.

27

Jiao, X. D.; Sun, L. H.; Zhang, W.; Ren, J. J.; Zhang, L.; Cao, Y.; Xu, Z. G.; Kang, Y. J.; Xue, P. Engineering oxygen-deficient ZrO2−x nanoplatform as therapy-activated “immunogenic cell death (ICD)” inducer to synergize photothermal-augmented sonodynamic tumor elimination in NIR-II biological window. Biomaterials 2021, 272, 120787.

28

Wang, X. W.; Zhong, X. Y.; Bai, L. X.; Xu, J.; Gong, F.; Dong, Z. L.; Yang, Z. J.; Zeng, Z. J.; Liu, Z.; Cheng, L. Ultrafine titanium monoxide (TiO1+x) nanorods for enhanced sonodynamic therapy. J. Am. Chem. Soc. 2020, 142, 6527–6537.

29

Dai, C.; Hu, R. Z.; Wang, C. M.; Liu, Z.; Zhang, S. J.; Yu, L. D.; Chen, Y.; Zhang, B. Defect engineering of 2D BiOCl nanosheets for photonic tumor ablation. Nanoscale Horiz. 2020, 5, 857–868.

30

Wan, X. Y.; Zhang, X. D.; Liu, Z. R.; Zhang, J. M.; Li, Z.; Wang, Z. L.; Li, L. L. Noninvasive manipulation of cell adhesion for cell harvesting with piezoelectric composite film. Appl. Mater. Today 2021, 25, 101218.

31

Su, R.; Wang, Z. P.; Zhu, L. N.; Pan, Y.; Zhang, D. W.; Wen, H.; Luo, Z. D.; Li, L. L.; Li, F. T.; Wu, M. et al. Strain-engineered nano-ferroelectrics for high-efficiency piezocatalytic overall water splitting. Angew. Chem., Int. Ed. 2021, 60, 16019–16026.

32

Zhao, Z.; Wang, D. D.; Gao, R.; Wen, G. B.; Feng, M.; Song, G. X.; Zhu, J. B.; Luo, D.; Tan, H. Q.; Ge, X. et al. Magnetic-field-stimulated efficient photocatalytic N2 fixation over defective BaTiO3 perovskites. Angew. Chem., Int. Ed. 2021, 60, 11910–11918.

33

Wan, J. W.; Chen, W. X.; Jia, C. Y.; Zheng, L. R.; Dong, J. C.; Zheng, X. S.; Wang, Y.; Yan, W. S.; Chen, C.; Peng, Q. et al. Defect effects on TiO2 nanosheets: Stabilizing single atomic site Au and promoting catalytic properties. Adv. Mater. 2018, 30, 1705369.

34

Clabel H, J. L.; Awan, I. T.; Lozano, G.; Pereira-da-Silva, M. A.; Romano, R. A.; Rivera, V. A. G.; Ferreira, S. O.; Marega, E. Jr. Understanding the electronic properties of BaTiO3 and Er3+ doped BaTiO3 films through confocal scanning microscopy and XPS: The role of oxygen vacancies. Phys. Chem. Chem. Phys. 2020, 22, 15022–15034.

35

Wu, S. M.; Liu, X. L.; Lian, X. L.; Tian, G.; Janiak, C.; Zhang, Y. X.; Lu, Y.; Yu, H. Z.; Hu, J.; Wei, H. et al. Homojunction of oxygen and titanium vacancies and its interfacial n−p effect. Adv. Mater. 2018, 30, 1802173.

36

Wang, M. F.; Hou, Z. Y.; Liu, S. N.; Liang, S.; Ding, B. B.; Zhao, Y. J.; Chang, M. Y.; Han, G.; Al Kheraif, A. A.; Lin, J. A multifunctional nanovaccine based on L-arginine-loaded black mesoporous titania: Ultrasound-triggered synergistic cancer sonodynamic therapy/gas therapy/immunotherapy with remarkably enhanced efficacy. Small 2021, 17, 2005728.

37

Liang, S.; Xiao, X.; Bai, L. X.; Liu, B.; Yuan, M.; Ma, P. A.; Pang, M. L.; Cheng, Z. Y.; Lin, J. Conferring Ti-based MOFs with defects for enhanced sonodynamic cancer therapy. Adv. Mater. 2021, 33, 2100333.

38

Li, J. L.; Zhang, M.; Guan, Z. J.; Li, Q. Y.; He, C. Q.; Yang, J. J. Synergistic effect of surface and bulk single-electron-trapped oxygen vacancy of TiO2 in the photocatalytic reduction of CO2. Appl. Catal. B: Environ. 2017, 206, 300–307.

39

Yuan, X.; Wang, L. L.; Hu, M. M.; Zhang, L. L.; Chen, H.; Zhang, D. L.; Wang, Z. M.; Li, T.; Zhong, M. J.; Xu, L. J. et al. Oxygen vacancy-driven reversible free radical catalysis for environment-adaptive cancer chemodynamic therapy. Angew. Chem., Int. Ed. 2021, 60, 20943–20951.

40

Tang, G. H.; He, J. Y.; Liu, J. W.; Yan, X. Y.; Fan, K. L. Nanozyme for tumor therapy: Surface modification matters. Exploration 2021, 1, 75–89.

41

Huang, Z. F.; Song, J. J.; Pan, L.; Zhang, X. W.; Wang, L.; Zou, J. J. Tungsten oxides for photocatalysis, electrochemistry, and phototherapy. Adv. Mater. 2015, 27, 5309–5327.

42

Liu, J. M.; Wang, A. Z.; Liu, S. H.; Yang, R. Q.; Wang, L. W.; Gao, F. E.; Zhou, H. G.; Yu, X.; Liu, J.; Chen, C. Y. A titanium nitride nanozyme for pH-responsive and irradiation-enhanced cascade-catalytic tumor therapy. Angew. Chem., Int. Ed. 2021, 60, 25328–25338.

43

Li, H.; Shang, J.; Ai, Z. H.; Zhang, L. Z. Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed {001} facets. J. Am. Chem. Soc. 2015, 137, 6393–6399.

44

Lu, Y. F.; Huang, Y.; Zhang, Y. F.; Cao, J. J.; Li, H. W.; Bian, C.; Lee, S. C. Oxygen vacancy engineering of Bi2O3/Bi2O2CO3 heterojunctions: Implications of the interfacial charge transfer, NO adsorption and removal. Appl. Catal. B: Environ. 2018, 231, 357–367.

45

Chen, X. B.; Liu, L.; Yu, P. Y.; Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 2011, 331, 746–750.

46

Chang, Y.; Cheng, Y.; Zheng, R. X.; Wu, X. Q.; Song, P. P.; Wang, Y. J.; Yan, J.; Zhang, H. Y. Plasmon-pyroelectric nanostructures used to produce a temperature-mediated reactive oxygen species for hypoxic tumor therapy. Nano Today 2021, 38, 101110.

File
12274_2022_4336_MOESM1_ESM.pdf (4.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 25 February 2022
Revised: 16 March 2022
Accepted: 16 March 2022
Published: 10 May 2022
Issue date: August 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

The work was supported by the National Nature Science Foundation of China (Nos. 82072065 and 81471784), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA16021103), and the National Youth Talent Support Program.

Return