Journal Home > Volume 15 , Issue 8

CO2 electroreduction to formate is technically feasible and economically viable, but still suffers from low selectivity and high overpotential at industrial current densities. Here, lattice-distorted metallic nanosheets with disorder-engineered metal sites are designed for industrial-current-density CO2-to-formate conversion at low overpotentials. As a prototype, richly lattice-distorted bismuth nanosheets are first constructed, where abundant disorder-engineered Bi sites could be observed by high-angle annular dark-field scanning transmission electron microscopy image. In-situ Fourier-transform infrared spectra reveal the CO2•−* group is the key intermediate, while theoretical calculations suggest the electron-enriched Bi sites could effectively lower the CO2 activation energy barrier by stabilizing the CO2•−* intermediate, further affirmed by the decreased formation energy from 0.49 to 0.39 eV. As a result, the richly lattice-distorted Bi nanosheets exhibit the ultrahigh current density of 800 mA·cm−2 with 91% Faradaic efficiencies for CO2-to-formate electroreduction, and the formate selectivity can reach nearly 100% at the current density of 200 mA·cm−2 with a very low overpotential of ca. 570 mV, outperforming most reported metal-based electrocatalysts.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Industrial-current-density CO2-to-formate conversion with low overpotentials enabled by disorder-engineered metal sites

Show Author's information Zhiqiang Wang1,§Xiaolong Zu1,§Xiaodong Li1,§Li Li1Yang Wu1Shumin Wang1Peiquan Ling1Yuan Zhao1Yongfu Sun1,2( )Yi Xie1,2
Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China

§ Zhiqiang Wang, Xiaolong Zu, and Xiaodong Li contributed equally to this work.

Abstract

CO2 electroreduction to formate is technically feasible and economically viable, but still suffers from low selectivity and high overpotential at industrial current densities. Here, lattice-distorted metallic nanosheets with disorder-engineered metal sites are designed for industrial-current-density CO2-to-formate conversion at low overpotentials. As a prototype, richly lattice-distorted bismuth nanosheets are first constructed, where abundant disorder-engineered Bi sites could be observed by high-angle annular dark-field scanning transmission electron microscopy image. In-situ Fourier-transform infrared spectra reveal the CO2•−* group is the key intermediate, while theoretical calculations suggest the electron-enriched Bi sites could effectively lower the CO2 activation energy barrier by stabilizing the CO2•−* intermediate, further affirmed by the decreased formation energy from 0.49 to 0.39 eV. As a result, the richly lattice-distorted Bi nanosheets exhibit the ultrahigh current density of 800 mA·cm−2 with 91% Faradaic efficiencies for CO2-to-formate electroreduction, and the formate selectivity can reach nearly 100% at the current density of 200 mA·cm−2 with a very low overpotential of ca. 570 mV, outperforming most reported metal-based electrocatalysts.

Keywords: low overpotential, CO2-to-formate , disorder-engineered, metallic nanosheets, industrial-current-density

References(41)

1

Xiong, Y. J.; Ye, J. H.; Zhao, C. Carbon dioxide conversion. ChemNanoMat 2021, 7, 967–968.

2

Liu, Y. T.; Deng, D. H.; Bao, X. H. Catalysis for selected C1 chemistry. Chem 2020, 6, 2497–2514.

3

Li, X.; Yu, J. G.; Jaroniec, M.; Chen, X. B. Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 2019, 119, 3962–4179.

4

Sa, Y. J.; Lee, C. W.; Lee, S. Y.; Na, J.; Lee, U.; Hwang, Y. J. Catalyst-electrolyte interface chemistry for electrochemical CO2 reduction. Chem. Soc. Rev. 2020, 49, 6632–6665.

5

Kortlever, R.; Shen, J.; Schouten, K. J. P.; Calle-Vallejo, F.; Koper, M. T. M. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 2015, 6, 4073–4082.

6

Minami, Y.; Muroga, Y.; Amao, Y. Enhancement of catalytic activity for selective hydrogen production from formate with homogeneously poly(vinylpyrrolidone)/cationic poly(L-lysine) dispersed platinum nanoparticles. New J. Chem. 2020, 44, 14334–14338.

7

Minami, Y.; Amao, Y. Catalytic mechanism for selective hydrogen production based on formate decomposition with polyvinylpyrrolidone-dispersed platinum nanoparticles. Sustainable Energy Fuels 2020, 4, 3458–3466.

8

Han, N.; Ding, P.; He, L.; Li, Y. Y.; Li, Y. G. Promises of main group metal-based nanostructured materials for electrochemical CO2 reduction to formate. Adv. Energy Mater. 2020, 10, 1902338.

9

Li, X. D.; Sun, Y. F.; Xu, J. Q.; Shao, Y. J.; Wu, J.; Xu, X. L.; Pan, Y.; Ju, H. X.; Zhu, J. F.; Xie, Y. Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers. Nat. Energy 2019, 4, 690–699.

10

Yang, Z. N.; Oropeza, F. E.; Zhang, K. H. L. P-block metal-based (Sn, In, Bi, Pb) electrocatalysts for selective reduction of CO2 to formate. APL Mater. 2020, 8, 060901.

11

Liu, M.; Liu, M. X.; Wang, X. M.; Kozlov, S. M.; Cao, Z.; De Luna, P.; Li, H. M.; Qiu, X. Q.; Liu, K.; Hu, J. H. et al. Quantum-dot-derived catalysts for CO2 reduction reaction. Joule 2019, 3, 1703–1718.

12

Zheng, X. L.; Ji, Y. F.; Tang, J.; Wang, J. Y.; Liu, B. F.; Steinrück, H. G.; Lim, K.; Li, Y. Z.; Toney, M. F.; Chan, K. et al. Theory-guided Sn/Cu alloying for efficient CO2 electroreduction at low overpotentials. Nat. Catal. 2021, 4, 441.

13

Wen, G. B.; Lee, D. U.; Ren, B. H.; Hassan, F. M.; Jiang, G. P.; Cano, Z. P.; Gostick, J.; Croiset, E.; Bai, Z. Y.; Yang, L. et al. Orbital interactions in Bi-Sn bimetallic electrocatalysts for highly selective electrochemical CO2 reduction toward formate production. Adv. Energy Mater. 2018, 8, 1802427.

14

Fan, K.; Jia, Y. F.; Ji, Y. F.; Kuang, P. Y.; Zhu, B. C.; Liu, X. Y.; Yu, J. G. Curved surface boosts electrochemical CO2 reduction to formate via bismuth nanotubes in a wide potential window. ACS Catal. 2020, 10, 358–364.

15

Zhu, X. J.; Dou, X. Y.; Dai, J.; An, X. D.; Guo, Y. Q.; Zhang, L. D.; Tao, S.; Zhao, J. Y.; Chu, W. S.; Zeng, X. C. et al. Metallic nickel hydroxide nanosheets give superior electrocatalytic oxidation of urea for fuel cells. Angew. Chem., Int. Ed. 2016, 55, 12465–12469.

16

Zhuang, L. Z.; Ge, L.; Liu, H. L.; Jiang, Z. R.; Jia, Y.; Li, Z. H.; Yang, D. J.; Hocking, R. K.; Li, M. R.; Zhang, L. Z. et al. A surfactant-free and scalable general strategy for synthesizing ultrathin two-dimensional metal-organic framework nanosheets for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2019, 58, 13565–13572.

17

Liu, Y. W.; Hua, X. M.; Xiao, C.; Zhou, T. F.; Huang, P. C.; Guo, Z. P.; Pan, B. C.; Xie, Y. Heterogeneous spin states in ultrathin nanosheets induce subtle lattice distortion to trigger efficient hydrogen evolution. J. Am. Chem. Soc. 2016, 138, 5087–5092.

18

Chang, X. X.; Wang, T.; Gong, J. L. CO2 photo-reduction: Insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ. Sci. 2016, 9, 2177–2196.

19

Li, H. L.; Zhao, J. K.; Luo, L. H.; Du, J. J.; Zeng, J. Symmetry-breaking sites for activating linear carbon dioxide molecules. Acc. Chem. Res. 2021, 54, 1454–1464.

20

Yang, H.; Han, N.; Deng, J.; Wu, J. H.; Wang, Y.; Hu, Y. P.; Ding, P.; Li, Y. F.; Li, Y. G.; Lu, J. Selective CO2 reduction on 2D mesoporous Bi nanosheets. Adv. Energy Mater. 2018, 8, 1801536.

21

Zhao, M. M.; Gu, Y. L.; Gao, W. C.; Cui, P. X.; Tang, H.; Wei, X. Y.; Zhu, H.; Li, G. Q.; Yan, S. C.; Zhang, X. Y. et al. Atom vacancies induced electron-rich surface of ultrathin Bi nanosheet for efficient electrochemical CO2 reduction. Appl. Catal. B:Environ. 2020, 266, 118625.

22

Gong, Q. F.; Ding, P.; Xu, M. Q.; Zhu, X. R.; Wang, M. Y.; Deng, J.; Ma, Q.; Han, N.; Zhu, Y.; Lu, J. et al. Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction. Nat. Commun. 2019, 10, 2807.

23

Li, F. W.; Chen, L.; Xue, M. Q.; Williams, T.; Zhang, Y.; MacFarlane, D. R.; Zhang, J. Towards a better Sn: Efficient electrocatalytic reduction of CO2 to formate by Sn/SnS2 derived from SnS2 nanosheets. Nano Energy 2017, 31, 270–277.

24

Liang, Y.; Zhou, W.; Shi, Y. M.; Liu, C. B.; Zhang, B. Unveiling in situ evolved In/In2O3−x heterostructure as the active phase of In2O3 toward efficient electroreduction of CO2 to formate. Sci. Bull. 2020, 65, 1547–1554.

25

Jiang, Z. L.; Wang, T.; Pei, J. J.; Shang, H. S.; Zhou, D. N.; Li, H. J.; Dong, J. C.; Wang, Y.; Cao, R.; Zhuang, Z. B. et al. Discovery of main group single Sb-N4 active sites for CO2 electroreduction to formate with high efficiency. Energy Environ. Sci. 2020, 13, 2856–2863.

26

Maiti, S.; Maiti, K.; Curnan, M. T.; Kim, K.; Noh, K. J.; Han, J. W. Engineering electrocatalyst nanosurfaces to enrich the activity by inducing lattice strain. Energy Environ. Sci. 2021, 14, 3717–3756.

27

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996, 6, 15–50.

28

Surendranath, Y.; Kanan, M. W.; Nocera, D. G. Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH. J. Am. Chem. Soc. 2010, 46, 16501–16509.

29

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

30

Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 2010, 3, 1311–1315.

31

Huang, G. Q. Surface lattice vibration and electron-phonon interaction in topological insulator Bi2Te3 (111) films from first principles. Europhys. Lett. 2012, 100, 17001.

32

Chen, K.; Kim, S.; Rajendiran, R.; Prabakar, K.; Li, G. Z.; Shi, Z. C.; Jeong, C.; Kang, J.; Li, O. L. Enhancing ORR/OER active sites through lattice distortion of Fe-enriched FeNi3 intermetallic nanoparticles doped N-doped carbon for high-performance rechargeable Zn-air battery. J. Colloid Interface Sci. 2021, 582, 977–990.

33

Liu, H.; Li, X. N.; Ge, L. B.; Peng, C. L.; Zhu, L. Y.; Zou, W.; Chen, J. F.; Wu, Q. M.; Zhang, Y. X.; Huang, H. L. et al. Accelerating hydrogen evolution in Ru-doped FeCoP nanoarrays with lattice distortion toward highly efficient overall water splitting. Catal. Sci. Technol. 2020, 10, 8314–8324.

34

Sun, Y. Q.; Xu, K.; Wei, Z. X.; Li, H. L.; Zhang, T.; Li, X. Y.; Cai, W. P.; Ma, J. M.; Fan, H. J.; Li, Y. Strong electronic interaction in dual-cation-incorporated NiSe2 nanosheets with lattice distortion for highly efficient overall water splitting. Adv. Mater. 2018, 30, 1802121.

35

Narayanan, S. R.; Haines, B.; Soler, J.; Valdez, T. I. Electrochemical conversion of carbon dioxide to formate in alkaline polymer electrolyte membrane cells. J. Electrochem. Soc. 2011, 158, A167–A173.

36

Edwards, J. P.; Xu, Y.; Gabardo, C. M.; Dinh, C. T.; Li, J.; Qi, Z. B.; Ozden, A.; Sargent, E. H.; Sinton, D. Efficient electrocatalytic conversion of carbon dioxide in a low-resistance pressurized alkaline electrolyzer. Appl. Energy 2020, 261, 114305.

37

Lv, W. X.; Zhang, R.; Gao, P. R.; Lei, L. X. Studies on the Faradaic efficiency for electrochemical reduction of carbon dioxide to formate on tin electrode. J. Power Sources 2014, 253, 276–281.

38

Kang, B. K.; Im, S. Y.; Lee, J.; Kwag, S. H.; Kwon, S. B.; Tiruneh, S.; Kim, M. J.; Kim, J. H.; Yang, W. S.; Lim, B. et al. In-situ formation of MOF derived mesoporous Co3N/amorphous N-doped carbon nanocubes as an efficient electrocatalytic oxygen evolution reaction. Nano Res. 2019, 12, 1605–1611.

39

Liang, L.; Li, X. D.; Sun, Y. F.; Tan, Y. L.; Jiao, X. C.; Ju, H. X.; Qi, Z. M.; Zhu, J. F.; Xie, Y. Infrared light-driven CO2 overall splitting at room temperature. Joule 2018, 2, 1004–1016.

40

Zu, X. L.; Li, X. D.; Liu, W.; Sun, Y. F.; Xu, J. Q.; Yao, T.; Yan, W. S.; Gao, S.; Wang, C. M.; Wei, S. Q. et al. Efficient and robust carbon dioxide electroreduction enabled by atomically dispersed Snδ+ sites. Adv. Mater. 2019, 31, 1808135.

41

Liu, L. J.; Jiang, Y. Q.; Zhao, H. L.; Chen, J. T.; Cheng, J. L.; Yang, K. S.; Li, Y. Engineering coexposed {001} and {101} facets in oxygen-deficient TiO2 nanocrystals for enhanced CO2 photoreduction under visible light. ACS Catal. 2016, 6, 1097–1108.

File
12274_2022_4335_MOESM1_ESM.pdf (3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 11 January 2022
Revised: 17 February 2022
Accepted: 15 March 2022
Published: 10 May 2022
Issue date: August 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2019YFA0210004), the National Natural Science Foundation of China (Nos. 22125503, 21975242, U2032212, and 21890754), the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB36000000), Youth Innovation Promotion Association of CAS (No. CX2340007003), the Key Research Program of Frontier Sciences of CAS (No. QYZDY-SSW-SLH011), the Major Program of Development Foundation of Hefei Center for Physical Science and Technology (No. 2020HSC-CIP003), Users with Excellence Program of Hefei Science Center CAS (No. 2020HSC-UE001), and the University Synergy Innovation Program of Anhui Province (No. GXXT-2020-001). Supercomputing University of Science and Technology of China (USTC) and the National Supercomputing Center in Shenzhen are acknowledged for computational support.

Return