Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Nano-drug delivery systems (nanoDDS) have been extensively investigated clinically to improve the therapeutic effect of anti-cancer drugs. However, the complicated synthesis during the preparation as well as the potential drug leakage during transportation has greatly limited their general application. In this work, a calixarene-integrated nanoDDS (CanD) that achieves tumor-targeted delivery and tracking of anti-cancer drugs in vivo is presented. The hypoxia-responsive calixarene (SAC4A) exhibits high binding affinity to a series of anti-cancer drugs and rhodamine B (RhB) under normoxic condition while decreasing the binding affinity under hypoxic condition, which leads to the drug release and fluorescence recovery simultaneously. Furthermore, the hypoxia-responsiveness of SAC4A conveys CanD with tumor-targeting ability, resulting in the enrichment of the drug in tumors and enhancement in tumor suppression in mice. Moreover, CanD could become a general platform allowing the delivery of a wide scope of anti-cancer drugs that have strong host-guest interaction with SAC4A.
Ma, X.; Zhao, Y. L. Biomedical applications of supramolecular systems based on host–guest interactions. Chem. Rev. 2015, 115, 7794–7839.
Sun, T. M.; Zhang, Y. S.; Pang, B.; Hyun, D. C.; Yang, M. X.; Xia, Y. N. Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem., Int. Ed. 2014, 53, 12320–12364.
Shi, J. J.; Votruba, A. R.; Farokhzad, O. C.; Langer, R. Nanotechnology in drug delivery and tissue engineering: From discovery to applications. Nano Lett. 2010, 10, 3223–3230.
Yang, Y.; Liu, J. J.; Sun, X. Q.; Feng, L. Z.; Zhu, W. W.; Liu, Z.; Chen, M. W. Near-infrared light-activated cancer cell targeting and drug delivery with aptamer-modified nanostructures. Nano Res. 2016, 9, 139–148.
Mei, L.; Zhu, G. Z.; Qiu, L. P.; Wu, C. C.; Chen, H. P.; Liang, H.; Cansiz, S.; Lv, Y. F.; Zhang, X. B.; Tan, W. H. Self-assembled multifunctional DNA nanoflowers for the circumvention of multidrug resistance in targeted anticancer drug delivery. Nano Res. 2015, 8, 3447–3460.
Bae, Y.; Fukushima, S.; Harada, A.; Kataoka, K. Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: Polymeric micelles that are responsive to intracellular pH change. Angew. Chem., Int. Ed. 2003, 42, 4640–4643.
Chen, F.; Li, Y.; Lin, X. J.; Qiu, H. Y.; Yin, S. C. Polymeric systems containing supramolecular coordination complexes for drug delivery. Polymers (Basel) 2021, 13, 370.
Qiu, L. P.; Chen, T.; Öçsoy, I.; Yasun, E.; Wu, C. C.; Zhu, G. Z.; You, M. X.; Han, D.; Jiang, J. H.; Yu, R. Q. et al. A cell-targeted, size-photocontrollable, nuclear-uptake nanodrug delivery system for drug-resistant cancer therapy. Nano Lett. 2015, 15, 457–463.
Schlich, M.; Longhena, F.; Faustini, G.; O'Driscoll, C. M.; Sinico, C.; Fadda, A. M.; Bellucci, A.; Lai, F. Anionic liposomes for small interfering ribonucleic acid (siRNA) delivery to primary neuronal cells: Evaluation of alpha-synuclein knockdown efficacy. Nano Res. 2017, 10, 3496–3508.
Sun, W. X.; Jiang, H. T.; Wu, X.; Xu, Z. Y.; Yao, C.; Wang, J.; Qin, M.; Jiang, Q.; Wang, W.; Shi, D. Q. et al. Strong dual-crosslinked hydrogels for ultrasound-triggered drug delivery. Nano Res. 2019, 12, 115–119.
Webber, M. J.; Langer, R. Drug delivery by supramolecular design. Chem. Soc. Rev. 2017, 46, 6600–6620.
Yu, G. C.; Chen, X. Y. Host–guest chemistry in supramolecular theranostics. Theranostics 2019, 9, 3041–3074.
Leroux, J. C. Editorial: Drug delivery: Too much complexity, not enough reproducibility. Angew. Chem., Int. Ed. 2017, 56, 15170–15171.
Wang, L.; Li, L. L.; Fan, Y. S.; Wang, H. Host–guest supramolecular nanosystems for cancer diagnostics and therapeutics. Adv. Mater. 2013, 25, 3888–3898.
Cao, S. P.; Pei, Z. C.; Xu, Y. Q.; Pei, Y. X. Glyco-nanovesicles with activatable near-infrared probes for real-time monitoring of drug release and targeted delivery. Chem. Mater. 2016, 28, 4501–4506.
Wu, X. M.; Sun, X. R.; Guo, Z. Q.; Tang, J. B.; Shen, Y. Q.; James, T. D.; Tian, H.; Zhu, W. H. In vivo and in situ tracking cancer chemotherapy by highly photostable NIR fluorescent theranostic prodrug. J. Am. Chem. Soc. 2014, 136, 3579–3588.
Yan, C. X.; Guo, Z. Q.; Liu, Y. J.; Shi, P.; Tian, H.; Zhu, W. H. A sequence-activated AND logic dual-channel fluorescent probe for tracking programmable drug release. Chem. Sci. 2018, 9, 6176–6182.
Gao, D.; Xu, H.; Philbert, M. A.; Kopelman, R. Bioeliminable nanohydrogels for drug delivery. Nano Lett. 2008, 8, 3320–3324.
Cheng, J. J.; Khin, K. T.; Jensen, G. S.; Liu, A. J.; Davis, M. E. Synthesis of linear, β-cyclodextrin-based polymers and their camptothecin conjugates. Bioconjug. Chem. 2003, 14, 1007–1017.
Eliasof, S.; Lazarus, D.; Peters, C. G.; Case, R. I.; Cole, R. O.; Hwang, J.; Schluep, T.; Chao, J.; Lin, J.; Yen, Y. et al. Correlating preclinical animal studies and human clinical trials of a multifunctional, polymeric nanoparticle. Proc. Natl. Acad. Sci. USA 2013, 110, 15127–15132.
Schluep, T.; Hwang, J.; Hildebrandt, I. J.; Czernin, J.; Choi, C. H. J.; Alabi, C. A.; Mack, B. C.; Davis, M. E. Pharmacokinetics and tumor dynamics of the nanoparticle IT-101 from PET imaging and tumor histological measurements. Proc. Natl. Acad. Sci. USA 2009, 106, 11394–11399.
Guo, S. W.; Song, Y. S.; He, Y. L.; Hu, X. Y.; Wang, L. Y. Highly efficient artificial light-harvesting systems constructed in aqueous solution based on supramolecular self-assembly. Angew. Chem., Int. Ed. 2018, 57, 3163–3167.
Li, B.; Meng, Z.; Li, Q. Q.; Huang, X. Y.; Kang, Z. Y.; Dong, H. J.; Chen, J. Y.; Sun, J.; Dong, Y. S.; Li, J. et al. A pH responsive complexation-based drug delivery system for oxaliplatin. Chem. Sci. 2017, 8, 4458–4464.
Wu, X.; Li, Y.; Lin, C.; Hu, X. Y.; Wang, L. Y. GSH- and pH-responsive drug delivery system constructed by water-soluble pillar[5]arene and lysine derivative for controllable drug release. Chem. Commun. 2015, 51, 6832–6835.
Xu, Z.; Jia, S. R.; Wang, W.; Yuan, Z.; Jan Ravoo, B.; Guo, D. S. Heteromultivalent peptide recognition by co-assembly of cyclodextrin and calixarene amphiphiles enables inhibition of amyloid fibrillation. Nat. Chem. 2019, 11, 86–93.
Zheng, Z.; Yu, H. J.; Geng, W. C.; Hu, X. Y.; Wang, Y. Y.; Li, Z. H.; Wang, Y. F.; Guo, D. S. Guanidinocalix[5]arene for sensitive fluorescence detection and magnetic removal of perfluorinated pollutants. Nat. Commun. 2019, 10, 5762.
Chen, H.; Chen, Y. Y.; Wu, H.; Xu, J. F.; Sun, Z. W.; Zhang, X. Supramolecular polymeric chemotherapy based on cucurbit[7]uril-PEG copolymer. Biomaterials 2018, 178, 697–705.
Chen, Y. Y.; Huang, Z. H.; Zhao, H. Y.; Xu, J. F.; Sun, Z. W.; Zhang, X. Supramolecular chemotherapy: Cooperative enhancement of antitumor activity by combining controlled release of oxaliplatin and consuming of spermine by cucurbit[7]uril. Acs Appl. Mater. Interfaces 2017, 9, 8602–8608.
Sun, C.; Zhang, H. P.; Li, S. K.; Zhang, X. J.; Cheng, Q.; Ding, Y. F.; Wang, L. H.; Wang, R. B. Polymeric nanomedicine with “Lego” surface allowing modular functionalization and drug encapsulation. ACS Appl. Mater. Interfaces 2018, 10, 25090–25098.
Karim, A. A.; Dou, Q. Q.; Li, Z. B.; Loh, X. J. Emerging supramolecular therapeutic carriers based on host–guest interactions. Chem. Asian J. 2016, 11, 1300–1321.
Li, J.; Fang, Y.; Zhang, Y. F.; Wang, H. M.; Yang, Z. M.; Ding, D. Supramolecular self-assembly-facilitated aggregation of tumor-specific transmembrane receptors for signaling activation and converting immunologically cold to hot tumors. Adv. Mater. 2021, 33, 2008518.
Li, X. S.; Bai, H. T.; Yang, Y. C.; Yoon, J.; Wang, S.; Zhang, X. Supramolecular antibacterial materials for combatting antibiotic resistance. Adv. Mater. 2019, 31, 1805092.
Webber, M. J.; Appel, E. A.; Meijer, E. W.; Langer, R. Supramolecular biomaterials. Nat. Mater. 2016, 15, 13–26.
Chen, J. Y.; Zhang, Y. D.; Meng, Z.; Guo, L.; Yuan, X. Y.; Zhang, Y. H.; Chai, Y.; Sessler, J. L.; Meng, Q. B.; Li, C. J. Supramolecular combination chemotherapy: A pH-responsive co-encapsulation drug delivery system. Chem. Sci. 2020, 11, 6275–6282.
Hu, X. Y.; Gao, J.; Chen, F. Y.; Guo, D. S. A host–guest drug delivery nanosystem for supramolecular chemotherapy. J. Control. Release 2020, 324, 124–133.
Wang, Q.; Tian, L.; Xu, J. Z.; Xia, B.; Li, J.; Lu, F.; Lu, X. M.; Wang, W. J.; Huang, W.; Fan, Q. L. Multifunctional supramolecular vesicles for combined photothermal/photodynamic/hypoxia-activated chemotherapy. Chem. Commun. 2018, 54, 10328–10331.
Ni, X. L.; Xiao, X.; Cong, H.; Zhu, Q. J.; Xue, S. F.; Tao, Z. Self-assemblies based on the “outer-surface interactions” of cucurbit[n]urils: New opportunities for supramolecular architectures and materials. Acc. Chem. Res. 2014, 47, 1386–1395.
Webb, M. S.; Johnstone, S.; Morris, T. J.; Kennedy, A.; Gallagher, R.; Harasym, N.; Harasym, T.; Shew, C. R.; Tardi, P.; Dragowska, W. H. et al. In vitro and in vivo characterization of a combination chemotherapy formulation consisting of vinorelbine and phosphatidylserine. Eur. J. Pharm. Biopharm. 2007, 65, 289–299.
Yu, G. C.; Jie, K. C.; Huang, F. H. Supramolecular amphiphiles based on host-guest molecular recognition motifs. Chem. Rev. 2015, 115, 7240–7303.
Zhang, J. X.; Ma, P. X. Cyclodextrin-based supramolecular systems for drug delivery: Recent progress and future perspective. Adv. Drug Deliv. Rev. 2013, 65, 1215–1233.
Zhou, J.; Yu, G. C.; Huang, F. H. Supramolecular chemotherapy based on host–guest molecular recognition: A novel strategy in the battle against cancer with a bright future. Chem. Soc. Rev. 2017, 46, 7021–7053.
Zhang, T. X.; Zhang, Z. Z.; Yue, Y. X.; Hu, X. Y.; Huang, F.; Shi, L. Q.; Liu, Y.; Guo, D. S. A general hypoxia-responsive molecular container for tumor-targeted therapy. Adv. Mater. 2020, 32, 1908435.
Aryal, S.; Hu, C. M. J.; Zhang, L. F. Polymeric nanoparticles with precise ratiometric control over drug loading for combination therapy. Mol. Pharm. 2011, 8, 1401–1407.
Dondoni, A.; Marra, A. Calixarene and calixresorcarene glycosides: Their synthesis and biological applications. Chem. Rev. 2010, 110, 4949–4977.
Zhang, Z. Z.; Yue, Y. X.; Xu, L. N.; Wang, Y.; Geng, W. C.; Li, J. J.; Kong, X. L.; Zhao, X. Z.; Zheng, Y. D.; Zhao, Y. et al. Macrocyclic-amphiphile-based self-assembled nanoparticles for ratiometric delivery of therapeutic combinations to tumors. Adv. Mater. 2021, 33, 2007719.
Zhang, T. X.; Li, J. J.; Li, H. B.; Guo, D. S. Deep cavitand calixarene-solubilized fullerene as a potential photodynamic agent. Front. Chem. 2021, 9, 710808.
Roy, S. G.; Acharya, R.; Chatterji, U.; De, P. RAFT polymerization of methacrylates containing a tryptophan moiety: Controlled synthesis of biocompatible fluorescent cationic chiral polymers with smart pH-responsiveness. Polym. Chem. 2013, 4, 1141–1152.
Rad, M. N. S.; Behrouz, S. The base-free chemoselective ring opening of epoxides with carboxylic acids using [bmim]Br: a rapid entry into 1, 2-diol mono-esters synthesis. Mol. Divers. 2013, 17, 9–18.
Fu, L. X.; Peng, Y. Q. Isocyanate-functionalized starch as biorenewable backbone for the preparation and application of poly(ethylene imine) grafted starch. Monatsh. Chem. 2017, 148, 1547–1554.