Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Triboelectric nanogenerator (TENG) can realize a variety of mechanical energy collections in the environment, which has great potential in the field of wearable energy. However, many TENGs could rarely be satisfactory to wearable electronics promotion because of their expensive raw materials and complex manufacturing processes. In this study, a type of porous structure carbon powder/manganese dioxide (C/MnO2) nanocomposite is introduced. The material adopts low-cost, high-yield carbon powder, can be prepared in one step through a simple, economical, and environmentally friendly hydrothermal preparation process, and has high economic practicality. Superior power generation performance was obtained by modulating the charge trapping ability and storage capacity of polydimethylsiloxane@C/MnO2 (PDMS@C/MnO2) film based on variations in the weight-loading of C/MnO2. The maximum output voltage of carbon powder/manganese dioxide TENG (CM-TENG) is 63 V, which is 2.1 times that of PDMS-TENG and 1.86 times that of carbon powder TENG (C-TENG) and can easily light up 53 LEDs. Furthermore, CM-TENG can convert biological motion energy into electrical signals to detect human hand movements. The CM-TENG self-powered system can successfully drive various microelectronic devices, such as electronic watches, liquid crystal displays (LCDs), and calculators. This study provides a reliable, low-cost, high-performance, and widely applicable electronic system that shows great potential in future fields such as wearable devices and micro-sensing systems.
Zhou, Y. K.; Shen, M. L.; Cui, X.; Shao, Y. C.; Li, L. J.; Zhang, Y. Triboelectric nanogenerator based self-powered sensor for artificial intelligence. Nano Energy 2021, 84, 105887.
Matsunaga, M.; Hirotani, J.; Kishimoto, S.; Ohno, Y. High-output, transparent, stretchable triboelectric nanogenerator based on carbon nanotube thin film toward wearable energy harvesters. Nano Energy 2020, 67, 104297.
Ma, L. Y.; Wu, R. H.; Patil, A.; Yi, J.; Liu, D.; Fan, X. W.; Sheng, F. F.; Zhang, Y. F.; Liu, S.; Shen, S. et al. Acid and alkali-resistant textile triboelectric nanogenerator as a smart protective suit for liquid energy harvesting and self-powered monitoring in high-risk environments. Adv. Funct. Mater. 2021, 31, 2102963.
Kim, I.; Jeon, H.; Kim, D.; You, J.; Kim, D. All-in-one cellulose based triboelectric nanogenerator for electronic paper using simple filtration process. Nano Energy 2018, 53, 975–981.
Qin, Z.; Yin, Y. Y.; Zhang, W. Z.; Li, C. J.; Pan, K. Wearable and stretchable triboelectric nanogenerator based on crumpled nanofibrous membranes. ACS Appl. Mater. Interfaces 2019, 11, 12452–12459.
Yang, H. M.; Wang, M. F.; Deng, M. M.; Guo, H. Y.; Zhang, W.; Yang, H. K.; Xi, Y.; Li, X. G.; Hu, C. G.; Wang, Z. L. A full-packaged rolling triboelectric-electromagnetic hybrid nanogenerator for energy harvesting and building up self-powered wireless systems. Nano Energy 2019, 56, 300–306.
Zhang, Q.; Zhang, Z.; Liang, Q. J.; Gao, F. F.; Yi, F.; Ma, M. Y.; Liao, Q. L.; Kang, Z.; Zhang, Y. Green hybrid power system based on triboelectric nanogenerator for wearable/portable electronics. Nano Energy 2019, 55, 151–163.
Ren, X. H.; Xiang, X. Y.; Yin, H. F.; Tang, Y.; Yuan, H. D. All-yarn triboelectric nanogenerator and supercapacitor based self-charging power cloth for wearable applications. Nanotechnology 2021, 32, 315404.
Ravichandran, A. N.; Calmes, C.; Serres, J. R.; Ramuz, M.; Blayac, S. Compact and high performance wind actuated venturi triboelectric energy harvester. Nano Energy 2019, 62, 449–457.
Zhang, Q.; Jiang, C. M.; Li, X. J.; Dai, S. F.; Ying, Y. B.; Ping, J. F. Highly efficient raindrop energy-based triboelectric nanogenerator for self-powered intelligent greenhouse. ACS Nano 2021, 15, 12314–12323.
Liu, L.; Shi, Q. F.; Lee, C. A hybridized electromagnetic-triboelectric nanogenerator designed for scavenging biomechanical energy in human balance control. Nano Res. 2021, 14, 4227–4235.
Cho, S.; Yun, Y.; Jang, S.; Ra, Y.; Choi, J. H.; Hwang, H. J.; Choi, D.; Choi, D. Universal biomechanical energy harvesting from joint movements using a direction-switchable triboelectric nanogenerator. Nano Energy 2020, 71, 104584.
Lee, Y.; Kang, S. G.; Jeong, J. Sliding triboelectric nanogenerator with staggered electrodes. Nano Energy 2021, 86, 106062.
Qu, X. C.; Ma, X.; Shi, B. J.; Li, H.; Zheng, L.; Wang, C.; Liu, Z.; Fan, Y. B.; Chen, X. Y.; Li, Z. et al. Refreshable Braille display system based on triboelectric nanogenerator and dielectric elastomer. Adv. Funct. Mater. 2021, 31, 206612.
Su, Y. J.; Chen, G. R.; Chen, C. X.; Gong, Q. C.; Xie, G. Z.; Yao, M. L.; Tai, H. L.; Jiang, Y. D.; Chen, J. Self-powered respiration monitoring enabled by a triboelectric nanogenerator (Adv. Mater. 35/2021). Adv. Mater. 2021, 33, 2170277.
Gao, Y. Y.; Liu, G. X.; Bu, T. Z.; Liu, Y. Y.; Qi, Y. C.; Xie, Y. T.; Xu, S. H.; Deng, W. L.; Yang, W. Q.; Zhang, C. MXene based mechanically and electrically enhanced film for triboelectric nanogenerator. Nano Res. 2021, 14, 4833–4840.
Zhao, J. Q.; Zhen, G. W.; Liu, G. X.; Bu, T. Z.; Liu, W. B.; Fu, X. P.; Zhang, P.; Zhang, C.; Wang, Z. L. Remarkable merits of triboelectric nanogenerator than electromagnetic generator for harvesting small-amplitude mechanical energy. Nano Energy 2019, 61, 111–118.
Zhang, H. H.; Zhang, P.; Zhang, W. K. A high-output performance mortise and tenon structure triboelectric nanogenerator for human motion sensing. Nano Energy 2021, 84, 105933.
Qi, J. B.; Wang, A. C.; Yang, W. F.; Zhang, M. Y.; Hou, C. Y.; Zhang, Q. H.; Li, Y. G.; Wang, H. Z. Hydrogel-based hierarchically wrinkled stretchable nanofibrous membrane for high performance wearable triboelectric nanogenerator. Nano Energy 2020, 67, 104206.
Chen, H. M.; Yang, W.; Zhang, C.; Wu, M. Q.; Li, W. J.; Zou, Y. X.; Lv, L. F.; Yu, H. L.; Ke, H. Z.; Liu, R. P. et al. Performance-enhanced and cost-effective triboelectric nanogenerator based on stretchable electrode for wearable SpO2 monitoring. Nano Res. 2022, 15, 2465–2471.
Xu, L.; Bu, T. Z.; Yang, X. D.; Zhang, C.; Wang, Z. L. Ultrahigh charge density realized by charge pumping at ambient conditions for triboelectric nanogenerators. Nano Energy 2018, 49, 625–633.
Cui, X. J.; Zhao, T. C.; Yang, S.; Xie, G.; Zhang, Z. Y.; Zhang, Y. X.; Sang, S. B.; Lin, Z. H.; Zhang, W. D.; Zhang, H. L. A spongy electrode-brush-structured dual-mode triboelectric nanogenerator for harvesting mechanical energy and self-powered trajectory tracking. Nano Energy 2020, 78, 105381.
Xia, K. Q.; Zhu, Z. Y.; Fu, J. M.; Li, Y. M.; Chi, Y.; Zhang, H. Z.; Du, C. L.; Xu, Z. W. A triboelectric nanogenerator based on waste tea leaves and packaging bags for powering electronic office supplies and behavior monitoring. Nano Energy 2019, 60, 61–71.
Zou, Y. J.; Xu, J.; Fang, Y. S.; Zhao, X.; Zhou, Y. H.; Chen, J. A hand-driven portable triboelectric nanogenerator using whirligig spinning dynamics. Nano Energy 2021, 83, 105845.
Luo, J. J.; Wang, Z. M.; Xu, L.; Wang, A. C.; Han, K.; Jiang, T.; Lai, Q. S.; Bai, Y.; Tang, W.; Fan, F. R. et al. Flexible and durable wood-based triboelectric nanogenerators for self-powered sensing in athletic big data analytics. Nat. Commun. 2019, 10, 5147.
Park, J.; Kim, D.; Kim, Y. T. Soft and transparent triboelectric nanogenerator based E-skin for wearable energy harvesting and pressure sensing. Nanotechnology 2021, 32, 385403.
Liu, Y. P.; Han, R. L.; Li, L. Y.; Zhou, Z.; Chen, G. X.; Li, Q. F. Tuning of highly dielectric calcium copper titanate nanowires to enhance the output performance of a triboelectric nanogenerator. ACS Appl. Electron. Mater. 2020, 2, 1709–1715.
Dong, K.; Peng, X.; Wang, Z. L. Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Adv. Mater. 2020, 32, 1902549.
Paosangthong, W.; Wagih, M.; Torah, R.; Beeby, S. Textile-based triboelectric nanogenerator with alternating positive and negative freestanding grating structure. Nano Energy 2019, 66, 104148.
Zhang, L.; Su, C.; Cui, X.; Li, P. P.; Wang, Z.; Gu, L.; Tang, Z. X. Free-standing triboelectric layer-based full fabric wearable nanogenerator for efficient mechanical energy harvesting. ACS Appl. Electron. Mater. 2020, 2, 3366–3372.
Kim, M. P.; Ahn, C. W.; Lee, Y.; Kim, K.; Park, J.; Ko, H. Interfacial polarization-induced high-k polymer dielectric film for high-performance triboelectric devices. Nano Energy 2021, 82, 105697.
Jing, X.; Li, H.; Mi, H. Y.; Feng, P. Y.; Tao, X. M.; Liu, Y. J.; Liu, C. T.; Shen, C. Y. Enhancing the performance of a stretchable and transparent triboelectric nanogenerator by optimizing the hydrogel ionic electrode property. ACS Appl. Mater. Interfaces 2020, 12, 23474–23483.
Wang, C. F.; Wang, X. L.; Hu, Y. Q.; Li, L. Z.; Li, Z. H.; Wu, H.; Zhao, Z. R. Investigation on the adhesive contact and electrical performance for triboelectric nanogenerator considering polymer viscoelasticity. Nano Res. 2021, 14, 4625–4633.
He, W.; Sohn, M.; Ma, R. J.; Kang, D. J. Flexible single-electrode triboelectric nanogenerators with MXene/PDMS composite film for biomechanical motion sensors. Nano Energy 2020, 78, 105383.
Zhao, X. Y.; Ounaies, Z. A facile method to enhance the flexibility and triboelectric output of PDMS using ionic liquid-coated single-wall carbon nanotubes. Nano Energy 2022, 94, 106908.
Sun, J. M.; Pu, X.; Liu, M. M.; Yu, A. F.; Du, C. H.; Zhai, J. Y.; Hu, W. G.; Wang, Z. L. Self-healable, stretchable, transparent triboelectric nanogenerators as soft power sources. ACS Nano 2018, 12, 6147–6155.
Wang, Y.; Gao, Y. N.; Yue, T. N.; Chen, X. D.; Wang, M. Achieving high-performance and tunable microwave shielding in multi-walled carbon nanotubes/polydimethylsiloxane composites containing liquid metals. Appl. Surf. Sci. 2021, 563, 150255.
Wang, D. Z.; Lin, Y.; Hu, D. W.; Jiang, P. K.; Huang, X. Y. Multifunctional 3D-MXene/PDMS nanocomposites for electrical, thermal and triboelectric applications. Compos. Part A:Appl. Sci. Manuf. 2020, 130, 105754.
Bhatta, T.; Maharjan, P.; Cho, H.; Park, C.; Yoon, S. H.; Sharma, S.; Salauddin, M.; Rahman, M. T.; Rana, S. M. S.; Park, J. Y. High-performance triboelectric nanogenerator based on MXene functionalized polyvinylidene fluoride composite nanofibers. Nano Energy 2021, 81, 105670.
Sun, N.; Wen, Z.; Zhao, F. P.; Yang, Y. Q.; Shao, H. Y.; Zhou, C. J.; Shen, Q. Q.; Feng, K.; Peng, M. F.; Li, Y. G. et al. All flexible electrospun papers based self-charging power system. Nano Energy 2017, 38, 210–217.
Song, Y.; Cheng, X. L.; Chen, H. T.; Huang, J. H.; Chen, X. X.; Han, M. D.; Su, Z. M.; Meng, B.; Song, Z. J.; Zhang, H. X. Integrated self-charging power unit with flexible supercapacitor and triboelectric nanogenerator. J. Mater. Chem. A 2016, 4, 14298–14306.
Liu, Y.; Cai, X. Y.; Luo, B. F.; Yan, M.; Jiang, J. H.; Shi, W. D. MnO2 decorated on carbon sphere intercalated graphene film for high-performance supercapacitor electrodes. Carbon 2016, 107, 426–432.
Zhang, H. H.; Yang, J. H.; Liao, Z. Y.; Liu, T. X.; Li, H. Y.; Yang, Z. C.; Pan, P.; Huang, S. M.; Xie, L. Q.; Zhang, K. L. et al. One-pot synthesis of graphite/MnO2 hybrids and electrochemical supercapacitor performance on different substrates. J. Mater. Sci.: Mater. Electron. 2018, 29, 13681–13686.
Jin, L.; Xiao, X.; Deng, W. L.; Nashalian, A.; He, D. R.; Raveendran, V.; Yan, C.; Su, H.; Chu, X.; Yang, T. et al. Manipulating relative permittivity for high-performance wearable triboelectric nanogenerators. Nano Lett. 2020, 20, 6404–6411.
Essam, J. W. Percolation theory. Rep. Prog. Phys. 1980, 43, 833–912.
Lan, L. Y.; Yin, T. H.; Jiang, C. M.; Li, X. J.; Yao, Y.; Wang, Z.; Qu, S. X.; Ye, Z. Z.; Ping, J. F.; Ying, Y. B. Highly conductive 1D-2D composite film for skin-mountable strain sensor and stretchable triboelectric nanogenerator. Nano Energy 2019, 62, 319–328.