AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (20.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Single-wavelength-excited fluorogenic nanoprobe for accurate real-time ratiometric analysis of broad pH fluctuations in mitophagy

Xin Zhang1Juan Chen2Jiwen Hu1Anna du Rietz1Xiongyu Wu1Ruilong Zhang2( )Zhongping Zhang2Kajsa Uvdal1Zhangjun Hu1( )
Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping SE 58183, Sweden
School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
Show Author Information

Graphical Abstract

We present a promising strategy of assembling two fluorogenic pH-sensitive units with distinguishable emission bands, a mitochondria-specific block, cell-penetrating facilitator, and a biocompatible segment into a single nanoprobe, greatly improving the applicability for real-time tracking of the whole mitophagy.

Abstract

Mitophagy has a critical role in maintaining cellular homeostasis through acidic lysosomes engulfing excess or impaired mitochondria, thereby pH fluctuation is one of the most significant indicators for tracking mitophagy. Then such precise pH tracking demands the fluorogenic probe that has tailored contemporaneous features, including mitochondrial-specificity, excellent biocompatibility, wide pH-sensitive range of 8.0–4.0, and especially quantitative ability. However, available molecular probes cannot simultaneously meet all the requirements since it is extremely difficult to integrate multiple functionalities into a single molecule. To fully address this issue, we herein integrate two fluorogenic pH sensitive units, a mitochondria-specific block, cell-penetrating facilitator, and biocompatible segments into an elegant silica nano scaffold, which greatly ensures the applicability for real-time tracking of pH fluctuations in mitophagy. Most significantly, at a single wavelength excitation, the integrated pH-sensitive units have spectra-distinguishable fluorescence towards alkaline and acidic pH in a broad range that covers mitochondrial and lysosomal pH, thus enabling a ratiometric analysis of pH variations during the whole mitophagy. This work also provides constructive insights into the fabrication of advanced fluorescent nanoprobes for diverse biomedical applications.

Electronic Supplementary Material

Download File(s)
12274_2022_4325_MOESM1_ESM.pdf (905.6 KB)

References

1

Sterea, A. M. ; El Hiani, Y. The role of mitochondrial calcium signaling in the pathophysiology of cancer cells. Adv. Exp. Med. Biol. 2020, 1131, 747–770.

2

Onishi, M.; Yamano, K.; Sato, M.; Matsuda, N.; Okamoto, K. Molecular mechanisms and physiological functions of mitophagy. EMBO J. 2021, 40, e104705.

3

Kang, T. C. Nuclear factor-erythroid 2-related factor 2 (Nrf2) and mitochondrial dynamics/mitophagy in neurological diseases. Antioxidants 2020, 9, 617.

4

Chistiakov, D. A.; Shkurat, T. P.; Melnichenko, A. A.; Grechko, A. V.; Orekhov, A. N. The role of mitochondrial dysfunction in cardiovascular disease: A brief review. Ann. Med. 2018, 50, 121–127.

5

Porporato, P. E.; Filigheddu, N.; Bravo-San Pedro, J. M.; Kroemer, G.; Galluzzi, L. Mitochondrial metabolism and cancer. Cell Res. 2018, 28, 265–280.

6

Rai, S.; Manjithaya, R. Fluorescence microscopy: A tool to study autophagy. AIP Adv. 2015, 5, 084804.

7

Shi, R. Y.; Guberman, M.; Kirshenbaum, L. A. Mitochondrial quality control: The role of mitophagy in aging. Trends Cardiovas. Med. 2018, 28, 246–260.

8

Li, X. Y.; Hu, Y. M.; Li, X. H.; Ma, H. M. Mitochondria-immobilized near-infrared ratiometric fluorescent pH probe to evaluate cellular mitophagy. Anal. Chem. 2019, 91, 11409–11416.

9

Yuan, J.; Peng, R.; Cheng, D.; Zou, L. H.; Yuan, L. Revealing minor pH changes of mitochondria by a highly sensitive molecular fluorescent probe. Chem. Asian J. 2021, 16, 342–347.

10

Wang, H.; Hu, J. W.; Yang, G. Q.; Zhang, X.; Zhang, R. L.; Uvdal, K.; Zhang, Z. P.; Wu, X. Y.; Hu, Z. J. Real-time tracking of mitochondrial dynamics by a dual-sensitive probe. Sens. Actuators B:Chem. 2020, 320, 128418.

11

Zhang, X.; Wang, C. F.; Feng, G.; Jiang, J. X.; Hu, J. W.; du Rietz, A.; Brommesson, C.; Zhang, X. J.; Ma, Y. G.; Roberg, K. et al. Tailorable membrane-penetrating nanoplatform for highly efficient organelle-specific localization. Small 2021, 17, 2101440.

12

Zhang, X.; du Rietz, A.; Hu, J. W.; Brommesson, C.; Wu, X. Y.; Uvdal, K.; Hu, Z. J. A ratiometric fluorogenic nanoprobe for real-time quantitative monitoring of lysosomal pH. Sens. Actuators B:Chem. 2021, 345, 130350.

13

Lee, M. H.; Han, J. H.; Lee, J. H.; Park, N.; Kumar, R.; Kang, C.; Kim, J. S. Two-color probe to monitor a wide range of pH values in cells. Angew. Chem. 2013, 125, 6326–6329.

14

Zheng, H.; Zhan, X. Q.; Bian, Q. N.; Zhang, X. J. Advances in modifying fluorescein and rhodamine fluorophores as fluorescent chemosensors. Chem. Commun. 2013, 49, 429–447.

15

Le Guern, F.; Mussard, V.; Gaucher, A.; Rottman, M.; Prim, D. Fluorescein derivatives as fluorescent probes for pH monitoring along recent biological applications. Int. J. Mol. Sci. 2020, 21, 9217.

16

Lee, M. H.; Han, J. H.; Lee, J. H.; Park, N.; Kumar, R.; Kang, C.; Kim, J. S. Two-color probe to monitor a wide range of pH values in cells. Angew. Chem., Int. Ed. 2013, 52, 6206–6209.

17

Yu, K. K.; Li, K.; Qin, H. H.; Zhou, Q.; Qian, C. H.; Liu, Y. H.; Yu, X. Q. Construction of pH-sensitive “submarine” based on gold nanoparticles with double insurance for intracellular pH mapping, quantifying of whole cells and in vivo applications. ACS Appl. Mater. Interfaces 2016, 8, 22839–22848.

18

Luo, X.; Yang, H. T.; Wang, H. L.; Ye, Z. W.; Zhou, Z. N.; Gu, L. Y.; Chen, J. Q.; Xiao, Y.; Liang, X. W.; Qian, X. H. et al. Highly sensitive hill-type small-molecule pH probe that recognizes the reversed pH gradient of cancer cells. Anal. Chem. 2018, 90, 5803–5809.

19

Livingston, M. J.; Wang, J. H.; Zhou, J. L.; Wu, G. Y.; Ganley, I. G.; Hill, J. A.; Yin, X. M.; Dong, Z. Clearance of damaged mitochondria via mitophagy is important to the protective effect of ischemic preconditioning in kidneys. Autophagy 2019, 15, 2142–2162.

20

Wang, X. D.; Fan, L.; Wang, S. H.; Zhang, Y. W.; Li, F.; Zan, Q.; Lu, W. J.; Shuang, S. M.; Dong, C. Real-time monitoring mitochondrial viscosity during Mitophagy using a mitochondria-immobilized near-infrared aggregation-induced emission probe. Anal. Chem. 2021, 93, 3241–3249.

21

Ha, S.; Jeong, S. H.; Yi, K.; Chung, K. M.; Hong, C. J.; Kim, S. W.; Kim, E. K.; Yu, S. W. Phosphorylation of p62 by AMP-activated protein kinase mediates autophagic cell death in adult hippocampal neural stem cells. J. Biol. Chem. 2017, 292, 13795–13808.

22

Bansal, M.; Moharir, S. C.; Swarup, G. Autophagy receptor optineurin promotes autophagosome formation by potentiating LC3-II production and phagophore maturation. Commun. Integr. Biol. 2018, 11, 1–4.

23

Li, Q. R.; Han, Y.; Du, J. B.; Jin, H. F.; Zhang, J.; Niu, M. M.; Qin, J. Alterations of apoptosis and autophagy in developing brain of rats with epilepsy: Changes in LC3, P62, Beclin-1 and Bcl-2 levels. Neurosci. Res. 2018, 130, 47–55.

Nano Research
Pages 6515-6521
Cite this article:
Zhang X, Chen J, Hu J, et al. Single-wavelength-excited fluorogenic nanoprobe for accurate real-time ratiometric analysis of broad pH fluctuations in mitophagy. Nano Research, 2022, 15(7): 6515-6521. https://doi.org/10.1007/s12274-022-4325-3
Topics:

1148

Views

79

Downloads

10

Crossref

8

Web of Science

9

Scopus

2

CSCD

Altmetrics

Received: 09 December 2021
Revised: 12 March 2022
Accepted: 14 March 2022
Published: 11 May 2022
© The Author(s) 2022

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return