Journal Home > Volume 15 , Issue 8

Heterogeneous materials made of metal-organic frameworks (MOFs) and optically active nanomaterials have attracted intensive interests in recent years due to their distinct physicochemical properties, but controllable fabrication of these materials remains challenging yet. In this work, we report a new strategy to in situ fabricate heterogeneous nanomaterials based on UiO-66-NH2 and upconversion nanorods (UCNRs) via a hierarchical and dynamic assembly process. Core–satellite structured UiO-66-NH2@UCNRs have been successfully fabricated, and the formation mechanism was thoroughly investigated by the combined use of scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. Our results revealed the involvement of three main stages: supramolecular assembly of UiO-66-NH2 precursors with UCNRs, nucleation and growth of UiO-66-NH2 crystal, and dynamic assembly with UCNRs accompanied by Ostwald ripening. Furthermore, based on the hereditary optical and porous features of the heterogeneous nanomaterials, an enhanced multimodal synergistic anticancer platform has been established by integrating near-infrared (NIR)-triggered photodynamic therapy (PDT) and pH-triggered anticancer drug delivery, as confirmed by cellular experiments. The present study provides a new avenue for developing advanced functional heterogeneous nanomaterials via the hierarchical and dynamic assembly strategy.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Upconversion nanorods anchored metal-organic frameworks via hierarchical and dynamic assembly for synergistic therapy

Show Author's information Wenfeng Guo§Li-Li Tan§( )Qiang LiJuanmin LiLi Shang( )
State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Chongqing Science and Technology Innovation Center, Northwestern Polytechnical University, Xi’an 710072, China

§ Wenfeng Guo and Li-Li Tan contributed equally to this work.

Abstract

Heterogeneous materials made of metal-organic frameworks (MOFs) and optically active nanomaterials have attracted intensive interests in recent years due to their distinct physicochemical properties, but controllable fabrication of these materials remains challenging yet. In this work, we report a new strategy to in situ fabricate heterogeneous nanomaterials based on UiO-66-NH2 and upconversion nanorods (UCNRs) via a hierarchical and dynamic assembly process. Core–satellite structured UiO-66-NH2@UCNRs have been successfully fabricated, and the formation mechanism was thoroughly investigated by the combined use of scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. Our results revealed the involvement of three main stages: supramolecular assembly of UiO-66-NH2 precursors with UCNRs, nucleation and growth of UiO-66-NH2 crystal, and dynamic assembly with UCNRs accompanied by Ostwald ripening. Furthermore, based on the hereditary optical and porous features of the heterogeneous nanomaterials, an enhanced multimodal synergistic anticancer platform has been established by integrating near-infrared (NIR)-triggered photodynamic therapy (PDT) and pH-triggered anticancer drug delivery, as confirmed by cellular experiments. The present study provides a new avenue for developing advanced functional heterogeneous nanomaterials via the hierarchical and dynamic assembly strategy.

Keywords: therapy, metal-organic frameworks, assembly, upconversion nanorods, heterogeneous nanomaterials

References(51)

1

Li, Y. F.; Di, Z. H.; Gao, J. H.; Cheng, P.; Di, C. Z.; Zhang, G.; Liu, B.; Shi, X. H.; Sun, L. D.; Li, L. L. et al. Heterodimers made of upconversion nanoparticles and metal-organic frameworks. J. Am. Chem. Soc. 2017, 139, 13804–13810.

2

Reddy, A. L. M.; Gowda, S. R.; Shaijumon, M. M.; Ajayan, P. M. Hybrid nanostructures for energy storage applications. Adv. Mater. 2012, 24, 5045–5064.

3

Zhang, S. D.; Geryak, R.; Geldmeier, J.; Kim, S.; Tsukruk, V. V. Synthesis, assembly, and applications of hybrid nanostructures for biosensing. Chem. Rev. 2017, 117, 12942–13038.

4

Deng, D. H.; Novoselov, K. S.; Fu, Q.; Zheng, N. F.; Tian, Z. Q.; Bao, X. H. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 2016, 11, 218–230.

5

Chen, S. H.; Li, W. H.; Jiang, W. J.; Yang, J. R.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhuang, Z. C.; Chen, M. Z.; Sun, X. H. et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem., Int. Ed. 2022, 61, e202114450.

6

Figuerola, A.; Fiore, A.; Di Corato, R.; Falqui, A.; Giannini, C.; Micotti, E.; Lascialfari, A.; Corti, M.; Cingolani, R.; Pellegrino, T. et al. One-pot synthesis and characterization of size-controlled bimagnetic FePt-iron oxide heterodimer nanocrystals. J. Am. Chem. Soc. 2008, 130, 1477–1487.

7

Ji, S. F.; Jiang, B.; Hao, H. G.; Chen, Y. J.; Dong, J. C.; Mao, Y.; Zhang, Z. D.; Gao, R.; Chen, W. X.; Zhang, R. F. et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal. 2021, 4, 407–417.

8

Yuan, Z.; Zhang, L.; Li, S. Z.; Zhang, W. N.; Lu, M.; Pan, Y.; Xie, X. J.; Huang, L.; Huang, W. Paving metal-organic frameworks with upconversion nanoparticles via self-assembly. J. Am. Chem. Soc. 2018, 140, 15507–15515.

9

Wang, S.; Lin, J.; Wang, Z. T.; Zhou, Z. J.; Bai, R. L.; Lu, N.; Liu, Y. J.; Fu, X.; Jacobson, O.; Fan, W. P. et al. Core–satellite polydopamine-gadolinium-metallofullerene nanotheranostics for multimodal imaging guided combination cancer therapy. Adv. Mater. 2017, 29, 1701013.

10

Tan, L. L.; Wei, M. Y.; Shang, L.; Yang, Y. W. Cucurbiturils-mediated noble metal nanoparticles for applications in sensing, SERS, theranostics, and catalysis. Adv. Funct. Mater. 2021, 31, 2007277.

11

Wang, X. Y.; He, Y.; Han, X. P.; Zhao, J.; Li, L. L.; Zhang, J. F.; Zhong, C.; Deng, Y. D.; Hu, W. B. Engineering cobalt sulfide/oxide heterostructure with atomically mixed interfaces for synergistic electrocatalytic water splitting. Nano Res. 2022, 15, 1246–1253.

12

Zhao, X. T.; Li, Y. B.; Du, L. M.; Deng, Z. M.; Jiang, M. Y.; Zeng, S. J. Soft X-ray stimulated lanthanide@MOF nanoprobe for amplifying deep tissue synergistic photodynamic and antitumor immunotherapy. Adv. Healthc. Mater. 2021, 10, 2101174.

13

Ghasempour, H.; Wang, K. Y.; Powell, J. A.; ZareKarizi, F.; Lv, X. L.; Morsali, A.; Zhou, H. C. Metal-organic frameworks based on multicarboxylate linkers. Coord. Chem. Rev. 2021, 426, 213542.

14

Wang, L.; Han, Y. Z.; Feng, X.; Zhou, J. W.; Qi, P. F.; Wang, B. Metal-organic frameworks for energy storage: Batteries and supercapacitors. Coord. Chem. Rev. 2016, 307, 361–381.

15

Wu, J.; Chen, J. H.; Wang, C.; Zhou, Y.; Ba, K.; Xu, H.; Bao, W. Z.; Xu, X. H.; Carlsson, A.; Lazar, S. et al. Metal-organic framework for transparent electronics. Adv. Sci. 2020, 7, 1903003.

16

Kalmutzki, M. J.; Hanikel, N.; Yaghi, O. M. Secondary building units as the turning point in the development of the reticular chemistry of MOFs. Sci. Adv. 2018, 4, eaat9180.

17

Li, Y. T.; Tang, J. L.; He, L. C.; Liu, Y.; Liu, Y. L.; Chen, C. Y.; Tang, Z. Y. Core–shell upconversion nanoparticle@metal-organic framework nanoprobes for luminescent/magnetic dual-mode targeted imaging. Adv. Mater. 2015, 27, 4075–4080.

18

Shi, X. X.; Xu, H.; Wu, Y. N.; Zhao, Y. M.; Meng, H. M.; Li, Z. H.; Qu, L. B. Two-dimension (2D) Cu-MOFs/aptamer nanoprobe for in situ ATP imaging in living cells. J. Anal. Test. 2021, 5, 165–173.

19

Liu, Q.; Wu, B.; Li, M. Y.; Huang, Y. Y.; Li, L. L. Heterostructures made of upconversion nanoparticles and metal-organic frameworks for biomedical applications. Adv. Sci. 2022, 9, 2103911.

20

Wang, Z.; Liu, B.; Sun, Q. Q.; Feng, L. L.; He, F.; Yang, P. P.; Gai, S. L.; Quan, Z. W.; Lin, J. Upconverted metal-organic framework janus architecture for near-infrared and ultrasound co-enhanced high performance tumor therapy. ACS Nano 2021, 15, 12342–12357.

21

Li, Z. K.; Qiao, X.; He, G. H.; Sun, X.; Feng, D. H.; Hu, L. F.; Xu, H.; Xu, H. B.; Ma, S. Q.; Tian, J. Core–satellite metal-organic framework@upconversion nanoparticle superstructures via electrostatic self-assembly for efficient photodynamic theranostics. Nano Res. 2020, 13, 3377–3386.

22

Hao, C. H.; Wu, X. L.; Sun, M. Z.; Zhang, H. Y.; Yuan, A.; Xu, L. G.; Xu, C. L.; Kuang, H. Chiral core–shell upconversion nanoparticle@MOF nanoassemblies for quantification and bioimaging of reactive oxygen species in vivo. J. Am. Chem. Soc. 2019, 141, 19373–19378.

23

Liu, C.; Liu, B.; Zhao, J.; Di, Z. H.; Chen, D. Q.; Gu, Z. J.; Li, L. L.; Zhao, Y. L. Nd3+-sensitized upconversion metal-organic frameworks for mitochondria-targeted amplified photodynamic therapy. Angew. Chem., Int. Ed. 2020, 59, 2634–2638.

24

Chen, Y. J.; Wang, P. X.; Hao, H. G.; Hong, J. J.; Li, H. J.; Ji, S. F.; Li, A.; Gao, R.; Dong, J. C.; Han, X. D. et al. Thermal atomization of platinum nanoparticles into single atoms: An effective strategy for engineering high-performance nanozymes. J. Am. Chem. Soc. 2021, 143, 18643–18651.

25

Zhang, H. Y.; Hao, C. L.; Qu, A. H.; Sun, M. Z.; Xu, L. G.; Xu, C. L.; Kuang, H. Heterostructures of MOFs and nanorods for multimodal imaging. Adv. Funct. Mater. 2018, 28, 1805320.

26

Zeng, J. Y.; Zhang, M. K.; Peng, M. Y.; Gong, D.; Zhang, X. Z. Porphyrinic metal-organic frameworks coated gold nanorods as a versatile nanoplatform for combined photodynamic/photothermal/chemotherapy of tumor. Adv. Funct. Mater. 2018, 28, 1705451.

27

Hao, M. J.; Miao, P.; Wang, Y.; Wang, W. S.; Ge, S. G.; Yu, X. Y.; Hu, X. X.; Ding, B. Y.; Zhang, J.; Yan, M. Near-infrared light-initiated photoelectrochemical biosensor based on upconversion nanorods for immobilization-free miRNA detection with double signal amplification. Anal. Chem. 2021, 93, 11251–11258.

28

Xue, Z. L.; Yi, Z. G.; Li, X. L.; Li, Y. B.; Jiang, M. Y.; Liu, H. R.; Zeng, S. J. Upconversion optical/magnetic resonance imaging-guided small tumor detection and in vivo tri-modal bioimaging based on high-performance luminescent nanorods. Biomaterials 2017, 115, 90–103.

29

Osterrieth, J. W. M.; Wright, D.; Noh, H.; Kung, C. W.; Vulpe, D.; Li, A.; Park, J. E.; Van Duyne, R. P.; Moghadam, P. Z.; Baumberg, J. J. et al. Core–shell gold nanorod@zirconium-based metal-organic framework composites as in situ size-selective Raman probes. J. Am. Chem. Soc. 2019, 141, 3893–3900.

30

Zhou, Z. H.; Zhao, J.; Di, Z. H.; Liu, B.; Li, Z. H.; Wu, X. M.; Li, L. L. Core–shell gold nanorod@mesoporous-MOF heterostructures for combinational phototherapy. Nanoscale 2021, 13, 131–137.

31

Shao, Y. L.; Liu, B.; Di, Z. H.; Zhang, G.; Sun, L. D.; Li, L. L.; Yan, C. H. Engineering of upconverted metal-organic frameworks for near-infrared light-triggered combinational photodynamic/chemo-/immunotherapy against hypoxic tumors. J. Am. Chem. Soc. 2020, 142, 3939–3946.

32

Sun, L. N.; Wei, R. Y.; Feng, J.; Zhang, H. J. Tailored lanthanide-doped upconversion nanoparticles and their promising bioapplication prospects. Coord. Chem. Rev. 2018, 364, 10–32.

33

Sedlmeier, A.; Gorris, H. H. Surface modification and characterization of photon-upconverting nanoparticles for bioanalytical applications. Chem. Soc. Rev. 2015, 44, 1526–1560.

34

Liu, J. N.; Bu, W. B.; Pan, L. M.; Shi, J. L. NIR-triggered anticancer drug delivery by upconverting nanoparticles with integrated azobenzene-modified mesoporous silica. Angew. Chem., Int. Ed. 2013, 52, 4375–4379.

35

Luo, D.; Yan, C.; Wang, T. Interparticle forces underlying nanoparticle self-assemblies. Small 2015, 11, 5984–6008.

36

Yang, M.; Chan, H.; Zhao, G. P.; Bahng, J. H.; Zhang, P. J.; Král, P.; Kotov, N. A. Self-assembly of nanoparticles into biomimetic capsid-like nanoshells. Nat. Chem. 2017, 9, 287–294.

37

Jia, S. S.; Xu, W. S.; Chen, Y.; Liu, Y. Pyrrole/macrocycle/MOF supramolecular co-assembly for flexible solid state supercapacitors. Chin. Chem. Lett. 2021, 32, 2773–2776.

38

Qin, C. Y.; Li, Y. W.; Li, Q. F.; Yan, C. C.; Cao, L. P. Aggregation-induced emission and self-assembly of functional tetraphenylethene-based tetracationic dicyclophanes for selective detection of ATP in water. Chin. Chem. Lett. 2021, 32, 3531–3534.

39

Liu, Y.; Yang, Y.; Sun, Y. J.; Song, J. B.; Rudawski, N. G.; Chen, X. Y.; Tan, W. H. Ostwald ripening-mediated grafting of metal-organic frameworks on a single colloidal nanocrystal to form uniform and controllable MXF. J. Am. Chem. Soc. 2019, 141, 7407–7413.

40

Chatterjee, D. K.; Fong, L. S.; Zhang, Y. Nanoparticles in photodynamic therapy: An emerging paradigm. Adv. Drug. Deliv. Rev. 2008, 60, 1627–1637.

41

Dolmans, D. E. J. G. J.; Fukumura, D.; Jain, R. K. Photodynamic therapy for cancer. Nat. Rev. Cancer 2003, 3, 380–387.

42

Hang, L. F.; Zhang, T.; Wen, H.; Liang, L. B.; Li, W. M.; Ma, X. F.; Jiang, G. H. Controllable photodynamic performance via an acidic microenvironment based on two-dimensional metal-organic frameworks for photodynamic therapy. Nano Res. 2021, 14, 660–666.

43

Kan, J. L.; Jiang, Y.; Xue, A. Q.; Yu, Y. H.; Wang, Q. B.; Zhou, Y.; Dong, Y. B. Surface decorated porphyrinic nanoscale metal-organic framework for photodynamic therapy. Inorg. Chem. 2018, 57, 5420–5428.

44

Simon-Yarza, T.; Mielcarek, A.; Couvreur, P.; Serre, C. Nanoparticles of metal-organic frameworks: On the road to in vivo efficacy in biomedicine. Adv. Mater. 2018, 30, 1707365.

45

Tan, L. L.; Li, H. W.; Zhou, Y.; Zhang, Y.; Feng, X.; Wang, B.; Yang, Y. W. Zn2+-triggered drug release from biocompatible zirconium MOFs equipped with supramolecular gates. Small 2015, 11, 3807–3813.

46

He, L. C.; Brasino, M.; Mao, C. C.; Cho, S.; Park, W.; Goodwin, A. P.; Cha, J. N. DNA-assembled core–satellite upconverting-metal-organic framework nanoparticle superstructures for efficient photodynamic therapy. Small 2017, 13, 1700504.

47

Kan, J. L.; Wang, H. L.; Sun, W.; Cao, W.; Tao, J.; Jiang, J. Z. Sandwich-type mixed tetrapyrrole rare-earth triple-decker compounds. Effect of the coordination geometry on the single-molecule-magnet nature. Inorg. Chem. 2013, 52, 8505–8510.

48

Zhou, Y. F.; Fan, S. Y.; Feng, L. L.; Huang, X. L.; Chen, X. Y. Manipulating intratumoral fenton chemistry for enhanced chemodynamic and chemodynamic-synergized multimodal therapy. Adv. Mater. 2021, 33, 2104223.

49

Yu, K. X.; Qiao, Z. J.; Song, W. L.; Bi, S. DNA nanotechnology for multimodal synergistic theranostics. J. Anal. Test. 2021, 5, 112–129.

50

Zheng, Y. D.; Zhang, X. Y.; Su, Z. Q. Design of metal-organic framework composites in anti-cancer therapies. Nanoscale 2021, 13, 12102–12118.

51

Tan, L. L.; Li, H. W.; Qiu, Y. C.; Chen, D. X.; Wang, X.; Pan, R. Y.; Wang, Y.; Zhang, S. X. A.; Wang, B.; Yang, Y. W. Stimuli-responsive metal-organic frameworks gated by pillar[5]arene supramolecular switches. Chem. Sci. 2015, 6, 1640–1644.

File
12274_2022_4324_MOESM1_ESM.pdf (1.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 01 March 2022
Revised: 13 March 2022
Accepted: 13 March 2022
Published: 02 June 2022
Issue date: August 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. U213010103 and 51821091), the Natural Science Foundation of Chongqing (No. cstc2020jcyj-msxmX1053), and the Fundamental Research Funds for the Central Universities (Nos. 3102019JC and 31020180QD085). We thank Prof. Ruichan Lv at Xidian University for upconversion luminescence measurement.

Return