Journal Home > Volume 15 , Issue 7

Triboelectric nanogenerator (TENG) provides a new solution to the energy supply by harvesting high entropy energy. However, wearable electronic devices have high requirements for flexible, humidity-resistant, and low-cost TENG. Here, environment-friendly and multi-functional wheat starch TENG (S-TENG) was made by a simple and green method. The open-circuit voltage and short-circuit current of S-TENG are 151.4 V and 47.1 μA, respectively. S-TENG can be used not only to drive and intelligently control electronic equipment, but also to effectively harvest energy from body movements and wind. In addition, the output of S-TENG was not negatively affected with the increase in environmental humidity, but increased abnormally. In the range of 20% RH–80% RH, S-TENG can be potentially used as a sensitive self-powered humidity sensor. The S-TENG paves the way for large-scale preparation of multi-functional biomaterials-based TENG, and practical application of self-powered sensing and wearable devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Wearable and humidity-resistant biomaterials-based triboelectric nanogenerator for high entropy energy harvesting and self-powered sensing

Show Author's information Ning Zheng1,2,§Jiehui Xue1,3,§Yang Jie1,2,§Xia Cao1,2,4( )Zhong Lin Wang1,2,5( )
CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
School of Resources Environment and Materials, Guangxi University, Nanning 530004, China
Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing technology, School of Chemistry and Biological engineering, and Beijing Municipal Key Laboratory of New Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, China
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA

§ Ning Zheng, Jiehui Xue, and Yang Jie contributed equally to this work.

Abstract

Triboelectric nanogenerator (TENG) provides a new solution to the energy supply by harvesting high entropy energy. However, wearable electronic devices have high requirements for flexible, humidity-resistant, and low-cost TENG. Here, environment-friendly and multi-functional wheat starch TENG (S-TENG) was made by a simple and green method. The open-circuit voltage and short-circuit current of S-TENG are 151.4 V and 47.1 μA, respectively. S-TENG can be used not only to drive and intelligently control electronic equipment, but also to effectively harvest energy from body movements and wind. In addition, the output of S-TENG was not negatively affected with the increase in environmental humidity, but increased abnormally. In the range of 20% RH–80% RH, S-TENG can be potentially used as a sensitive self-powered humidity sensor. The S-TENG paves the way for large-scale preparation of multi-functional biomaterials-based TENG, and practical application of self-powered sensing and wearable devices.

Keywords: triboelectric nanogenerator, natural polymers, humidity-resistant, wearable smart device, self-powered sensing

References(39)

1

Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

2

Wang, Z. L. Entropy theory of distributed energy for internet of things. Nano Energy 2019, 58, 669–672.

3

Liu, Y.; Chen, B. D.; Li, W.; Zu, L. L.; Tang, W.; Wang, Z. L. Bioinspired triboelectric soft robot driven by mechanical energy. Adv. Funct. Mater. 2021, 31, 2104770.

4

Liu, C. R.; Zhang, N.; Li, J. Q.; Dong, L. X.; Wang, T.; Wang, Z. K.; Wang, G. F.; Zhou, X. F.; Zhang, J. Harvesting ultralow frequency (< 1 Hz) mechanical energy using triboelectric nanogenerator.Nano Energy 2019, 65, 104011.

DOI
5

Xia, K. Q.; Zhu, Z. Y.; Zhang, H. Z.; Du, C. L.; Xu, Z. W.; Wang, R. J. Painting a high-output triboelectric nanogenerator on paper for harvesting energy from human body motion. Nano Energy 2018, 50, 571–580.

6

Lu, X. H.; Xu, Y. H.; Qiao, G. D.; Gao, Q.; Zhang, X. S.; Cheng, T. H.; Wang, Z. L. Triboelectric nanogenerator for entire stroke energy harvesting with bidirectional gear transmission. Nano Energy 2020, 72, 104726.

7

Lin, H. B.; He, M. H.; Jing, Q. S.; Yang, W. F.; Wang, S. T.; Liu, Y.; Zhang, Y. L.; Li, J.; Li, N.; Ma, Y. W. et al. Angle-shaped triboelectric nanogenerator for harvesting environmental wind energy. Nano Energy 2019, 56, 269–276.

8

Wang, Y. Q.; Yu, X.; Yin, M. F.; Wang, J. L.; Gao, Q.; Yu, Y.; Cheng, T. H.; Wang, Z. L. Gravity triboelectric nanogenerator for the steady harvesting of natural wind energy. Nano Energy 2021, 82, 105740.

9

Zhang, C. G.; Liu, Y. B.; Zhang, B. F.; Yang, O.; Yuan, W.; He, L. X.; Wei, X. L.; Wang, J.; Wang, Z. L. Harvesting wind energy by a triboelectric nanogenerator for an intelligent high-speed train system. ACS Energy Lett. 2021, 6, 1490–1499.

10

Zhang, L.; Zhang, B. B.; Chen, J.; Jin, L.; Deng, W. L.; Tang, J. F.; Zhang, H. T.; Pan, H.; Zhu, M. H.; Yang, W. Q. et al. Lawn structured triboelectric nanogenerators for scavenging sweeping wind energy on rooftops. Adv. Mater. 2016, 28, 1650–1656.

11

Wang, Y.; Yang, E.; Chen, T. Y.; Wang, J. Y.; Hu, Z. Y.; Mi, J. C.; Pan, X. X.; Xu, M. Y. A novel humidity resisting and wind direction adapting flag-type triboelectric nanogenerator for wind energy harvesting and speed sensing. Nano Energy 2020, 78, 105279.

12

Ren, Z. W.; Wang, Z. M.; Wang, F.; Li, S. T.; Wang, Z. L. Vibration behavior and excitation mechanism of ultra-stretchable triboelectric nanogenerator for wind energy harvesting. Extreme Mech. Lett. 2021, 45, 101285.

13

Cheng, P.; Liu, Y. N.; Wen, Z.; Shao, H. Y.; Wei, A. M.; Xie, X. K.; Chen, C.; Yang, Y. Q.; Peng, M. F.; Zhuo, Q. Q. et al. Atmospheric pressure difference driven triboelectric nanogenerator for efficiently harvesting ocean wave energy. Nano Energy 2018, 54, 156–162.

14

Xu, M. Y.; Zhao, T. C.; Wang, C.; Zhang, S. L.; Li, Z.; Pan, X. X.; Wang, Z. L. High power density tower-like triboelectric nanogenerator for harvesting arbitrary directional water wave energy. ACS Nano 2019, 13, 1932–1939.

15

Zhang, D. H.; Shi, J. W.; Si, Y. L.; Li, T. Multi-grating triboelectric nanogenerator for harvesting low-frequency ocean wave energy. Nano Energy 2019, 61, 132–140.

16

Liu, G. L.; Xiao, L. F.; Chen, C. Y.; Liu, W. L.; Pu, X. J.; Wu, Z. Y.; Hu, C. G.; Wang, Z. L. Power cables for triboelectric nanogenerator networks for large-scale blue energy harvesting. Nano Energy 2020, 75, 104975.

17

Feng, Y. W.; Liang, X.; An, J.; Jiang, T.; Wang, Z. L. Soft-contact cylindrical triboelectric-electromagnetic hybrid nanogenerator based on swing structure for ultra-low frequency water wave energy harvesting. Nano Energy 2021, 81, 105625.

18

Liang, X.; Liu, Z. R.; Feng, Y. W.; Han, J. J.; Li, L. L.; An, J.; Chen, P. F.; Jiang, T.; Wang, Z. L. Spherical triboelectric nanogenerator based on spring-assisted swing structure for effective water wave energy harvesting. Nano Energy 2021, 83, 105836.

19

Zhao, L. L.; Duan, J. L.; Liu, L. Q.; Wang, J. W.; Duan, Y. Y.; Vaillant-Roca, L.; Yang, X. Y.; Tang, Q. W. Boosting power conversion efficiency by hybrid triboelectric nanogenerator/silicon tandem solar cell toward rain energy harvesting. Nano Energy 2021, 82, 105773.

20

Liu, X.; Yu, A. F.; Qin, A. M.; Zhai, J. Y. Highly integrated triboelectric nanogenerator for efficiently harvesting raindrop energy. Adv. Mater. Technol. 2019, 4, 1900608.

21

Liang, Q. J.; Yan, X. Q.; Liao, X. Q.; Zhang, Y. Integrated multi-unit transparent triboelectric nanogenerator harvesting rain power for driving electronics. Nano Energy 2016, 25, 18–25.

22

Zhao, Y. Y.; Pang, Z. B.; Duan, J. L.; Duan, Y. Y.; Jiao, Z. B.; Tang, Q. W. Self-powered monoelectrodes made from graphene composite films to harvest rain energy. Energy 2018, 158, 555–563.

23

Nie, S. X.; Guo, H. Y.; Lu, Y. X.; Zhuo, J. T.; Mo, J. L.; Wang, Z. L. Superhydrophobic cellulose paper-based triboelectric nanogenerator for water drop energy harvesting. Adv. Mater. Technol. 2020, 5, 2000454.

24

Peng, X.; Dong, K.; Ning, C.; Cheng, R. W.; Yi, J.; Zhang, Y. H.; Sheng, F. F.; Wu, Z. Y.; Wang, Z. L. All-nanofiber self-powered skin-interfaced real-time respiratory monitoring system for obstructive sleep apnea-hypopnea syndrome diagnosing. Adv. Funct. Mater. 2021, 31, 2103559.

25

Ren, Z. W.; Ding, Y. F.; Nie, J. H.; Wang, F.; Xu, L.; Lin, S. Q.; Chen, X. Y.; Wang, Z. L. Environmental energy harvesting adapting to different weather conditions and self-powered vapor sensor based on humidity-responsive triboelectric nanogenerators. ACS Appl. Mater. Interfaces 2019, 11, 6143–6153.

26

Luo, J. J.; Wang, Z. M.; Xu, L.; Wang, A. C.; Han, K.; Jiang, T.; Lai, Q. S.; Bai, Y.; Tang, W.; Fan, F. R. et al. Flexible and durable wood-based triboelectric nanogenerators for self-powered sensing in athletic big data analytics. Nat. Commun. 2019, 10, 5147.

27

Zhao, J.; Wang, D.; Zhang, F.; Liu, Y.; Chen, B. D.; Wang, Z. L.; Pan, J. S.; Larsson, R.; Shi, Y. J. Real-time and online lubricating oil condition monitoring enabled by triboelectric nanogenerator. ACS Nano 2021, 15, 11869–11879.

28

Wang, Z. M.; An, J.; Nie, J. H.; Luo, J. J.; Shao, J. J.; Jiang, T.; Chen, B. D.; Tang, W.; Wang, Z. L. A self-powered angle sensor at nanoradian-resolution for robotic arms and personalized medicare. Adv. Mater. 2020, 32, 2001466.

29

Zhang, C. G.; Liu, L.; Zhou, L. L.; Yin, X.; Wei, X. L.; Hu, Y. X.; Liu, Y. B.; Chen, S. Y.; Wang, J.; Wang, Z. L. Self-powered sensor for quantifying ocean surface water waves based on triboelectric nanogenerator. ACS Nano 2020, 14, 7092–7100.

30

Pang, Y. K.; Xi, F. B.; Luo, J. J.; Liu, G. X.; Guo, T.; Zhang, C. An alginate film-based degradable triboelectric nanogenerator. RSC Adv. 2018, 8, 6719–6726.

31

Ma, P.; Zhu, H. R.; Lu, H.; Zeng, Y. M.; Zheng, N.; Wang, Z. L.; Cao, X. Design of biodegradable wheat-straw based triboelectric nanogenerator as self-powered sensor for wind detection. Nano Energy 2021, 86, 106032.

32

Ma, J. M.; Zhu, J. Q.; Ma, P.; Jie, Y.; Wang, Z. L.; Cao, X. Fish bladder film-based triboelectric nanogenerator for noncontact position monitoring. ACS Energy Lett. 2020, 5, 3005–3011.

33

Kim, H. J.; Kim, J. H.; Jun, K. W.; Kim, J. H.; Seung, W. C.; Kwon, O. H.; Park, J. Y.; Kim, S. W.; Oh, I. K. Silk nanofiber-networked bio-triboelectric generator: Silk bio-TEG. Adv. Energy Mater. 2016, 6, 1502329.

34

Kim, J. N.; Lee, J.; Go, T. W.; Rajabi-Abhari, A.; Mahato, M.; Park, J. Y.; Lee, H.; Oh, I. K. Skin-attachable and biofriendly chitosan-diatom triboelectric nanogenerator. Nano Energy 2020, 75, 104904.

35

Lu, H.; Zhao, W. Y.; Wang, Z. L.; Cao, X. Sugar-based triboelectric nanogenerators for effectively harvesting vibration energy and sugar quality assessment. Nano Energy 2021, 88, 106196.

36

Xia, K. Q.; Zhu, Z. Y.; Fu, J. M.; Li, Y. M.; Chi, Y.; Zhang, H. Z.; Du, C. L.; Xu, Z. W. A triboelectric nanogenerator based on waste tea leaves and packaging bags for powering electronic office supplies and behavior monitoring. Nano Energy 2019, 60, 61–71.

37

Chen, Y. D.; Jie, Y.; Wang, J.; Ma, J. M.; Jia, X. T.; Dou, W.; Cao, X. Triboelectrification on natural rose petal for harvesting environmental mechanical energy. Nano Energy 2018, 50, 441–447.

38

Wang, N. N.; Zheng, Y. B.; Feng, Y. G.; Zhou, F.; Wang, D. A. Biofilm material based triboelectric nanogenerator with high output performance in 95% humidity environment. Nano Energy 2020, 77, 105088.

39

Liu, D.; Liu, J. M.; Yang, M. S.; Cui, N. Y.; Wang, H. Y.; Gu, L.; Wang, L. F.; Qin, Y. Performance enhanced triboelectric nanogenerator by taking advantage of water in humid environments. Nano Energy 2021, 88, 106303.

Video
12274_2022_4321_MOESM2_ESM.mp4
12274_2022_4321_MOESM3_ESM.mp4
12274_2022_4321_MOESM4_ESM.mp4
12274_2022_4321_MOESM5_ESM.mp4
File
12274_2022_4321_MOESM1_ESM.pdf (151.6 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 January 2022
Revised: 26 February 2022
Accepted: 11 March 2022
Published: 07 May 2022
Issue date: July 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was financially supported by the National Key R & D Project from Ministry of Science and Technology, China (Nos. 2016YFA0202702 and 2016YFA0202701) and the Key Research Program of Frontier Sciences, CAS (No. ZDBS-LY-DQC025). Patents have been filed to protect the reported inventions.

Return