Journal Home > Volume 15 , Issue 11

When ''cut off'' continuous and uniform basal plane of two-dimensional (2D) materials, edges appear at cross-sections. Such edges with unique one-dimensional (1D) structures and bound-states significantly alter materials’ local chemical activities and have been extensively investigated as model platforms for investigating structure–property–performance relationships for chemistry. Many interesting phenomena have been discovered in the past decades, highlighting the importance of interactions between active species and edge atoms at the atomic level and making 1D edges as emerging catalysts with high efficiency, promising candidates for battery and electrochemical contacts. Here, this review focuses on the recent progress of edge synthesis and structural engineering methods, understanding of edge structure–activity mechanisms, and potential applications using edge sites. Challenges and prospects are also envisioned.


menu
Abstract
Full text
Outline
About this article

Edge engineering in chemically active two-dimensional materials

Show Author's information Lijun Zhou1,§Mengyan Li1,§Wei Wang1Cong Wang1Huiping Yang1Yang Cao1,2( )
State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China

§ Lijun Zhou and Mengyan Li contributed equally to this work.

Abstract

When ''cut off'' continuous and uniform basal plane of two-dimensional (2D) materials, edges appear at cross-sections. Such edges with unique one-dimensional (1D) structures and bound-states significantly alter materials’ local chemical activities and have been extensively investigated as model platforms for investigating structure–property–performance relationships for chemistry. Many interesting phenomena have been discovered in the past decades, highlighting the importance of interactions between active species and edge atoms at the atomic level and making 1D edges as emerging catalysts with high efficiency, promising candidates for battery and electrochemical contacts. Here, this review focuses on the recent progress of edge synthesis and structural engineering methods, understanding of edge structure–activity mechanisms, and potential applications using edge sites. Challenges and prospects are also envisioned.

Keywords: two-dimensional (2D) materials, one-dimensional (1D) edges, relation of structure–activity

References(136)

[1]

Mistry, H.; Varela, A. S.; Kühl, S.; Strasser, P.; Cuenya, B. R. Nanostructured electrocatalysts with tunable activity and selectivity. Nat. Rev. Mater. 2016, 1, 16009.

[2]

Wang, H. T.; Yuan, H. T.; Hong, S. S.; Li, Y. B.; Cui, Y. Physical and chemical tuning of two-dimensional transition metal dichalcogenides. Chem. Soc. Rev. 2015, 44, 2664–2680.

[3]

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

[4]

Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

[5]

Gorbachev, R. V.; Riaz, I.; Nair, R. R.; Jalil, R.; Britnell, L.; Belle, B. D.; Hill, E. W.; Novoselov, K. S.; Watanabe, K.; Taniguchi, T. et al. Hunting for monolayer boron nitride: Optical and Raman signatures. Small 2011, 7, 465–468.

[6]

Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419–425.

[7]

Neto, A. H. C.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162.

[8]

Son, Y. W.; Cohen, M. L.; Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 2006, 97, 216803.

[9]

Kane, C. L.; Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 2005, 95, 226801.

[10]

Qian, X. F.; Liu, J. W.; Fu, L.; Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 2014, 346, 1344–1347.

[11]

Yin, X. B.; Ye, Z. L.; Chenet, D. A.; Ye, Y.; O'Brien, K.; Hone, J. C.; Zhang, X. Edge nonlinear optics on a MoS2 atomic monolayer. Science 2014, 344, 488–490.

[12]

Carvalho, B. R.; Wang, Y. X.; Fujisawa, K.; Zhang, T. Y.; Kahn, E.; Bilgin, I.; Ajayan, P. M.; De Paula, A. M.; Pimenta, M. A.; Kar, S. et al. Nonlinear dark-field imaging of one-dimensional defects in monolayer dichalcogenides. Nano Lett. 2020, 20, 284–291.

[13]

Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146, 351–355.

[14]

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

[15]

Magda, G. Z.; Jin, X. Z.; Hagymási, I.; Vancsó, P.; Osváth, Z.; Nemes-Incze, P.; Hwang, C.; Biró, L. P.; Tapasztó, L. Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons. Nature 2014, 514, 608–611.

[16]

Saab, M.; Raybaud, P. Tuning the magnetic properties of MoS2 single nanolayers by 3D metals edge doping. J. Phys. Chem. C 2016, 120, 10691–10697.

[17]

Malard, L. M.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S. Raman spectroscopy in graphene. Phys. Rep. 2009, 473, 51–87.

[18]

Gutiérrez, H. R.; Perea-López, N.; Elías, A. L.; Berkdemir, A.; Wang, B.; Lv, R. T.; López-Urías, F.; Crespi, V. H.; Terrones, H.; Terrones, M. Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett. 2013, 13, 3447–3454.

[19]

Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100–102.

[20]

Bollinger, M. V.; Lauritsen, J. V.; Jacobsen, K. W.; Nørskov, J. K.; Helveg, S.; Besenbacher, F. One-dimensional metallic edge states in MoS2. Phys. Rev. Lett. 2001, 87, 196803.

[21]

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

[22]

Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768–779.

[23]

Xie, J. F.; Zhang, J. J.; Li, S.; Grote, F.; Zhang, X. D.; Zhang, H.; Wang, R. X.; Lei, Y.; Pan, B. C.; Xie, Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 2013, 135, 17881–17888.

[24]

Yan, Y.; Xia, B. Y.; Ge, X. M.; Liu, Z. L.; Wang, J. Y.; Wang, X. Ultrathin MoS2 nanoplates with rich active sites as highly efficient catalyst for hydrogen evolution. ACS Appl. Mater. Interfaces 2013, 5, 12794–12798.

[25]

Asadi, M.; Kumar, B.; Behranginia, A.; Rosen, B. A.; Baskin, A.; Repnin, N.; Pisasale, D.; Phillips, P.; Zhu, W.; Haasch, R. et al. Robust carbon dioxide reduction on molybdenum disulphide edges. Nat. Commun. 2014, 5, 4470.

[26]

Yu, L.; Xie, Y. L.; Zhou, J. Q.; Li, Y.; Yu, Y.; Ren, Z. F. Robust and selective electrochemical reduction of CO2: The case of integrated 3D TiO2@MoS2 architectures and Ti-S bonding effects. J. Mater. Chem. A 2018, 6, 4706–4713.

[27]

Yuan, W. J.; Zhou, Y.; Li, Y. R.; Li, C.; Peng, H. L.; Zhang, J.; Liu, Z. F.; Dai, L. M.; Shi, G. Q. The edge- and basal-plane-specific electrochemistry of a single-layer graphene sheet. Sci. Rep. 2013, 3, 2248.

[28]

Yadav, A.; Wehrhold, M.; Neubert, T. J.; Iost, R. M.; Balasubramanian, K. Fast electron transfer kinetics at an isolated graphene edge nanoelectrode with and without nanoparticles: Implications for sensing electroactive species. ACS Appl. Nano Mater. 2020, 3, 11725–11735.

[29]

Li, K.; Jiang, J. Y.; Dong, Z. L.; Luo, H. X.; Qu, L. T. A linear graphene edge nanoelectrode. Chem. Commun. 2015, 51, 8765–8768.

[30]

Radovic, L. R.; Bockrath, B. On the chemical nature of graphene edges: Origin of stability and potential for magnetism in carbon materials. J. Am. Chem. Soc. 2005, 127, 5917–5927.

[31]

Jiang, D. E.; Sumpter, B. G.; Dai, S. Unique chemical reactivity of a graphene nanoribbon's zigzag edge. J. Chem. Phys. 2007, 126, 134701.

[32]

Huang, X. L.; Leng, M.; Xiao, W.; Li, M.; Ding, J.; Tan, T. L.; Lee, W. S. V.; Xue, J. M. Activating basal planes and S-terminated edges of MoS2 toward more efficient hydrogen evolution. Adv. Funct. Mater. 2017, 27, 1604943.

[33]

Byskov, L. S.; Nørskov, J. K.; Clausen, B. S.; Topsøe, H. Edge termination of MoS2 and CoMoS catalyst particles. Catal. Lett. 2000, 64, 95–99.

[34]

Kong, D. S.; Wang, H. T.; Cha, J. J.; Pasta, M.; Koski, K. J.; Yao, J.; Cui, Y. Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett. 2013, 13, 1341–1347.

[35]

Zhang, P.; Xiang, H. Y.; Tao, L.; Dong, H. J.; Zhou, Y. G.; Hu, T. S.; Chen, X. L.; Liu, S.; Wang, S. Y.; Garaj, S. Chemically activated MoS2 for efficient hydrogen production. Nano Energy 2019, 57, 535–541.

[36]

Islam, A.; Li, H.; Moon, S.; Han, S. S.; Chung, H. S.; Ma, J.; Yoo, C.; Ko, T. J.; Oh, K. H.; Jung, Y. et al. Vertically aligned 2D MoS2 layers with strain-engineered serpentine patterns for high-performance stretchable gas sensors: Experimental and theoretical demonstration. ACS Appl. Mater. Interfaces 2020, 12, 53174–53183.

[37]

Zhang, J.; Yu, H.; Chen, W.; Tian, X. Z.; Liu, D. H.; Cheng, M.; Xie, G. B.; Yang, W.; Yang, R.; Bai, X. D. et al. Scalable growth of high-quality polycrystalline MoS2 monolayers on SiO2 with tunable grain sizes. ACS Nano 2014, 8, 6024–6030.

[38]

Ling, N.; Zheng, S. J.; Lee, Y.; Zhao, M. L.; Kim, E.; Cho, S.; Yang, H. Active hydrogen evolution on the plasma-treated edges of WTe2. APL Mater. 2021, 9, 061108.

[39]

Rani, R.; Yoshimura, A.; Das, S.; Sahoo, M. R.; Kundu, A.; Sahu, K. K.; Meunier, V.; Nayak, S. K.; Koratkar, N.; Hazra, K. S. Sculpting artificial edges in monolayer MoS2 for controlled formation of surface-enhanced Raman hotspots. ACS Nano 2020, 14, 6258–6268.

[40]

Isherwood, L. H.; Athwal, G.; Spencer, B. F.; Casiraghi, C.; Baidak, A. Gamma radiation-induced oxidation, doping, and etching of two-dimensional MoS2 crystals. J. Phys. Chem. C 2021, 125, 4211–4222.

[41]

Chen, M. P.; Ji, B.; Dai, Z. Y.; Du, X. Y.; He, B. C.; Chen, G.; Liu, D.; Chen, S.; Lo, K. H.; Wang, S. P. et al. Vertically-aligned 1T/2H-MS2 (M = Mo, W) nanosheets for surface-enhanced Raman scattering with long-term stability and large-scale uniformity. Appl. Surf. Sci. 2020, 527, 146769.

[42]

Brownson, D. A. C.; Ferrari, A. G. M.; Ghosh, S.; Kamruddin, M.; Iniesta, J.; Banks, C. E. Electrochemical properties of vertically aligned graphenes: Tailoring heterogeneous electron transfer through manipulation of the carbon microstructure. Nanoscale Adv. 2020, 2, 5319–5328.

[43]

Wang, H. T.; Tsai, C.; Kong, D. S.; Chan, K.; Abild-Pedersen, F.; Nørskov, J. K.; Cui, Y. Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution. Nano Res. 2015, 8, 566–575.

[44]

Bonde, J.; Moses, P. G.; Jaramillo, T. F.; Nørskov, J. K.; Chorkendorff, I. Hydrogen evolution on nano-particulate transition metal sulfides. Faraday Discuss. 2009, 140, 219–2317.

[45]

Tsai, C.; Abild-Pedersen, F.; Nørskov, J. K. Tuning the MoS2 edge-site activity for hydrogen evolution via support interactions. Nano Lett. 2014, 14, 1381–1387.

[46]

He, Y. M.; Tang, P. Y.; Hu, Z. L.; He, Q. Y.; Zhu, C.; Wang, L. Q.; Zeng, Q. S.; Golani, P.; Gao, G. H.; Fu, W. et al. Engineering grain boundaries at the 2D limit for the hydrogen evolution reaction. Nat. Commun. 2020, 11, 57.

[47]

Chen, K.; Roy, A.; Rai, A.; Movva, H. C. P.; Meng, X. H.; He, F.; Banerjee, S. K.; Wang, Y. G. Accelerated carrier recombination by grain boundary/edge defects in MBE grown transition metal dichalcogenides. APL Mater. 2018, 6, 056103.

[48]

Zhao, X. X.; Fu, D. Y.; Ding, Z. J.; Zhang, Y. Y.; Wan, D. Y.; Tan, S. J. R.; Chen, Z. X.; Leng, K.; Dan, J. D.; Fu, W. et al. Mo-terminated edge reconstructions in nanoporous molybdenum disulfide film. Nano Lett. 2018, 18, 482–490.

[49]

Ruffieux, P.; Wang, S. Y.; Yang, B.; Sánchez-Sánchez, C.; Liu, J.; Dienel, T.; Talirz, L.; Shinde, P.; Pignedoli, C. A.; Passerone, D. et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 2016, 531, 489–492.

[50]

Sánchez-Sánchez, C.; Dienel, T.; Deniz, O.; Ruffieux, P.; Berger, R.; Feng, X. L.; Müllen, K.; Fasel, R. Purely armchair or partially chiral: Noncontact atomic force microscopy characterization of dibromo-bianthryl-based graphene nanoribbons grown on Cu(111). ACS Nano 2016, 10, 8006–8011.

[51]

Rizzo, D. J.; Veber, G.; Cao, T.; Bronner, C.; Chen, T.; Zhao, F. Z.; Rodriguez, H.; Louie, S. G.; Crommie, M. F.; Fischer, F. R. Topological band engineering of graphene nanoribbons. Nature 2018, 560, 204–208.

[52]

Hong, J. H.; Jin, C. H.; Yuan, J.; Zhang, Z. Atomic defects in two-dimensional materials: From single-atom spectroscopy to functionalities in opto-/electronics, nanomagnetism, and catalysis. Adv. Mater. 2017, 29, 1606434.

[53]

Kibsgaard, J.; Chen, Z. B.; Reinecke, B. N.; Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 2012, 11, 963–969.

[54]

Albu-Yaron, A.; Levy, M.; Tenne, R.; Popovitz-Biro, R.; Weidenbach, M.; Bar-Sadan, M.; Houben, L.; Enyashin, A. N.; Seifert, G.; Feuermann, D. et al. MoS2 hybrid nanostructures: From octahedral to quasi-spherical shells within individual nanoparticles. Angew. Chem., Int. Ed. 2011, 50, 1810–1814.

[55]

Lauritsen, J. V.; Kibsgaard, J.; Helveg, S.; Topsøe, H.; Clausen, B. S.; Lægsgaard, E.; Besenbacher, F. Size-dependent structure of MoS2 nanocrystals. Nat. Nanotechnol. 2007, 2, 53–58.

[56]

Xie, J. F.; Zhang, H.; Li, S.; Wang, R. X.; Sun, X.; Zhou, M.; Zhou, J. F.; Lou, X. W.; Xie, Y. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 2013, 25, 5807–5813.

[57]

Nguyen, A. D.; Nguyen, T. K.; Le, C. T.; Kim, S.; Ullah, F.; Lee, Y.; Lee, S.; Kim, K.; Lee, D.; Park, S. et al. Nitrogen-plasma-treated continuous monolayer MoS2 for improving hydrogen evolution reaction. ACS Omega 2019, 4, 21509–21515.

[58]

Wang, Z. G.; Li, Q.; Xu, H. X.; Dahl-Petersen, C.; Yang, Q.; Cheng, D. J.; Cao, D. P.; Besenbacher, F.; Lauritsen, J. V.; Helveg, S. et al. Controllable etching of MoS2 basal planes for enhanced hydrogen evolution through the formation of active edge sites. Nano Energy 2018, 49, 634–643.

[59]

Sun, T.; Zhang, G. Q.; Xu, D.; Lian, X.; Li, H. X.; Chen, W.; Su, C. L. Defect chemistry in 2D materials for electrocatalysis. Mater. Today Energy 2019, 12, 215–238.

[60]

Deng, S. J.; Zhong, Y.; Zeng, Y. X.; Wang, Y. D.; Yao, Z. J.; Yang, F.; Lin, S. W.; Wang, X. L.; Lu, X. H.; Xia, X. H. et al. Directional construction of vertical nitrogen-doped 1T-2H MoSe2/graphene shell/core nanoflake arrays for efficient hydrogen evolution reaction. Adv. Mater. 2017, 29, 1700748.

[61]

Tao, L.; Wang, Q.; Dou, S.; Ma, Z. L.; Huo, J.; Wang, S. Y.; Dai, L. M. Edge-rich and dopant-free graphene as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction. Chem. Commun. 2016, 52, 2764–2767.

[62]

Tao, L.; Duan, X. D.; Wang, C.; Duan, X. F.; Wang, S. Y. Plasma-engineered MoS2 thin-film as an efficient electrocatalyst for hydrogen evolution reaction. Chem. Commun. 2015, 51, 7470–7473.

[63]

Zhang, C. X.; Jiang, L.; Zhang, Y. J.; Hu, J.; Leung, M. K. H. Janus effect of O2 plasma modification on the electrocatalytic hydrogen evolution reaction of MoS2. J. Catal. 2018, 361, 384–392.

[64]

Zhang, R. H.; Zhang, M. R.; Yang, H.; Li, G.; Xing, S. M.; Li, M. Y.; Xu, Y. L.; Zhang, Q. Y.; Hu, S.; Liao, H. G. et al. Creating fluorine-doped MoS2 edge electrodes with enhanced hydrogen evolution activity. Small Methods 2021, 5, 2100612.

[65]

Liu, F. N.; Dong, J. C.; Kim, N. Y.; Lee, Z.; Ding, F. Growth and selective etching of twinned graphene on liquid copper surface. Small 2021, 17, 2103484.

[66]

Ye, G. L.; Gong, Y. J.; Lin, J. H.; Li, B.; He, Y. M.; Pantelides, S. T.; Zhou, W.; Vajtai, R.; Ajayan, P. M. Defects engineered monolayer MoS2 for improved hydrogen evolution reaction. Nano Lett. 2016, 16, 1097–1103.

[67]

Gemming, S.; Seifert, G. Nanocrystals: Catalysts on the edge. Nat. Nanotechnol. 2007, 2, 21–22.

[68]

Sharma, R.; Nair, N.; Strano, M. S. Structure-reactivity relationships for graphene nanoribbons. J. Phys. Chem. C 2009, 113, 14771–14777.

[69]

Tsai, C.; Chan, K.; Abild-Pedersen, F.; Nørskov, J. K. Active edge sites in MoSe2 and WSe2 catalysts for the hydrogen evolution reaction: A density functional study. Phys. Chem. Chem. Phys. 2014, 16, 13156–13164.

[70]

Phark, S. H.; Borme, J.; Vanegas, A. L.; Corbetta, M.; Sander, D.; Kirschner, J. Atomic structure and spectroscopy of graphene edges on Ir(111). Phys. Rev. B 2012, 86, 045442.

[71]

Ferrari, A. C.; Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235–246.

[72]

Kim, M. S.; Yun, S. J.; Lee, Y.; Seo, C.; Han, G. H.; Kim, K. K.; Lee, Y. H.; Kim, J. Biexciton emission from edges and grain boundaries of triangular WS2 monolayers. ACS Nano 2016, 10, 2399–2405.

[73]

Xia, F. F.; Wang, F. K.; Hu, H. L.; Xu, X.; Li, Y.; Zhai, T. Y. Application of second harmonic generation in characterization of 2D materials. J. Inorg. Mater. 2021, 36, 1022–1030.

[74]

Schmidt, U.; Bailey, C. S.; Englert, J.; Yalon, E.; Ankonina, G.; Pop, E.; Hollricher, O.; Dieing, T. A comprehensive study of WSe2 crystals using correlated Raman, photoluminescence (PL), second harmonic generation (SHG), and atomic force microscopy (AFM) imaging. Spectroscopy 2021, 36, 23–30.

[75]

Zhang, X. Y.; Xin, J.; Ding, F. The edges of graphene. Nanoscale 2013, 5, 2556–2569.

[76]

Yao, F. F.; Xiao, Z. R.; Qiao, J. S.; Ji, W.; Xie, R. J.; Jin, C. H. In situ TEM study of edge reconstruction and evolution in monolayer black phosphorus. Nanoscale 2021, 13, 4133–4139.

[77]

Huang, P. Y.; Ruiz-Vargas, C. S.; Van Der Zande, A. M.; Whitney, W. S.; Levendorf, M. P.; Kevek, J. W.; Garg, S.; Alden, J. S.; Hustedt, C. J.; Zhu, Y. et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 2011, 469, 389–392.

[78]

Tan, Y. W.; Liu, P.; Chen, L. Y.; Cong, W. T.; Ito, Y.; Han, J. H.; Guo, X. W.; Tang, Z.; Fujita, T.; Hirata, A. et al. Monolayer MoS2 films supported by 3D nanoporous metals for high-efficiency electrocatalytic hydrogen production. Adv. Mater. 2014, 26, 8023–8028.

[79]

Sang, X. H.; Li, X. F.; Zhao, W.; Dong, J. C.; Rouleau, C. M.; Geohegan, D. B.; Ding, F.; Xiao, K.; Unocic, R. R. In situ edge engineering in two-dimensional transition metal dichalcogenides. Nat. Commun. 2018, 9, 2051.

[80]

Patera, L. L.; Bianchini, F.; Troiano, G.; Dri, C.; Cepek, C.; Peressi, M.; Africh, C.; Comelli, G. Temperature-driven changes of the graphene edge structure on Ni(111): Substrate vs. hydrogen passivation. Nano Lett. 2015, 15, 56–62.

[81]

Ritter, K. A.; Lyding, J. W. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat. Mater. 2009, 8, 235–242.

[82]

Casiraghi, C.; Hartschuh, A.; Qian, H.; Piscanec, S.; Georgi, C.; Fasoli, A.; Novoselov, K. S.; Basko, D. M.; Ferrari, A. C. Raman spectroscopy of graphene edges. Nano Lett. 2009, 9, 1433–1441.

[83]

Xu, Y. N.; Zhan, D.; Liu, L.; Suo, H.; Ni, Z. H.; Nguyen, T. T.; Zhao, C.; Shen, Z. X. Thermal dynamics of graphene edges investigated by polarized Raman spectroscopy. ACS Nano 2011, 5, 147–152.

[84]

You, Y. M.; Ni, Z. H.; Yu, T.; Shen, Z. X. Edge chirality determination of graphene by Raman spectroscopy. Appl. Phys. Lett. 2008, 93, 163112.

[85]

Yu, Q. K.; Jauregui, L. A.; Wu, W.; Colby, R.; Tian, J. F.; Su, Z. H.; Cao, H. L.; Liu, Z. H.; Pandey, D.; Wei, D. G. et al. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat. Mater. 2011, 10, 443–449.

[86]

Wang, X.; Huang, S. C.; Huang, T. X.; Su, H. S.; Zhong, J. H.; Zeng, Z. C.; Li, M. H.; Ren, B. Tip-enhanced Raman spectroscopy for surfaces and interfaces. Chem. Soc. Rev. 2017, 46, 4020–4041.

[87]

Huang, T. X.; Cong, X.; Wu, S. S.; Lin, K. Q.; Yao, X.; He, Y. H.; Wu, J. B.; Bao, Y. F.; Huang, S. C.; Wang, X. et al. Probing the edge-related properties of atomically thin MoS2 at nanoscale. Nat. Commun. 2019, 10, 5544.

[88]

Van Der Zande, A. M.; Huang, P. Y.; Chenet, D. A.; Berkelbach, T. C.; You, Y. M.; Lee, G. H.; Heinz, T. F.; Reichman, D. R.; Muller, D. A.; Hone, J. C. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 2013, 12, 554–561.

[89]

Ozawa, T.; Price, H. M.; Amo, A.; Goldman, N.; Hafezi, M.; Lu, L.; Rechtsman, M. C.; Schuster, D.; Simon, J.; Zilberberg, O. et al. Topological photonics. Rev. Mod. Phys. 2019, 91, 015006.

[90]

Li, D. W.; Xiao, Z. Y.; Mu, S.; Wang, F.; Liu, Y.; Song, J. F.; Huang, X.; Jiang, L. J.; Xiao, J.; Liu, L. et al. A facile space-confined solid-phase sulfurization strategy for growth of high-quality ultrathin molybdenum disulfide single crystals. Nano Lett. 2018, 18, 2021–2032.

[91]

He, Y. M.; He, Q. Y.; Wang, L. Q.; Zhu, C.; Golani, P.; Handoko, A. D.; Yu, X. C.; Gao, C. T.; Ding, M. N.; Wang, X. W. et al. Self-gating in semiconductor electrocatalysis. Nat. Mater. 2019, 18, 1098–1104.

[92]

Cummins, D. R.; Martinez, U.; Sherehiy, A.; Kappera, R.; Martinez-Garcia, A.; Schulze, R. K.; Jasinski, J.; Zhang, J.; Gupta, R. K.; Lou, J. et al. Efficient hydrogen evolution in transition metal dichalcogenides via a simple one-step hydrazine reaction. Nat. Commun. 2016, 7, 11857.

[93]

Wang, X. F.; Chen, Y.; Schmidt, O. G.; Yan, C. L. Engineered nanomembranes for smart energy storage devices. Chem. Soc. Rev. 2016, 45, 1308–1330.

[94]

Yang, H.; He, Q. Y.; Liu, Y. W.; Li, H. Q.; Zhang, H.; Zhai, T. Y. On-chip electrocatalytic microdevice: An emerging platform for expanding the insight into electrochemical processes. Chem. Soc. Rev. 2020, 49, 2916–2936.

[95]

Zhang, J.; Wu, J. J.; Guo, H.; Chen, W. B.; Yuan, J. T.; Martinez, U.; Gupta, G.; Mohite, A.; Ajayan, P. M.; Lou, J. Unveiling active sites for the hydrogen evolution reaction on monolayer MoS2. Adv. Mater. 2017, 29, 1701955.

[96]

Zhou, Y.; Silva, J. L.; Woods, J. M.; Pondick, J. V.; Feng, Q. L.; Liang, Z. X.; Liu, W.; Lin, L.; Deng, B. C.; Brena, B. et al. Revealing the contribution of individual factors to hydrogen evolution reaction catalytic activity. Adv. Mater. 2018, 30, 1706076.

[97]

Hu, D. K.; Zhao, T. Q.; Ping, X. F.; Zheng, H. S.; Xing, L.; Liu, X. Z.; Zheng, J. Y.; Sun, L. F.; Gu, L.; Tao, C. G. et al. Unveiling the layer-dependent catalytic activity of PtSe2 atomic crystals for the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2019, 58, 6977–6981.

[98]

Kang, M.; Momotenko, D.; Page, A.; Perry, D.; Unwin, P. R. Frontiers in nanoscale electrochemical imaging: Faster, multifunctional, and ultrasensitive. Langmuir 2016, 32, 7993–8008.

[99]

Takahashi, Y.; Kobayashi, Y.; Wang, Z. Q.; Ito, Y.; Ota, M.; Ida, H.; Kumatani, A.; Miyazawa, K.; Fujita, T.; Shiku, H. et al. High-resolution electrochemical mapping of the hydrogen evolution reaction on transition-metal dichalcogenide nanosheets. Angew. Chem., Int. Ed. 2020, 59, 3601–3608.

[100]

Jin, R.; Cheng, L.; Lu, H. Y.; Zhuang, J.; Jiang, D. C.; Chen, H. Y. High spatial resolution electrochemical microscopic observation of enhanced charging under bias at active sites of N-rGO. ACS Appl. Energy Mater. 2021, 4, 3502–3507.

[101]

Mefford, J. T.; Akbashev, A. R.; Kang, M.; Bentley, C. L.; Gent, W. E.; Deng, H. D.; Alsem, D. H.; Yu, Y. S.; Salmon, N. J.; Shapiro, D. A. et al. Correlative operando microscopy of oxygen evolution electrocatalysts. Nature 2021, 593, 67–73.

[102]

Bentley, C. L.; Kang, M.; Maddar, F. M.; Li, F. W.; Walker, M.; Zhang, J.; Unwin, P. R. Electrochemical maps and movies of the hydrogen evolution reaction on natural crystals of molybdenite (MoS2): Basal vs. edge plane activity. Chem. Sci. 2017, 8, 6583–6593.

[103]

Feng, H. F.; Xu, X.; Du, Y.; Dou, S. X. Application of scanning tunneling microscopy in electrocatalysis and electrochemistry. Electrochem. Energy Rev. 2021, 4, 249–268.

[104]

Haid, R. W.; Kluge, R. M.; Liang, Y. C.; Bandarenka, A. S. In situ quantification of the local electrocatalytic activity via electrochemical scanning tunneling microscopy. Small Methods 2021, 5, 2000710.

[105]

Pfisterer, J. H. K.; Liang, Y. C.; Schneider, O.; Bandarenka, A. S. Direct instrumental identification of catalytically active surface sites. Nature 2017, 549, 74–77.

[106]

Mitterreiter, E.; Liang, Y. C.; Golibrzuch, M.; McLaughlin, D.; Csoklich, C.; Bartl, J. D.; Holleitner, A.; Wurstbauer, U.; Bandarenka, A. S. In-situ visualization of hydrogen evolution sites on helium ion treated molybdenum dichalcogenides under reaction conditions. npj 2D Mater. Appl. 2019, 3, 25.

[107]

Deng, D. H.; Novoselov, K. S.; Fu, Q.; Zheng, N. F.; Tian, Z. Q.; Bao, X. H. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 2016, 11, 218–230.

[108]

Chia, X.; Pumera, M. Characteristics and performance of two-dimensional materials for electrocatalysis. Nat. Catal. 2018, 1, 909–921.

[109]

Ni, B.; Wang, X. Face the edges: Catalytic active sites of nanomaterials. Adv. Sci. 2015, 2, 1500085.

[110]

Hinnemann, B.; Moses, P. G.; Bonde, J.; Jørgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Nørskov, J. K. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 2005, 127, 5308–5309.

[111]

Shen, A. L.; Zou, Y. Q.; Wang, Q.; Dryfe, R. A. W.; Huang, X. B.; Dou, S.; Dai, L. M.; Wang, S. Y. Oxygen reduction reaction in a droplet on graphite: Direct evidence that the edge is more active than the basal plane. Angew. Chem., Int. Ed. 2014, 53, 10804–10808.

[112]

Kumatani, A.; Miura, C.; Kuramochi, H.; Ohto, T.; Wakisaka, M.; Nagata, Y.; Ida, H.; Takahashi, Y.; Hu, K. L.; Jeong, S. et al. Chemical dopants on edge of holey graphene accelerate electrochemical hydrogen evolution reaction. Adv. Sci. 2019, 6, 1900119.

[113]

Grant, J. T.; Carrero, C. A.; Goeltl, F.; Venegas, J.; Mueller, P.; Burt, S. P.; Specht, S. E.; McDermott, W. P.; Chieregato, A.; Hermans, I. Selective oxidative dehydrogenation of propane to propene using boron nitride catalysts. Science 2016, 354, 1570–1573.

[114]

Hu, J.; Huang, B. L.; Zhang, C. X.; Wang, Z. L.; An, Y. M.; Zhou, D.; Lin, H.; Leung, M. K. H.; Yang, S. H. Engineering stepped edge surface structures of MoS2 sheet stacks to accelerate the hydrogen evolution reaction. Energy Environ. Sci. 2017, 10, 593–603.

[115]

Shi, Z. X.; Zhao, J. W.; Li, C. F.; Xu, H.; Li, G. R. Fully exposed edge/corner active sites in Fe substituted-Ni(OH)2 tube-in-tube arrays for efficient electrocatalytic oxygen evolution. Appl. Catal. B Environ. 2021, 298, 120558.

[116]

Zhao, J. W.; Shi, Z. X.; Li, C. F.; Gu, L. F.; Li, G. R. Boosting the electrocatalytic performance of NiFe layered double hydroxides for the oxygen evolution reaction by exposing the highly active edge plane (012). Chem. Sci. 2020, 12, 650–659.

[117]

Wang, H. T.; Zhang, Q. F.; Yao, H. B.; Liang, Z.; Lee, H. W.; Hsu, P. C.; Zheng, G. Y.; Cui, Y. High electrochemical selectivity of edge versus terrace sites in two-dimensional layered MoS2 materials. Nano Lett. 2014, 14, 7138–7144.

[118]

Khan, K.; Tareen, A. K.; Aslam, M.; Zhang, Y. P.; Wang, R. H.; Ouyang, Z. B.; Gou, Z. Y.; Zhang, H. Recent advances in two-dimensional materials and their nanocomposites in sustainable energy conversion applications. Nanoscale 2019, 11, 21622–21678.

[119]

Hu, J. T.; Yu, L.; Deng, J.; Wang, Y.; Cheng, K.; Ma, C.; Zhang, Q. H.; Wen, W.; Yu, S. S.; Pan, Y. et al. Sulfur vacancy-rich MoS2 as a catalyst for the hydrogenation of CO2 to methanol. Nat. Catal. 2021, 4, 242–250.

[120]

Tan, C. L.; Chen, J. Z.; Wu, X. J.; Zhang, H. Epitaxial growth of hybrid nanostructures. Nat. Rev. Mater. 2018, 3, 17089.

[121]

Liu, L.; Park, J.; Siegel, D. A.; McCarty, K. F.; Clark, K. W.; Deng, W.; Basile, L.; Idrobo, J. C.; Li, A. P.; Gu, G. Heteroepitaxial growth of two-dimensional hexagonal boron nitride templated by graphene edges. Science 2014, 343, 163–167.

[122]

Li, M. Y.; Shi, Y. M.; Cheng, C. C.; Lu, L. S.; Lin, Y. C.; Tang, H. L.; Tsai, M. L.; Chu, C. W.; Wei, K. H.; He, J. H. et al. Epitaxial growth of a monolayer WSe2–MoS2 lateral p–n junction with an atomically sharp interface. Science 2015, 349, 524–528.

[123]

Chen, J. Y.; Zhou, W.; Tang, W.; Tian, B. B.; Zhao, X. X.; Xu, H.; Liu, Y. P.; Geng, D. C.; Tan, S. J. R.; Fu, W. et al. Lateral epitaxy of atomically sharp WSe2/WS2 heterojunctions on silicon dioxide substrates. Chem. Mater. 2016, 28, 7194–7197.

[124]

Yoo, Y.; Degregorio, Z. P.; Johns, J. E. Seed crystal homogeneity controls lateral and vertical heteroepitaxy of monolayer MoS2 and WS2. J. Am. Chem. Soc. 2015, 137, 14281–14287.

[125]

Zhang, Z. W.; Chen, P.; Duan, X. D.; Zang, K. T.; Luo, J.; Duan, X. F. Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science 2017, 357, 788–792.

[126]

Rojaee, R.; Shahbazian-Yassar, R. Two-dimensional materials to address the lithium battery challenges. ACS Nano 2020, 14, 2628–2658.

[127]

Li, B.; Xu, H. F.; Ma, Y.; Yang, S. B. Harnessing the unique properties of 2D materials for advanced lithium-sulfur batteries. Nanoscale Horiz. 2019, 4, 77–98.

[128]

Yu, X. L.; Liao, T.; Tang, J.; Zhang, K.; Tang, S.; Gao, R. S.; Lin, S. Q.; Qin, L. C. Edge engineering in 2D molybdenum disulfide: Simultaneous regulation of lithium and polysulfides for stable lithium-sulfur batteries. Adv. Energy Sustain. Res. 2021, 2, 2100053.

[129]

Mirkin, M. V.; Bard, A. J. Simple analysis of quasi-reversible steady-state voltammograms. Anal. Chem. 1992, 64, 2293–2302.

[130]

Luo, S. Y.; Chen, X.; He, Y. H.; Gu, Y. Q.; Zhu, C. Z.; Yang, G. H.; Qu, L. L. Recent advances in graphene nanoribbons for biosensing and biomedicine. J. Mater. Chem. B 2021, 9, 6129–6143.

[131]

Rodríguez-Pérez, L.; Herranz, M. Á.; Martín, N. The chemistry of pristine graphene. Chem. Commun. 2013, 49, 3721–3735.

[132]

Huang, J. Electrochemical impedance spectroscopy for electrocatalytic interfaces and reactions: Classics never die. J. Electrochem. 2020, 26, 3–18.

[133]

Zhang, L. Y.; Wang, X. Q. DNA sequencing by hexagonal boron nitride nanopore: A computational study. Nanomaterials 2016, 6, 111.

[134]

Huang, Q. Z.; Fang, Y. Y.; Shi, J. F.; Liang, Y. L.; Zhu, Y. Q.; Xu, G. Flower-like molybdenum disulfide for polarity-triggered accumulation/release of small molecules. ACS Appl. Mater. Interfaces 2017, 9, 36431–36437.

[135]

Liu, Y.; Weiss, N. O.; Duan, X. D.; Cheng, H. C.; Huang, Y.; Duan, X. F. Van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042.

[136]

Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Neto, A. H. C. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439.

Publication history
Copyright
Acknowledgements

Publication history

Received: 31 December 2021
Revised: 02 March 2022
Accepted: 11 March 2022
Published: 04 May 2022
Issue date: November 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This study was supported by the National Key R&D Program of China (Nos. 2018YFA0306900 and 2018YFA0209500), the National Natural Science Foundation of China (Nos. 21872114 and 92163103), and the Fundamental Research Funds for the Central Universities (No. 20720210009).

Return