Journal Home > Volume 16 , Issue 3

As a model reaction for the electrooxidation of many small organic molecules, formic acid electrooxidation (FAEO) has aroused wide concern. The promises of direct formic acid fuel cells (DFAFC) in application further strengthen people’s attention to the related research. However, despite decades of study, the FAEO mechanism is still under debate due to the multi-electron and multi-pathway nature of the catalytic process. In this review, the progresses towards understanding the FAEO mechanism along with the developed methodology (electrochemistry, in-situ spectroscopy, and theoretical calculation and simulation) are summarized. We especially focused on the construction of anti-poisoning catalysts system based on understanding of the catalytic mechanism, with anti-poisoning catalyst design being systemically summarized. Finally, we provide a brief summarization for current challenges and future prospects towards FAEO study.


menu
Abstract
Full text
Outline
About this article

Formic acid electro-oxidation: Mechanism and electrocatalysts design

Show Author's information Tongtong Yang1,2,§Shuai Hou1,§Jiaojiao Xing1,2Changpeng Liu1,2Junjie Ge1,2( )Wei Xing1,2( )
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
University of Chinese Academy of Sciences, Beijing 100039, China

§ Tongtong Yang and Shuai Hou contributed equally to this work.

Abstract

As a model reaction for the electrooxidation of many small organic molecules, formic acid electrooxidation (FAEO) has aroused wide concern. The promises of direct formic acid fuel cells (DFAFC) in application further strengthen people’s attention to the related research. However, despite decades of study, the FAEO mechanism is still under debate due to the multi-electron and multi-pathway nature of the catalytic process. In this review, the progresses towards understanding the FAEO mechanism along with the developed methodology (electrochemistry, in-situ spectroscopy, and theoretical calculation and simulation) are summarized. We especially focused on the construction of anti-poisoning catalysts system based on understanding of the catalytic mechanism, with anti-poisoning catalyst design being systemically summarized. Finally, we provide a brief summarization for current challenges and future prospects towards FAEO study.

Keywords: mechanism, formic acid electrooxidation, anti-poisoning, methodology, electrocatalysts design, in-situ technique

References(187)

[1]

Haines, A.; Scheelbeek, P.; Abbasi, K. Challenges for health in the Anthropocene epoch. BMJ 2019, 364, l460.

[2]

Logan, B. E.; Rossi, R.; Baek, G.; Shi, L.; O’Connor, J.; Peng, W. Energy use for electricity generation requires an assessment more directly relevant to climate change. ACS Energy Lett. 2020, 5, 3514–3517.

[3]
Fifth Assessment Report (AR5) Synthesis Report: Climate Change 2014 IPCC [Online]. Geneva, Switzerland, 2015; pp 151. https://www.ipcc.ch/report/ar5/syr/ (accessed Apr 25, 2021).
[4]

Ajdari, F. B.; Kowsari, E.; Shahrak, M. N.; Ehsani, A.; Kiaei, Z.; Torkzaban, H.; Ershadi, M.; Eshkalak, S. K.; Haddadi-Asl, V.; Chinnappan, A. et al. A review on the field patents and recent developments over the application of metal organic frameworks (MOFs) in supercapacitors. Coord. Chem. Rev. 2020, 422, 213441.

[5]

Eltoumi, F. M.; Becherif, M.; Djerdir, A.; Ramadan, H. S. The key issues of electric vehicle charging via hybrid power sources: Techno-economic viability, analysis, and recommendations. Renew. Sustain. Energy Rev. 2021, 138, 110534.

[6]

Jena, P. Clusters and nanomaterials for sustainable energy. ACS Energy Lett. 2020, 5, 428–429.

[7]

Tang, J. Y.; Su, C.; Zhong, Y. J.; Shao, Z. P. Oxide-based precious metal-free electrocatalysts for anion exchange membrane fuel cells: From material design to cell applications. J. Mater. Chem. A 2021, 9, 3151–3179.

[8]

Yun, S. N.; Zhang, Y. W.; Xu, Q.; Liu, J. M.; Qin, Y. Recent advance in new-generation integrated devices for energy harvesting and storage. Nano Energy 2019, 60, 600–619.

[9]

Lei, Z. H.; Lee, J. M.; Singh, G.; Sathish, C. I.; Chu, X. Z.; Al-Muhtaseb, A. H.; Vinu, A.; Yi, J. B. Recent advances of layered-transition metal oxides for energy-related applications. Energy Storage Mater. 2021, 36, 514–550.

[10]
International Energy Outlook 2019; U. S. Energy Information Administration [Online]. https://www.eia.gov/outlooks/archive/ieo19/ (accessed Apr 25, 2021).
[11]
International Energy Outlook 2020; U. S. Energy Information Administration [Online]. https://www.eia.gov/outlooks/archive/ieo20/ (accessed Apr 25, 2021).
[12]

Cao, L. N.; Liu, W.; Luo, Q. Q.; Yin, R. T.; Wang, B.; Weissenrieder, J.; Soldemo, M.; Yan, H.; Lin, Y.; Sun, Z. H. et al. Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2. Nature 2019, 565, 631–635.

[13]

Durst, J.; Siebel, A.; Simon, C.; Hasché, F.; Herranz, J.; Gasteiger, H. A. New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ. Sci. 2014, 7, 2255–2260.

[14]

Haider, R.; Wen, Y. C.; Ma, Z. F.; Wilkinson, D. P.; Zhang, L.; Yuan, X. X.; Song, S. Q.; Zhang, J. J. High temperature proton exchange membrane fuel cells: Progress in advanced materials and key technologies. Chem. Soc. Rev. 2021, 50, 1138–1187.

[15]

He, Y. H.; Liu, S. W.; Priest, C.; Shi, Q. R.; Wu, G. Atomically dispersed metal-nitrogen-carbon catalysts for fuel cells: Advances in catalyst design, electrode performance, and durability improvement. Chem. Soc. Rev. 2020, 49, 3484–3524.

[16]

Liu, X.; Zhang, J. F.; Zheng, C. Y.; Xue, J. D.; Huang, T.; Yin, Y.; Qin, Y. Z.; Jiao, K.; Du, Q.; Guiver, M. D. Oriented proton-conductive nano-sponge-facilitated polymer electrolyte membranes. Energy Environ. Sci. 2020, 13, 297–309.

[17]

Shao, M. H.; Chang, Q. W.; Dodelet, J. P.; Chenitz, R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 2016, 116, 3594–3657.

[18]

Zhang, N.; Zhou, T. P.; Chen, M. L.; Feng, H.; Yuan, R. L.; Zhong, C. A.; Yan, W. S.; Tian, Y. C.; Wu, X. J.; Chu W. S. et al. High-purity pyrrole-type FeN4 sites as a superior oxygen reduction electrocatalyst. Energy Environ. Sci. 2020, 13, 111–118.

[19]

Winter, M.; Brodd, R. J. What are batteries, fuel cells, and supercapacitors? Chem. Rev. 2004, 104, 4245–4270.

[20]

Zhang, J. W.; Chen, M. S.; Li, H. Q.; Li, Y. J.; Ye, J. Y.; Cao, Z. M.; Fang, M. L.; Kuang, Q.; Zheng, J.; Xie, Z. X. Stable palladium hydride as a superior anode electrocatalyst for direct formic acid fuel cells. Nano Energy 2018, 44, 127–134.

[21]

Ye, L.; Mahadi, A. H.; Saengruengrit, C.; Qu, J.; Xu, F.; Fairclough, S. M.; Young, N.; Ho, P. L.; Shan, J. J.; Nguyen, L. et al. Ceria nanocrystals supporting Pd for formic acid electrocatalytic oxidation: Prominent polar surface metal support interactions. ACS Catal. 2019, 9, 5171–5177.

[22]

Yang, L.; Li, G. Q.; Chang, J. F.; Ge, J. J.; Liu, C. P.; Vladimir, F.; Wang, G. L.; Jin, Z.; Xing, W. Sea urchin-like Aucore@Pdshell electrocatalysts with high FAOR performance: Coefficient of lattice strain and electrochemical surface area. Appl. Catal. B:Environ. 2020, 260, 118200.

[23]

Wang, X.; Meng, Q. L.; Gao, L. Q.; Jin, Z.; Ge, J. J.; Liu, C. P.; Xing, W. Recent progress in hydrogen production from formic acid decomposition. Int. J. Hydrogen Energy 2018, 43, 7055–7071.

[24]

Wang, F. L.; Xue, H. G.; Tian, Z. Q.; Xing, W.; Feng, L. G. Fe2P as a novel efficient catalyst promoter in Pd/C system for formic acid electro-oxidation in fuel cells reaction. J. Power Sources 2018, 375, 37–42.

[25]

Gao, N. X.; Ma, R. P.; Wang, X.; Jin, Z.; Hou, S.; Xu, W. L.; Meng, Q. L.; Ge, J. J.; Liu, C. P.; Xing, W. Activating the Pd-Based catalysts via tailoring reaction interface towards formic acid dehydrogenation. Int. J. Hydrogen Energy 2020, 45, 17575–17582.

[26]

Dong, Q. Z.; Wu, M. M.; Mei, D. H.; Shao, Y. Y.; Wang, Y.; Liu, J.; Li, H. Z.; Hong, L. Y. Multifunctional Pd-Sn electrocatalysts enabled by in situ formed SnOx and TiC triple junctions. Nano Energy 2018, 53, 940–948.

[27]

Schill, W. P. Electricity storage and the renewable energy transition. Joule 2020, 4, 2059–2064.

[28]
Liu, P. X. ; Qiao, J. L. A high-performance continuous flow MEA reactor for electroreduction CO2 to formate. In ECS Meeting Abstracts, 2021, pp 1168.
[29]
Gao, Z. Q. ; Li, J. J. ; Zhang, Z. C. ; Hu, W. P. Recent advances in carbon-based materials for electrochemical CO2 reduction reaction. Chin. Chem. Lett., in press, https://doi.org/10.1016/j.cclet.2021.09.037.
[30]

Fukuzumi, S. Production of liquid solar fuels and their use in fuel cells. Joule 2017, 1, 689–738.

[31]

Eppinger, J.; Huang, K. W. Formic acid as a hydrogen energy carrier. ACS Energy Lett. 2017, 2, 188–195.

[32]

Chatterjee, S.; Dutta, I.; Lum, Y.; Lai, Z. P.; Huang, K. W. Enabling storage and utilization of low-carbon electricity: Power to formic acid. Energy Environ. Sci. 2021, 14, 1194–1246.

[33]

Arai, T.; Sato, S.; Kajino, T.; Morikawa, T. Solar CO2 reduction using H2O by a semiconductor/metal-complex hybrid photocatalyst: Enhanced efficiency and demonstration of a wireless system using SrTiO3 photoanodes. Energy Environ. Sci. 2013, 6, 1274–1282.

[34]

Parsons, R.; VanderNoot, T. The oxidation of small organic molecules: A survey of recent fuel cell related research. J. Electroanal. Chem. Interfacial Electrochem. 1988, 257, 9–45.

[35]

Marković, N. M.; Ross, P. Jr. Surface science studies of model fuel cell electrocatalysts. Surf. Sci. Rep. 2002, 45, 117–229.

[36]

Fang, Z. Y.; Chen, W. Recent advances in formic acid electro-oxidation: From the fundamental mechanism to electrocatalysts. Nanoscale Adv. 2021, 3, 94–105.

[37]

Müller, E. Zur elektrolytischen Oxydation der Ameisensäure. Zeitsch. Elektr. Angew. Phys. Chem. 1927, 33, 561–568.

[38]

Müller, E. Die elektrolytische Oxydation der Ameisensäure. Zeitsch. Elektr. Angew. Phys. Chem. 1923, 29, 264–274.

[39]

Mülle, E.; Tanaka, S. Über die pulsierende elektrolytische Oxydation der Ameisensäure. Zeitsch. Elektr. Angew. Phys. Chem. 1928, 34, 256–264.

[40]

Herasymenko, P. Adsorption processes in anodic oxidation of formic acid. Ukr. Khim. Zh. 1929, 4, 439–452.

[41]

Schwabe, K. Über Potentialmessungen an Metallkatalysatoren in wäßriger Lösung. Z. Elektr. , Berichte Bunseng. Phys. Chem. 1957, 61, 744–752.

[42]

Buck, R. P.; Griffith, L. R. Voltammetric and chronopotentiometric study of the anodic oxidation of methanol, formaldehyde, and formic acid. J. Electrochem. Soc. 1962, 109, 1005.

[43]
Slott, R. Electrochemical oxidation of formic acid; Massachusetts Inst of Tech Cambridge: 1963.
[44]

Rhodes, D. R.; Steigelmann, E. F. Catalytic decomposition of aqueous formic acid on platinum electrodes. J. Electrochem. Soc. 1965, 112, 16.

[45]

Conway, B. E.; Dzieciuch, M. New approaches to the study of electrochemical decarboxylation and the Kolbe reaction: Part I. The model reaction with formate. Canadian J. Chem. 1963, 41, 21–37.

[46]

Giner, J. The anodic oxidation of methanol and formic acid and the reductive. Adsorption of CO2. Electrochim. Acta 1964, 9, 63–77.

[47]

Breiter, M. W. Anodic oxidation of formic acid on platinum—I. Adsorption of formic acid, oxygen, and hydrogen in perchloric acid solutions. Electrochim. Acta 1963, 8, 447–456.

[48]

Breiter, M. W. Anodic oxidation of formic acid on platinum—II. Interpretation of potentiostatic current/potential curves. Reaction mechanism in perchloric acid solutions. Electrochim. Acta 1963, 8, 457–470.

[49]

Warner, T. B.; Schuldiner, S. Effects of oxygen absorbed in the skin of a platinum electrode on the determination of carbon monoxide adsorption. J. Phys. Chem. 1965, 69, 4048–4049.

[50]

Brummer, S. B.; Makrides, A. C. Adsorption and oxidation of formic acid on smooth platinum electrodes in perchloric acid solutions. J. Phys. Chem. 1964, 68, 1448–1459.

[51]

Brummer, S. B.; Ford, J. I. Galvanostatic studies of carbon monoxide adsorption on platinum electrodes. J. Phys. Chem. 1965, 69, 1355–1362.

[52]

Brummer, S. B. The use of large anodic galvanostatic transients to evaluate the maximum adsorption on platinum from formic acid solutions. J. Phys. Chem. 1965, 69, 562–571.

[53]

Brummer, S. B. The correction for electrode oxidation in the estimation of adsorbed CO on smooth platinum by anodic stripping. J. Phys. Chem. 1965, 69, 4049–4050.

[54]

Breiter, M. W. Comparative oxidation of chemisorbed carbon monoxide, reduced carbon dioxide and species formed during the methanol oxidation. J. Electroanal. Chem. Interfacial Electrochem. 1968, 19, 131–136.

[55]

Breiter, M. W. Nature of strongly adsorbed species formed on platinizedplatinum after the addition of methanol, formic acid, and formaldehyde. J. Electroanal. Chem. Interfacial Electrochem. 1967, 15, 221–226.

[56]

Taylor, A. H.; Pearce, R. D.; Brummer, S. B. Effect of adsorbed layers on the anodic oxidation of simple organic compounds. Part 2. —Role of adsorbed HCOOH species. Trans. Faraday Soc. 1971, 67, 801–808.

[57]

Taylor, A. H.; Pearce, R. D.; Brummer, S. B. Effect of adsorbed layers on the anodic oxidation of simple organic compounds. Part 1. —Time variations during the oxidation of HCOOH and effect of added Cl. Trans. Faraday Soc. 1970, 66, 2076–2084.

[58]

Capon, A.; Parsons, R. The oxidation of formic acid at noble metal electrodes Part III. Intermediates and mechanism on platinum electrodes. J. Electroanal. Chem. Interfacial Electrochem. 1973, 45, 205–231.

[59]

Capon, A.; Parsons, R. The oxidation of formic acid on noble metal electrodes: II. A comparison of the behaviour of pure electrodes. J. Electroanal. Chem. Interfacial Electrochem. 1973, 44, 239–254.

[60]

Capon, A.; Parson, R. The oxidation of formic acid at noble metal electrodes: I. Review of previous work. J. Electroanal. Chem. Interfacial Electrochem. 1973, 44, 1–7.

[61]

Yeager, E. Non-traditional approaches to the study of solid-electrolyte interfaces: Problem overview. Surf. Sci. 1980, 101, 1–22.

[62]

Kuwana, T. Optically coupled electrochemical studies. Berichte Bunseng. Phys. Chem. 1973, 77, 858–871.

[63]

Jeanmaire, D. L.; Van Duyne, R. P. Resonance Raman spectroelectrochemistry. 3. Tunable dye laser excitation spectroscopy of the lowest 2B1u excited state of the tetracyanoquinodimethane anion radical. J. Am. Chem. Soc. 1976, 98, 4034–4039.

[64]

Fleischmann, M.; Hendra, P. J.; McQuillan, A. J. Raman spectra from electrode surfaces. J. Chem. Soc. , Chem. Commun. 1973, 3, 80–81.

[65]

Cooney, R. P.; Fleischmann, M.; Hendra, P. J. Raman spectrum of carbon monoxide on a platinum electrode surface. J. Chem. Soc. , Chem. Commun. 1977, 235–237.

[66]

Bewick, A.; Kunimatsu, K. Infra red spectroscopy of the electrode-electrolyte interphase. Surf. Sci. 1980, 101, 131–138.

[67]

Bewick, A.; Kunimatsu, K.; Pons, B. S. Infra red spectroscopy of the electrode-electrolyte interphase. Electrochim. Acta 1980, 25, 465–468.

[68]

Bewick, A.; Kunimatsu, K.; Robinson, J.; Russell, J. W. IR vibrational spectroscopy of species in the electrode-electrolyte solution interphase. J. Electroanal. Chem. Interfacial Electrochem. 1981, 119, 175–185.

[69]

Bewick, A.; Kunimatsu, K.; Pons, B. S.; Russell, J. W. Electrochemically modulated infrared spectroscopy (EMIRS): Experimental details. J. Electroanal. Chem. Interfacial Electrochem. 1984, 160, 47–61.

[70]

Beden, B.; Lamy, C.; Bewick, A.; Kunimatsu, K. Electrosorption of methanol on a platinum electrode. IR spectroscopic evidence for adsorbed CO species. J. Electroanal. Chem. Interfacial Electrochem. 1981, 121, 343–347.

[71]

Beden, B.; Bewick, A.; Lamy, C. A comparative study of formic acid adsorption on a platinum electrode by both electrochemical and emirs techniques. J. Electroanal. Chem. Interfacial Electrochem. 1983, 150, 505–511.

[72]

Beden, B.; Bewick, A.; Lamy, C. A study by electrochemically modulated infrared reflectance spectroscopy of the electrosorption of formic acid at a platinum electrode. J. Electroanal. Chem. Interfacial Electrochem. 1983, 148, 147–160.

[73]

Sun, S. G.; Clavilier, J.; Bewick, A. The mechanism of electrocatalytic oxidation of formic acid on Pt (100) and Pt (111) in sulphuric acid solution: An emirs study. J. Electroanal. Chem. Interfacial Electrochem. 1988, 240, 147–159.

[74]

Juanto, S.; Beden, B.; Hahn, F.; Leger, J. M.; Lamy, C. Infrared spectroscopic study of the methanol adsorbates at a platinum electrode: Part II. The Pt (100) surface in an acid medium. J. Electroanal. Chem. Interfacial Electrochem. 1987, 237, 119–129.

[75]

Beden, B.; Hahn, F.; Juanto, S.; Lamy, C.; Leger, J. M. Infrared spectroscopic study of the methanol adsorbates at a platinum electrode: Part I. Influence of the bulk concentration of methanol upon the nature of the adsorbates. J. Electroanal. Chem. Interfacial Electrochem. 1987, 225, 215–225.

[76]

Kunimatsu, K.; Kita, H. Infrared spectroscopic study of methanol and formic acid absorbates on a platinum electrode: Part II. Role of the linear CO(a) derived from methanol and formic acid in the electrocatalytic oxidation of CH3OH and HCOOH. J. Electroanal. Chem. Interfacial Electrochem. 1987, 218, 155–172.

[77]

Corrigan, D. S.; Weaver, M. J. Mechanisms of formic acid, methanol, and carbon monoxide electrooxidation at platinum as examined by single potential alteration infrared spectroscopy. J. Electroanal. Chem. Interfacial Electrochem. 1988, 241, 143–162.

[78]

Corrigan, D. S.; Leung, L. W. H.; Weaver, M. J. Single potential-alteration surface infrared spectroscopy: Examination of absorbed species involved in irreversible electrode reactions. Anal. Chem. 1987, 59, 2252–2256.

[79]

Chang, S. C.; Leung, L. W. H.; Weaver, M. J. Metal crystallinity effects in electrocatalysis as probed by real-time FTIR spectroscopy: Electrooxidation of formic acid, methanol, and ethanol on ordered low-index platinum surfaces. J. Phys. Chem. 1990, 94, 6013–6021.

[80]

Bruckenstein, S.; Gadde, R. R. Use of a porous electrode for in situ mass spectrometric determination of volatile electrode reaction products. J. Am. Chem. Soc. 1971, 93, 793–794.

[81]

Wolter, O.; Heitbaum, J. The adsorption of CO on a porous Pt-electrode in sulfuric acid studied by DEMS. Ber. Bunseng. Phys. Chem. 1984, 88, 6–10.

[82]

Wolter, O.; Heitbaum, J. Differential electrochemical mass spectroscopy (DEMS)—A new method for the study of electrode processes. Ber. Bunseng. Phys. Chem. 1984, 88, 2–6.

[83]

Wolter, O.; Willsau, J.; Heitbaum, J. Reaction pathways of the anodic oxidation of formic acid on Pt evidenced by 18O labeling—A DEMS study. J. Electrochem. Soc. 1985, 132, 1635–1638.

[84]

Willsau, J.; Heitbaum, J. Analysis of adsorbed intermediates and determination of surface potential shifts by dems. Electrochim. Acta 1986, 31, 943–948.

[85]

Willsau, J.; Heitbaum, J. Mass spectroscopic detection of the hydrogen in methanol-adsorbate. J. Electroanal. Chem. Interfacial Electrochem. 1985, 185, 181–183.

[86]

Jeanmaire, D. L.; Van Duyne, R. P. Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. Interfacial Electrochem. 1977, 84, 1–20.

[87]

Chang, R. K.; Laube, B. L. Surface-enhanced Raman scattering and nonlinear optics applied to electrochemistry. Crit. Rev. Solid State Mater. Sci. 1984, 12, 1–73.

[88]

Albrecht, M. G.; Creighton, J. A. Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 1977, 99, 5215–5217.

[89]

Zhang, Y.; Weaver, M. J. Application of surface-enhanced Raman spectroscopy to organic electrocatalytic systems: Decomposition and electrooxidation of methanol and formic acid on gold and platinum-film electrodes. Langmuir 1993, 9, 1397–1403.

[90]

Leung, L. W. H.; Weaver, M. J. Extending surface-enhanced Raman spectroscopy to transition-metal surfaces: Carbon monoxide adsorption and electrooxidation on platinum-and palladium-coated gold electrodes. J. Am. Chem. Soc. 1987, 109, 5113–5119.

[91]

Weaver, M. J.; Corrigan, D. S.; Gao, P.; Gosztola, D.; Leung, L. W. H. Some applications of surface Raman and infrared spectroscopies to mechanistic electrochemistry involving adsorbed species. J. Electron Spectros. Relat. Phenomena 1987, 45, 291–302.

[92]

Tian, Z. Q.; Ren, B.; Wu, D. Y. Surface-enhanced Raman scattering: From noble to transition metals and from rough surfaces to ordered nanostructures. J. Phys. Chem. B 2002, 106, 9463–9483.

[93]

Cao, P. G.; Zhong, Q. L.; Sun, Y. H.; Gu, R. A. Dissociation and electrooxidation of formic acid at platinum in nonaqueous solutions as probed by in situ surface-enhanced Raman spectroscopy. Chem. Phys. Lett. 2003, 376, 806–811.

[94]

Samjeské, G.; Miki, A.; Ye, S.; Osawa, M. Mechanistic study of electrocatalytic oxidation of formic acid at platinum in acidic solution by time-resolved surface-enhanced infrared absorption spectroscopy. J. Phys. Chem. B 2006, 110, 16559–16566.

[95]

Samjeské, G.; Osawa, M. Current oscillations during formic acid oxidation on a Pt electrode: Insight into the mechanism by time-resolved IR spectroscopy. Angew. Chem. , Int. Ed. 2005, 44, 5694–5698.

[96]

Chen, Y. X.; Heinen, M.; Jusys, Z.; Behm, R. J. Kinetics and mechanism of the electrooxidation of formic acid—Spectroelectrochemical studies in a flow cell. Angew. Chem., Int. Ed. 2006, 45, 981–985.

[97]

Chen, Y. X.; Heinen, M.; Jusys, Z.; Behm, R. J. Bridge-bonded formate: Active intermediate or spectator species in formic acid oxidation on a Pt film electrode. Langmuir 2006, 22, 10399–10408.

[98]

Neurock, M.; Janik, M.; Wieckowski, A. A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt. Faraday Discuss. 2009, 140, 363–378.

[99]

Wang, H. F.; Liu, Z. P. Formic acid oxidation at Pt/H2O interface from periodic DFT calculations integrated with a continuum solvation model. J. Phys. Chem. C 2009, 113, 17502–17508.

[100]

Gao, W.; Mueller, J. E.; Jiang, Q.; Jacob, T. The role of Co-adsorbed CO and OH in the electrooxidation of formic acid on Pt(111). Angew. Chem. , Int. Ed. 2012, 51, 9448–9452.

[101]

Gao, W.; Keith, J. A.; Anton, J.; Jacob, T. Theoretical elucidation of the competitive electro-oxidation mechanisms of formic acid on Pt (111). J. Am. Chem. Soc. 2010, 132, 18377–18385.

[102]

Gao, W.; Keith, J. A.; Anton, J.; Jacob, T. Oxidation of formic acid on the Pt(111) surface in the gas phase. Dalton Trans. 2010, 39, 8450–8456.

[103]

Joo, J.; Uchida, T.; Cuesta, A.; Koper, M. T.; Osawa, M. Importance of acid-base equilibrium in electrocatalytic oxidation of formic acid on platinum. J. Am. Chem. Soc. 2013, 135, 9991–9994.

[104]

Ferre-Vilaplana, A.; Perales-Rondón, J. V.; Buso-Rogero, C.; Feliu, J. M.; Herrero, E. Formic acid oxidation on platinum electrodes: A detailed mechanism supported by experiments and calculations on well-defined surfaces. J. Mater. Chem. A 2017, 5, 21773–21784.

[105]

Zhu, X. W.; Huang, J. Modeling electrocatalytic oxidation of formic acid at platinum. J. Electrochem. Soc. 2020, 167, 013515.

[106]

Zhang, M. K.; Chen, W.; Wei, Z.; Xu, M. L.; He, Z. D.; Cai, J.; Chen, Y. X.; Santos, E. Mechanistic implication of the pH effect and H/D kinetic isotope effect on HCOOH/HCOO oxidation at Pt electrodes: A study by computer simulation. ACS Catal. 2021, 11, 6920–6930.

[107]

Feng, L. G.; Chang, J. F.; Jiang, K.; Xue, H. G.; Liu, C. P.; Cai, W. B.; Xing, W.; Zhang, J. J. Nanostructured palladium catalyst poisoning depressed by cobalt phosphide in the electro-oxidation of formic acid for fuel cells. Nano Energy 2016, 30, 355–361.

[108]

Wang, S. L.; Chang, J. F.; Xue, H. G.; Xing, W.; Feng, L. G. Catalytic stability study of a Pd-Ni2P/C catalyst for formic acid electrooxidation. ChemElectroChem 2017, 4, 1243–1249.

[109]

Shi, Y. F.; Schimmenti, R.; Zhu, S. Q.; Venkatraman, K.; Chen, R. H.; Chi, M. F.; Shao, M. H.; Mavrikakis, M.; Xia, Y. N. Solution-phase synthesis of PdH0.706 nanocubes with enhanced stability and activity toward formic acid oxidation. J. Am. Chem. Soc. 2022, 144, 2556–2568.

[110]

Yu, N. F.; Tian, N.; Zhou, Z. Y.; Sheng, T.; Lin, W. F.; Ye, J. Y.; Liu, S.; Ma, H. B.; Sun, S. G. Pd nanocrystals with continuously tunable high-index facets as a model nanocatalyst. ACS Catal. 2019, 9, 3144–3152.

[111]

Sun, S. G.; Yang, Y. Y. Studies of kinetics of HCOOH oxidation on Pt(100), Pt(110), Pt(111), Pt(510) and Pt(911) single crystal electrodes. J. Electroanal. Chem. 1999, 467, 121–131.

[112]

Hoshi, N.; Kida, K.; Nakamura, M.; Nakada, M.; Osada, K. Structural effects of electrochemical oxidation of formic acid on single crystal electrodes of palladium. J. Phys. Chem. B 2006, 110, 12480–12484.

[113]

Elnabawy, A. O.; Herron, J. A.; Scaranto, J.; Mavrikakis, M. Structure sensitivity of formic acid electrooxidation on transition metal surfaces: A first-principles study. J. Electrochem. Soc. 2018, 165, J3109.

[114]

Choi, S. I.; Herron, J. A.; Scaranto, J.; Huang, H.; Wang, Y.; Xia, X. H.; Lv, T.; Park, J.; Peng, H. C.; Mavrikakis, M. et al. A comprehensive study of formic acid oxidation on palladium nanocrystals with different types of facets and twin defects. ChemCatChem 2015, 7, 2077–2084.

[115]

Iwasita, T.; Nart, F. C.; Lopez, B.; Vielstich, W. On the study of adsorbed species at platinum from methanol, formic acid and reduced carbon dioxide via in situ FT-ir spectroscopy. Electrochim. Acta 1992, 37, 2361–2367.

[116]

Zhou, Y.; Liu, D. Y.; Liu, Z.; Feng, L. G.; Yang, J. Interfacial Pd-O-Ce linkage enhancement boosting formic acid electrooxidation. ACS Appl. Mater. Interfaces 2020, 12, 47065–47075.

[117]

Bao, Y. F.; Zha, M.; Sun, P. L.; Hu, G. Z.; Feng, L. G. PdNi/N-doped graphene aerogel with over wide potential activity for formic acid electrooxidation. J. Energy Chem. 2021, 59, 748–754.

[118]

Bao, Y. F.; Feng, L. G. Formic acid electro-oxidation catalyzed by PdNi/graphene aerogel. Acta Phys. -Chim. Sin. 2021, 37, 2008031.

[119]

Leiva, E.; Iwasita, T.; Herrero, E.; Feliu, J. M. Effect of adatoms in the electrocatalysis of HCOOH oxidation. A theoretical model. Langmuir 1997, 13, 6287–6293.

[120]

Zhou, Y.; Liu, D. Y.; Qiao, W.; Liu, Z.; Yang, J.; Feng, L. G. Ternary synergistic catalyst system of Pt-Cu-Mo2C with high activity and durability for alcohol oxidation. Mater. Today Phys. 2021, 17, 100357.

[121]

Marković, N. M.; Gasteiger, H. A.; Ross, P. N. Jr.; Jiang, X. D.; Villegas, I.; Weaver, M. J. Electro-oxidation mechanisms of methanol and formic acid on Pt-Ru alloy surfaces. Electrochim. Acta 1995, 40, 91–98.

[122]

Kizhakevariam, N.; Weaver, M. J. Structure and reactivity of bimetallic electrochemical interfaces: Infrared spectroscopic studies of carbon monoxide adsorption and formic acid electrooxidation on antimony-modified Pt(100) and Pt(111). Surf. Sci. 1994, 310, 183–197.

[123]

Gasteiger, H. A.; Marković, N.; Ross, P. N. Jr.; Cairns, E. J. Electro-oxidation of small organic molecules on well-characterized Pt-Ru alloys. Electrochim. Acta 1994, 39, 1825–1832.

[124]

Fang, B.; Feng, L. G. PtCo-NC catalyst derived from the pyrolysis of Pt-incorporated ZIF-67 for alcohols fuel electrooxidation. Acta Phys. -Chim. Sin. 2020, 36, 1905023.

[125]

Chang, S. C.; Ho, Y.; Weaver, M. J. Applications of real-time infrared spectroscopy to electrocatalysis at bimetallic surfaces: I. Electrooxidation of formic acid and methanol on bismuth-modified Pt(111) and Pt(100). Surf. Sci. 1992, 265, 81–94.

[126]

Bittins-Cattaneo, B.; Iwasita, T. Electrocatalysis of methanol oxidation by adsorbed tin on platinum. J. Electroanal. Chem. Interfacial Electrochem. 1987, 238, 151–161.

[127]

Angerstein-Kozlowska, H.; MacDougall, B.; Conway, B. E. Origin of activation effects of acetonitrile and mercury in electrocatalytic oxidation of formic acid. J. Electrochem. Soc. 1973, 120, 756–766.

[128]

Vidal-Iglesias, F.; Solla-Gullon, J.; Herrero, E.; Aldaz, A.; Feliu, J. Formic acid oxidation on Pd-modified Pt (100) and Pt (111) electrodes: A DEMS study. Journal of applied electrochemistry 2006, 36, 1207–1214.

[129]

Shen, T.; Chen, S. J.; Zeng, R.; Gong, M. M.; Zhao, T. H.; Lu, Y.; Liu, X. P.; Xiao, D. D.; Yang, Y.; Hu, J. P. et al. Tailoring the antipoisoning performance of Pd for formic acid electrooxidation via an ordered PdBi intermetallic. ACS Catal. 2020, 10, 9977–9985.

[130]

Wang, Y. H.; Liang, M. M.; Zhang, Y. J.; Chen, S.; Radjenovic, P.; Zhang, H.; Yang, Z. L.; Zhou, X. S.; Tian, Z. Q.; Li, J. F. Probing interfacial electronic and catalytic properties on well-defined surfaces by using in situ Raman spectroscopy. Angew. Chem. 2018, 130, 11427–11431.

[131]

Xie, W. C.; Ling, Y.; Zhang, Y. Z.; Pan, H.; Liu, G. K.; Tang, J. In-situ electrochemical surface-enhanced Raman spectroscopy study of formic acid electrooxidation at variable temperatures by high-frequency heating technology. Electrochim. Acta 2018, 281, 323–328.

[132]

Wasmus, S.; Küver, A. Methanol oxidation and direct methanol fuel cells: A selective review. J. Electroanal. Chem. 1999, 461, 14–31.

[133]

Chen, W.; Yu, A.; Sun, Z. J.; Zhu, B. Q.; Cai, J.; Chen, Y. X. Probing complex eletrocatalytic reactions using electrochemical infrared spectroscopy. Curr. Opin. Electrochem. 2019, 14, 113–123.

[134]

Zhang, X. G.; Arikawa, T.; Murakami, Y.; Yahikozawa, K.; Takasu, Y. Electrocatalytic oxidation of formic acid on ultrafine palladium particles supported on a glassy carbon. Electrochim. Acta 1995, 40, 1889–1897.

[135]

Yang, Y.; Xiong, Y.; Zeng, R.; Lu, X. Y.; Krumov, M.; Huang, X.; Xu, W. X.; Wang, H. S.; DiSalvo, F. J.; Brock, J. D. et al. Operando methods in electrocatalysis. ACS Catal. 2021, 11, 1136–1178.

[136]

Pishgar, S.; Gulati, S.; Strain, J. M.; Liang, Y.; Mulvehill, M. C.; Spurgeon, J. M. In situ analytical techniques for the investigation of material stability and interface dynamics in electrocatalytic and photoelectrochemical applications. Small Meth. 2021, 5, 2100322.

[137]

Li, W. X.; Sun, J. H.; Gao, Y. X.; Zhang, Y.; Ouyang, J.; Na, N. Monitoring of electrochemical reactions on different electrode configurations by ambient mass spectrometry. TrAC Trends Anal. Chem. 2021, 135, 116180.

[138]

Anastasijevic, N. A.; Baltruschat, H.; Heitbaum, J. DEMS as a tool for the investigation of dynamic processes: Galvanostatic formic acid oxidation on a Pt electrode. J. Electroanal. Chem. Interfacial Electrochem. 1989, 272, 89–100.

[139]

Xu, Z. Z.; Liang, Z. B.; Guo, W. H.; Zou, R. Q. In situ/operando vibrational spectroscopy for the investigation of advanced nanostructured electrocatalysts. Coord. Chem. Rev. 2021, 436, 213824.

[140]

Ikegaya, S.; Motobayashi, K.; Ikeda, K. Long-range surface plasmon enhanced Raman spectroscopy at highly damping platinum electrodes. J. Raman Spectrosc. 2021, 52, 420–430.

[141]

Muralidharan, R.; McIntosh, M.; Li, X. In situ surface-enhanced Raman spectroscopic study of formic acid electrooxidation on spontaneously deposited platinum on gold. Phys. Chem. Chem. Phy. 2013, 15, 9716–9725.

[142]

Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F. R.; Zhang, W.; Zhou, Z. Y.; Wu, D. Y. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 2010, 464, 392–395.

[143]

Wu, D. Y.; Li, J. F.; Ren, B.; Tian, Z. Q. Electrochemical surface-enhanced Raman spectroscopy of nanostructures. Chem. Soc. Rev. 2008, 37, 1025–1041.

[144]

Janik, M. J.; Taylor, C. D.; Neurock, M. First principles analysis of the electrocatalytic oxidation of methanol and carbon monoxide. Top. Catal. 2007, 46, 306–319.

[145]

Janik, M. J.; Neurock, M. A first principles analysis of the electro-oxidation of CO over Pt(111). Electrochim. Acta 2007, 52, 5517–5528.

[146]

Desai, S.; Neurock, M. A first principles analysis of CO oxidation over Pt and Pt66.7%Ru33.3%(111) surfaces. Electrochim. Acta 2003, 48, 3759–3773.

[147]

Anderson, A. B.; Neshev, N. M.; Sidik, R. A.; Shiller, P. Mechanism for the electrooxidation of water to OH and O bonded to platinum: Quantum chemical theory. Electrochim. Acta 2002, 47, 2999–3008.

[148]

Anderson, A. B.; Grantscharova, E. Catalytic effect of ruthenium in ruthenium-platinum alloys on the electrooxidation of methanol. Molecular orbital theory. J. Phys. Chem. 1995, 99, 9149–9154.

[149]

Anderson, A. B. O2 reduction and CO oxidation at the Pt-electrolyte interface. The role of H2O and OH adsorption bond strengths. Electrochim. Acta 2002, 47, 3759–3763.

[150]

Meng, F. H.; Yang, M.; Li, Z. Q.; Zhang, R. G. HCOOH dissociation over the Pd-decorated Cu bimetallic catalyst: The role of the Pd ensemble in determining the selectivity and activity. Appl. Surf. Sci. 2020, 511, 145554.

[151]

Yang, L.; Wang, X.; Liu, D. P.; Cui, G. M.; Dou, B. L.; Wang, J. Efficient anchoring of nanoscale Pd on three-dimensional carbon hybrid as highly active and stable catalyst for electro-oxidation of formic acid. Appl. Catal. B:Environ. 2020, 263, 118304.

[152]

Xu, Y.; Wang, M. Z.; Yu, S. S.; Ren, T. L.; Ren, K. L.; Wang, Z. Q.; Li, X. N.; Wang, L.; Wang, H. J. Electronic structure control over Pd nanorods by B, P-co-doping enables enhanced electrocatalytic performance. Chem. Eng. J. 2021, 421, 127751.

[153]

Yang, N. L.; Zhang, Z. C.; Chen, B.; Huang, Y.; Chen, J. Z.; Lai, Z. C.; Chen, Y.; Sindoro, M.; Wang, A. L.; Cheng, H. F. et al. Synthesis of ultrathin PdCu alloy nanosheets used as a highly efficient electrocatalyst for formic acid oxidation. Adv. Mater. 2017, 29, 1700769.

[154]

Tang, M.; Chen, W.; Luo, S. P.; Wu, X. T.; Fan, X. K.; Liao, Y. J.; Song, X.; Cheng, Y.; Li, L. X.; Tan, L. et al. Trace Pd modified intermetallic PtBi nanoplates towards efficient formic acid electrocatalysis. J. Mater. Chem. A 2021, 9, 9602–9608.

[155]

Choi, M.; Ahn, C. Y.; Lee, H.; Kim, J. K.; Oh, S. H.; Hwang, W.; Yang, S.; Kim, J.; Kim, O. H.; Choi, I. et al. Bi-modified Pt supported on carbon black as electro-oxidation catalyst for 300 W formic acid fuel cell stack. Appl. Catal. B:Environ. 2019, 253, 187–195.

[156]

Bao, Y. F.; Liu, H.; Liu, Z.; Wang, F. L.; Feng, L. G. Pd/FeP catalyst engineering via thermal annealing for improved formic acid electrochemical oxidation. Appl. Catal. B:Environ. 2020, 274, 119106.

[157]

Li, J. R.; Jilani, S. Z.; Lin, H. H.; Liu, X. M.; Wei, K. C.; Jia, Y. K.; Zhang, P.; Chi, M. F.; Tong, Y. Y. J.; Xi, Z. et al. Ternary CoPtAu nanoparticles as a general catalyst for highly efficient electro-oxidation of liquid fuels. Angew. Chem. , Int. Ed. 2019, 58, 11527–11533.

[158]

Jiang, J. X.; Ding, W.; Li, W.; Wei, Z. D. Freestanding single-atom-layer Pd-based catalysts: Oriented splitting of energy bands for unique stability and activity. Chem 2020, 6, 431–447.

[159]

Luo, S. P.; Chen, W.; Cheng, Y.; Song, X.; Wu, Q. L.; Li, L. X.; Wu, X. T.; Wu, T. H.; Li, M. R.; Yang, Q. et al. Trimetallic synergy in intermetallic PtSnBi nanoplates boosts formic acid oxidation. Adv. Mater. 2019, 31, 1903683.

[160]

Zhang, L. Y.; Wang, F. Q.; Wang, S.; Huang, H. W.; Meng, X. M.; Ouyang, Y. R.; Yuan, W. Y.; Guo, C. X.; Li, C. M. Layered and heterostructured Pd/PdWCr sheet-assembled nanoflowers as highly active and stable electrocatalysts for formic acid oxidation. Adv. Funct. Mater. 2020, 30, 2003933.

[161]

Xie, Y. X.; Dimitrov, N. Ultralow Pt loading nanoporous Au-Cu-Pt thin film as highly active and durable catalyst for formic acid oxidation. Appl. Catal. B:Environ. 2020, 263, 118366.

[162]

Sang, Q. Q.; Yin, S.; Liu, F.; Yin, H. M.; He, J.; Ding, Y. Highly coordinated Pd overlayers on nanoporous gold for efficient formic acid electro-oxidation. Nano Res. 2021, 14, 3502–3508.

[163]

Fan, H. S.; Cheng, M.; Wang, L.; Song, Y. J.; Cui, Y. M.; Wang, R. M. Extraordinary electrocatalytic performance for formic acid oxidation by the synergistic effect of Pt and Au on carbon black. Nano Energy 2018, 48, 1–9.

[164]

Xu, Y.; Yu, S. S.; Ren, T. L.; Li, C. J.; Yin, S. L.; Wang, Z. Q.; Li, X. N.; Wang, L.; Wang, H. J. A quaternary metal-metalloid-nonmetal electrocatalyst: B, P-co-doping into PdRu nanospine assemblies boosts the electrocatalytic capability toward formic acid oxidation. J. Mater. Chem. A 2020, 8, 2424–2429.

[165]

Jiang, T.; Mowbray, D. J.; Dobrin, S.; Falsig, H.; Hvolbæk, B.; Bligaard, T.; Nørskov, J. K. Trends in CO oxidation rates for metal nanoparticles and close-packed, stepped, and kinked surfaces. J. Phys. Chem. C 2009, 113, 10548–10553.

[166]

Hammer, B.; Nielsen, O. H.; Nrskov, J. K. Structure sensitivity in adsorption: CO interaction with stepped and reconstructed Pt surfaces. Catal. Lett. 1997, 46, 31–35.

[167]

Kim, J.; Roh, C. W.; Sahoo, S. K.; Yang, S.; Bae, J.; Han, J. W.; Lee, H. Highly durable platinum single-atom alloy catalyst for electrochemical reactions. Adv. Energy Mater. 2018, 8, 1701476.

[168]

Li, Z.; Chen, Y. J.; Ji, S. F.; Tang, Y.; Chen, W. X.; Li, A.; Zhao, J.; Xiong, Y.; Wu, Y. E.; Gong, Y. et al. Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host-guest strategy. Nat. Chem. 2020, 12, 764–772.

[169]

Zhang, S.; Xia, R.; Su, Y. Q.; Zou, Y. C.; Hu, C. Y.; Yin, G. P.; Hensen, E. J. M.; Ma, X. B.; Lin, Y. H. 2D surface induced self-assembly of Pd nanocrystals into nanostrings for enhanced formic acid electrooxidation. J. Mater. Chem. A 2020, 8, 17128–17135.

[170]

Shi, W. J.; Park, A. H.; Xu, S. Y.; Yoo, P. J.; Kwon, Y. U. Continuous and conformal thin TiO2-coating on carbon support makes Pd nanoparticles highly efficient and durable electrocatalyst. Appl. Catal. B:Environ. 2021, 284, 119715.

[171]

Seselj, N.; Engelbrekt, C.; Ding, Y.; Hjuler, H. A.; Ulstrup, J.; Zhang, J. D. Tailored electron transfer pathways in Aucore/Ptshell-graphene nanocatalysts for fuel cells. Adv. Energy Mater. 2018, 8, 1702609.

[172]

Pajić, M. N. K.; Stevanović, S. I.; Radmilović, V. V.; Gavrilović-Wohlmuther, A.; Zabinski, P.; Elezović, N. R.; Radmilović, V. R.; Gojković, S. L.; Jovanović, V. M. Dispersion effect in formic acid oxidation on PtAu/C nanocatalyst prepared by water-in-oil microemulsion method. Appl. Catal. B:Environ. 2019, 243, 585–593.

[173]

El-Nagar, G. A.; Dawood, K. M.; El-Deab, M. S.; Al-Andouli, B. E. Efficient direct formic acid fuel cell (DFAFC) anode of nano-sized palladium complex: High durability and activity origin. Appl. Catal. B:Environ. 2017, 213, 118–126.

[174]

Liang, W. K.; Wang, Y. W.; Zhao, L.; Guo, W.; Li, D.; Qin, W.; Wu, H. H.; Sun, Y. H.; Jiang, L. 3D Anisotropic Au@Pt-Pd hemispherical nanostructures as efficient electrocatalysts for methanol, ethanol, and formic acid oxidation reaction. Adv. Mater. 2021, 33, 2100713.

[175]

Ding, J.; Liu, Z.; Liu, X. R.; Liu, J.; Deng, Y. D.; Han, X. P.; Zhong, C.; Hu, W. B. Mesoporous decoration of freestanding palladium nanotube arrays boosts the electrocatalysis capabilities toward formic acid and formate oxidation. Adv. Energy Mater. 2019, 9, 1900955.

[176]

Rettenmaier, C.; Arán-Ais, R. M.; Timoshenko, J.; Rizo, R.; Jeon, H. S.; Kühl, S.; Chee, S. W.; Bergmann, A.; Cuenya, B. R. Enhanced formic acid oxidation over SnO2-decorated Pd nanocubes. ACS Catal. 2020, 10, 14540–14551.

[177]

Ye, W.; Chen, S. M.; Ye, M. S.; Ren, C. H.; Ma, J.; Long, R.; Wang, C. M.; Yang, J.; Song, L.; Xiong, Y. J. Pt4PdCu0.4 alloy nanoframes as highly efficient and robust bifunctional electrocatalysts for oxygen reduction reaction and formic acid oxidation. Nano Energy 2017, 39, 532–538.

[178]

Ding, J.; Liu, Z.; Liu, X. R.; Liu, B.; Liu, J.; Deng, Y. D.; Han, X. P.; Hu, W. B.; Zhong, C. Tunable periodically ordered mesoporosity in palladium membranes enables exceptional enhancement of intrinsic electrocatalytic activity for formic acid oxidation. Angew. Chem. 2020, 132, 5130–5139.

[179]

Yan, Y. C.; Li, X.; Tang, M.; Zhong, H.; Huang, J. B.; Bian, T.; Jiang, Y.; Han, Y.; Zhang, H.; Yang, D. R. Tailoring the edge sites of 2D Pd nanostructures with different fractal dimensions for enhanced electrocatalytic performance. Adv. Sci. 2018, 5, 1800430.

[180]

Xiong, Y.; Dong, J. C.; Huang, Z. Q.; Xin, P. Y.; Chen, W. X.; Wang, Y.; Li, Z.; Jin, Z.; Xing, W.; Zhuang, Z. B. et al. Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nat. Nanotechnol. 2020, 15, 390–397.

[181]

Lu, Y. Z.; Zhang, C. M.; Li, X. K.; Frojd, A. R.; Xing, W.; Clayborne, A. Z.; Chen, W. Significantly enhanced electrocatalytic activity of Au25 clusters by single platinum atom doping. Nano Energy 2018, 50, 316–322.

[182]

Zhang, Z.; Gong, Y. Y.; Wu, D. B.; Li, Z.; Li, Q.; Zheng, L. W.; Chen, W.; Yuan, W. Y.; Zhang, L. Y. Facile fabrication of stable PdCu clusters uniformly decorated on graphene as an efficient electrocatalyst for formic acid oxidation. Int. J. Hydrogen Energy 2019, 44, 2731–2740.

[183]

Wen, X. L.; Yin, S.; Yin, H. M.; Ding, Y. A displacement dealloying route to dilute nanoporous PtAu alloys for highly active formic acid electro-oxidation. Electrochim. Acta 2021, 373, 137884.

[184]

Duchesne, P. N.; Li, Z. Y.; Deming, C. P.; Fung, V.; Zhao, X. J.; Yuan, J.; Regier, T.; Aldalbahi, A.; Almarhoon, Z.; Chen, S. W. et al. Golden single-atomic-site platinum electrocatalysts. Nat. Mater. 2018, 17, 1033–1039.

[185]

Liu, L. C.; Corma, A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981–5079.

[186]

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

[187]
Jing, H. Y. ; Zhu, P. ; Zheng, X. B. ; Zhang, Z. D. ; Wang, D. S. ; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater., in press, https://doi.org/10.1016/j.apmate.2021.10.004.
Publication history
Copyright
Acknowledgements

Publication history

Received: 17 December 2021
Revised: 13 March 2022
Accepted: 13 March 2022
Published: 20 April 2022
Issue date: March 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

The authors thank the National Natural Science Foundation of China (No. 21905267,), the National Key R&D Program of China (No. 2018YFB1502400), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA21090400), the Department of Science and Technology of Shandong province (No. 2019JZZY010905), and the Jilin Province Science and Technology Development Program (Nos. 20190201300JC, 20170520150JH, and 20200201001JC) for financial support.

Return