Journal Home > Volume 15 , Issue 7

Energy dissipation has always been an attention-getting issue in modern electronics and the emerging low-symmetry two-dimensional (2D) materials are considered to have broad prospects in solving the energy dissipation problem. Herein the thermal transport of a typical 2D ternary chalcogenide Ta2NiS5 is investigated. For the first time we have observed strongly anisotropic in-plane thermal conductivity towards armchair and zigzag axes of suspended few-layer Ta2NiS5 flakes through Raman thermometry. For 7-nm-thick Ta2NiS5 flakes, the κzigzag is 4.76 W·m−1·K−1 and κarmchair is 7.79 W·m−1·K−1, with a large anisotropic ratio ( κarmchair/κzigzag) of 1.64 mainly ascribed to different phonon mean-free-paths along armchair and zigzag axes. Moreover, the thickness dependence of thermal anisotropy is also discussed. As the flake thickness increases, the κarmchair/κzigzag reduces sharply from 1.64 to 1.07. This could be attributed to the diversity in phonon boundary scattering, which decreases faster in zigzag direction than in armchair direction. Such anisotropic property enables heat flow manipulation in Ta2NiS5 based devices to improve thermal management and device performance. Our work helps reveal the anisotropy physics of ternary transition metal chalcogenides, along with significant guidance to develop energy-efficient next generation nanodevices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Highly in-plane anisotropy of thermal transport in suspended ternary chalcogenide Ta2NiS5

Show Author's information Yue Su1,2,§Chuyun Deng2,§Jinxin Liu1,2Xiaoming Zheng1,2Yuehua Wei3Yangbo Chen1Wei Yu6Xiao Guo5Weiwei Cai1,4Gang Peng2Han Huang5Xueao Zhang1,4( )
College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
College of Arts and Sciences, National University of Defense Technology, Changsha 410073, China
College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
Jiujiang Research Institute of Xiamen University, Jiujiang 332105, China
Hunan Key Laboratory of Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China
Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

§ Yue Su and Chuyun Deng contributed equally to this work.

Abstract

Energy dissipation has always been an attention-getting issue in modern electronics and the emerging low-symmetry two-dimensional (2D) materials are considered to have broad prospects in solving the energy dissipation problem. Herein the thermal transport of a typical 2D ternary chalcogenide Ta2NiS5 is investigated. For the first time we have observed strongly anisotropic in-plane thermal conductivity towards armchair and zigzag axes of suspended few-layer Ta2NiS5 flakes through Raman thermometry. For 7-nm-thick Ta2NiS5 flakes, the κzigzag is 4.76 W·m−1·K−1 and κarmchair is 7.79 W·m−1·K−1, with a large anisotropic ratio ( κarmchair/κzigzag) of 1.64 mainly ascribed to different phonon mean-free-paths along armchair and zigzag axes. Moreover, the thickness dependence of thermal anisotropy is also discussed. As the flake thickness increases, the κarmchair/κzigzag reduces sharply from 1.64 to 1.07. This could be attributed to the diversity in phonon boundary scattering, which decreases faster in zigzag direction than in armchair direction. Such anisotropic property enables heat flow manipulation in Ta2NiS5 based devices to improve thermal management and device performance. Our work helps reveal the anisotropy physics of ternary transition metal chalcogenides, along with significant guidance to develop energy-efficient next generation nanodevices.

Keywords: energy dissipation, anisotropic thermal conductivity, ternary transition metal chalcogenide, Ta2NiS5, phonon mode

References(38)

1

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

2

Liu, E. F.; Fu, Y. J.; Wang, Y. J.; Feng, Y. Q.; Liu, H. M.; Wan, X. G.; Zhou, W.; Wang, B. G.; Shao, L. B.; Ho, C. H. et al. Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors. Nat. Commun. 2015, 6, 6991.

3

Heremans, J. P.; Dresselhaus, M. S.; Bell, L. E.; Morelli, D. T. When thermoelectrics reached the nanoscale. Nat. Nanotechnol. 2013, 8, 471–473.

4

Li, L.; Wang, W. K.; Gan, L.; Zhou, N.; Zhu, X. D.; Zhang, Q.; Li, H. Q.; Tian, M. L.; Zhai, T. Y. Ternary Ta2NiSe5 flakes for a high-performance infrared photodetector. Adv. Funct. Mater. 2016, 26, 8281–8289.

5

Tan, C. L.; Yu, P.; Hu, Y. L.; Chen, J. Z.; Huang, Y.; Cai, Y. Q.; Luo, Z. M.; Li, B.; Lu, Q. P.; Wang, L. H. et al. High-yield exfoliation of ultrathin two-dimensional ternary chalcogenide nanosheets for highly sensitive and selective fluorescence DNA sensors. J. Am. Chem. Soc. 2015, 137, 10430–10436.

6

Luo, Z.; Maassen, J.; Deng, Y. X.; Du, Y. C.; Garrelts, R. P.; Lundstrom, M. S.; Ye, P. D.; Xu, X. F. Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nat. Commun. 2015, 6, 8572.

7

Xia, F. N.; Wang, H.; Jia, Y. C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 2014, 5, 4458.

8

Wang, X. M.; Jones, A. M.; Seyler, K. L.; Tran, V.; Jia, Y. C.; Zhao, H.; Wang, H.; Yang, L.; Xu, X. D.; Xia, F. N. Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 2015, 10, 517–521.

9

Ribeiro, H. B.; Pimenta, M. A.; de Matos, C. J. S.; Moreira, R. L.; Rodin, A. S.; Zapata, J. D.; de Souza, E. A. T.; Castro Neto, A. H. Unusual angular dependence of the Raman response in black phosphorus. ACS Nano 2015, 9, 4270–4276.

10

Zhang, E. Z.; Wang, P.; Li, Z.; Wang, H. F.; Song, C. Y.; Huang, C.; Chen, Z. G.; Yang, L.; Zhang, K. T.; Lu, S. H. et al. Tunable ambipolar polarization-sensitive photodetectors based on high-anisotropy ReSe2 nanosheets. ACS Nano 2016, 10, 8067–8077.

11

Chen, Y. C.; Deng, C. Y.; Wei, Y. H.; Liu, J. X.; Su, Y.; Xie, S. Y.; Cai, W. W.; Peng, G.; Huang, H.; Dai, M. Y. et al. Thickness dependent anisotropy of in-plane Raman modes under different temperatures in supported few-layer WTe2. Appl. Phys. Lett. 2021, 119, 063104.

12

Wei, Y. H.; Deng, C. Y.; Zheng, X. M.; Chen, Y. B.; Zhang, X. Z.; Luo, W.; Zhang, Y.; Peng, G.; Liu, J. X.; Huang, H. et al. Anisotropic in-plane thermal conductivity for multi-layer WTe2. Nano Res. 2022, 15, 401–407.

13

Wang, H. W.; Chen, M. L.; Zhu, M. J.; Wang, Y. N.; Dong, B. J.; Sun, X. D.; Zhang, X. R.; Cao, S. M.; Li, X. X.; Huang, J. Q. et al. Gate tunable giant anisotropic resistance in ultra-thin GaTe. Nat. Commun. 2019, 10, 2302.

14

Li, L.; Gong, P. L.; Wang, W. K.; Deng, B.; Pi, L. J.; Yu, J.; Zhou, X.; Shi, X. Q.; Li, H. Q.; Zhai, T. Y. Strong in-plane anisotropies of optical and electrical response in layered dimetal chalcogenide. ACS Nano 2017, 11, 10264–10272.

15

Qiu, G.; Du, Y. C.; Charnas, A.; Zhou, H.; Jin, S. Y.; Luo, Z.; Zemlyanov, D. Y.; Xu, X. F.; Cheng, G. J.; Ye, P. D. Observation of optical and electrical in-plane anisotropy in high-mobility few-layer ZrTe5. Nano Lett. 2016, 16, 7364–7369.

16

Xu, X. L.; Song, Q. J.; Wang, H. F.; Li, P.; Zhang, K.; Wang, Y. L.; Yuan, K.; Yang, Z. C.; Ye, Y.; Dai, L. In-plane anisotropies of polarized Raman response and electrical conductivity in layered Tin selenide. ACS Appl. Mater. Interfaces 2017, 9, 12601–12607.

17

Zhao, L. D.; Lo, S. H.; Zhang, Y. S.; Sun, H.; Tan, G. J.; Uher, C.; Wolverton, C.; Dravid, V. P.; Kanatzidis, M. G. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 2014, 508, 373–377.

18

Tian, H.; Guo, Q. S.; Xie, Y. J.; Zhao, H.; Li, C.; Cha, J. J.; Xia, F. N.; Wang, H. Anisotropic black phosphorus synaptic device for neuromorphic applications. Adv. Mater. 2016, 28, 4991–4997.

19

Chen, Y.; Peng, B.; Cong, C. X.; Shang, J. Z.; Wu, L. S.; Yang, W. H.; Zhou, J. D.; Yu, P.; Zhang, H. B.; Wang, Y. L. et al. In-plane anisotropic thermal conductivity of few-layered transition metal dichalcogenide Td-WTe2. Adv. Mater. 2019, 31, 1804979.

20

Desai, S. B.; Madhvapathy, S. R.; Sachid, A. B.; Llinas, J. P.; Wang, Q. X.; Ahn, G. H.; Pitner, G.; Kim, M. J.; Bokor, J.; Hu, C. M. et al. MoS2 transistors with 1-nanometer gate lengths. Science 2016, 354, 99–102.

21

Liu, W.; Kang, J. H.; Sarkar, D.; Khatami, Y.; Jena, D.; Banerjee, K. Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. Nano Lett. 2013, 13, 1983–1990.

22

Wei, Y. H.; Zhang, R. Y.; Zhang, Y.; Zheng, X. M.; Cai, W. W.; Ge, Q.; Novoselov, K. S.; Xu, Z. J.; Jiang, T.; Deng, C. Y. et al. Thickness-independent energy dissipation in graphene electronics. ACS Appl. Mater. Interfaces 2020, 12, 17706–17712.

23

Li, M.; Kang, J. S.; Nguyen, H. D.; Wu, H.; Aoki, T.; Hu, Y. J. Anisotropic thermal boundary Resistance across 2D black phosphorus: Experiment and atomistic modeling of interfacial energy transport. Adv. Mater. 2019, 31, 1901021.

24

Di Salvo, F. J.; Chen, C. H.; Fleming, R. M.; Waszczak, J. V.; Dunn, R. G.; Sunshine, S. A.; Ibers, J. A. Physical and structural properties of the new layered compounds Ta2NiS5 and Ta2NiSe5. J. Less Common Met. 1986, 116, 51–61.

25

Sunshine, S. A.; Ibers, J. A. Structure and physical properties of the new layered ternary chalcogenides tantalum nickel sulfide (Ta2NiS5) and tantalum nickel selenide (Ta2NiSe5). Inorg. Chem. 1985, 24, 3611–3614.

26

Ling, X.; Huang, S. X.; Hasdeo, E. H.; Liang, L. B.; Parkin, W. M.; Tatsumi, Y.; Nugraha, A. R. T.; Puretzky, A. A.; Das, P. M.; Sumpter, B. G. et al. Anisotropic electron–photon and electron–phonon interactions in black phosphorus. Nano Lett. 2016, 16, 2260–2267.

27

Calizo, I.; Balandin, A. A.; Bao, W.; Miao, F.; Lau, C. N. Temperature dependence of the Raman spectra of graphene and graphene multilayers. Nano Lett. 2007, 7, 2645–2649.

28

Luo, S. W.; Qi, X.; Yao, H.; Ren, X. H.; Chen, Q.; Zhong, J. X. Temperature-dependent Raman responses of the vapor-deposited tin selenide ultrathin flakes. J. Phys. Chem. C 2017, 121, 4674–4679.

29

Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907.

30

Najmaei, S.; Liu, Z.; Ajayan, P. M.; Lou, J. Thermal effects on the characteristic Raman spectrum of molybdenum disulfide (MoS2) of varying thicknesses. Appl. Phys. Lett. 2012, 100, 013106.

31

Yan, R. S.; Simpson, J. R.; Bertolazzi, S.; Brivio, J.; Watson, M.; Wu, X. F.; Kis, A.; Luo, T. F.; Hight Walker, A. R.; Xing, H. G. Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy. ACS Nano 2014, 8, 986–993.

32

Low, T.; Rodin, A. S.; Carvalho, A.; Jiang, Y. J.; Wang, H.; Xia, F. N.; Castro Neto, A. H. Tunable optical properties of multilayer black phosphorus thin films. Phys. Rev. B 2014, 90, 075434.

33

Pettes, M. T.; Maassen, J.; Jo, I.; Lundstrom, M. S.; Shi, L. Effects of surface band bending and scattering on thermoelectric transport in suspended bismuth telluride nanoplates. Nano Lett. 2013, 13, 5316–5322.

34

Carrete, J.; Vermeersch, B.; Katre, A.; van Roekeghem, A.; Wang, T.; Madsen, G. K. H.; Mingo, N. almaBTE: A solver of the space–time dependent Boltzmann transport equation for phonons in structured materials. Comput. Phys. Commun. 2017, 220, 351–362.

35

Ziambaras, E.; Hyldgaard, P. Phonon Knudsen flow in nanostructured semiconductor systems. J. Appl. Phys. 2006, 99, 054303.

36

Smith, B.; Vermeersch, B.; Carrete, J.; Ou, E.; Kim, J.; Mingo, N.; Akinwande, D.; Shi, L. Temperature and thickness dependences of the anisotropic in-plane thermal conductivity of black phosphorus. Adv. Mater. 2017, 29, 1603756.

37

Xiao, P.; Chavez-Angel, E.; Chaitoglou, S.; Sledzinska, M.; Dimoulas, A.; Sotomayor Torres, C. M.; El Sachat, A. Anisotropic thermal conductivity of crystalline layered SnSe2. Nano Lett. 2021, 21, 9172–9179.

38

Qiao, J.; Feng, F.; Wang, Z. M.; Shen, M. Y.; Zhang, G. P.; Yuan, X. C.; Somekh, M. G. Highly in-plane anisotropic two-dimensional ternary Ta2NiSe5 for polarization-sensitive photodetectors. ACS Appl. Mater. Interfaces 2021, 13, 17948–17956.

File
12274_2022_4317_MOESM1_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 04 December 2021
Revised: 01 February 2022
Accepted: 11 March 2022
Published: 04 May 2022
Issue date: July 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC, Nos. 11874423 and 11404399), the National Defense Science and Technology Innovation Zone, and the Scientific Researches Foundation of National University of Defense Technology (Nos. ZK20-16 and ZZKY-YX-08-06).

Return