Journal Home > Volume 15 , Issue 8

Strain engineering can serve as a powerful technique for modulating the exotic properties arising from the atomic structure of materials. Examples have been demonstrated that one-dimensional (1D) structure can serve as a great platform for modulating electronic band structure and phonon dispersion via strain control. Particularly, in a van der Waals material silicon diphosphide (SiP2), quasi-1D zigzag phosphorus–phosphorus (P–P) chains are embedded inside the crystal structure, and can show unique phonon vibration modes and realize quasi-1D excitons. Manipulating those optical properties by the atom displacements via strain engineering is of great interest in understanding underlying mechanism of such P–P chains, however, which remains elusive. Herein, we demonstrate the strain engineering of Raman and photoluminescence (PL) spectra in quasi-1D P–P chains and resulting in anisotropic manipulation in SiP2. We find that the phonon frequencies of SiP2 in Raman spectra linearly evolve with a uniaxial strain along/perpendicular to the quasi-1D P–P chain directions. Interestingly, by applying tensile strain along the P–P chains, the band gap energy of strained SiP2 can significantly decrease with a tunable value of ~ 55 meV. Based on arsenic (As) element doping into SiP2, the strain-induced redshifts of phonon frequencies decrease, indicating the stiffening of the phonon vibration with the increased arsenic doping level. Such results provide an opportunity for strain engineering of the light–matter interactions in the quasi-1D P–P chains of SiP2 crystal for potential optical applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Strain engineering of anisotropic light–matter interactions in one-dimensional P–P chain of SiP2

Show Author's information Fanghua Cheng1,§Junwei Huang1,§Feng Qin1,§Ling Zhou1Xueting Dai1Xiangyu Bi1Caorong Zhang1Zeya Li1Ming Tang1Caiyu Qiu1Yangfan Lu2Huiyang Gou3Hongtao Yuan1( )
National Laboratory of Solid State Microstructures and Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210000, China
College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400030, China
Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China

§ Fanghua Cheng, Junwei Huang, and Feng Qin contributed equally to this work.

Abstract

Strain engineering can serve as a powerful technique for modulating the exotic properties arising from the atomic structure of materials. Examples have been demonstrated that one-dimensional (1D) structure can serve as a great platform for modulating electronic band structure and phonon dispersion via strain control. Particularly, in a van der Waals material silicon diphosphide (SiP2), quasi-1D zigzag phosphorus–phosphorus (P–P) chains are embedded inside the crystal structure, and can show unique phonon vibration modes and realize quasi-1D excitons. Manipulating those optical properties by the atom displacements via strain engineering is of great interest in understanding underlying mechanism of such P–P chains, however, which remains elusive. Herein, we demonstrate the strain engineering of Raman and photoluminescence (PL) spectra in quasi-1D P–P chains and resulting in anisotropic manipulation in SiP2. We find that the phonon frequencies of SiP2 in Raman spectra linearly evolve with a uniaxial strain along/perpendicular to the quasi-1D P–P chain directions. Interestingly, by applying tensile strain along the P–P chains, the band gap energy of strained SiP2 can significantly decrease with a tunable value of ~ 55 meV. Based on arsenic (As) element doping into SiP2, the strain-induced redshifts of phonon frequencies decrease, indicating the stiffening of the phonon vibration with the increased arsenic doping level. Such results provide an opportunity for strain engineering of the light–matter interactions in the quasi-1D P–P chains of SiP2 crystal for potential optical applications.

Keywords: photoluminescence, strain engineering, Raman, silicon diphosphide

References(29)

1

Cao, Y.; Fatemi, V.; Fang, S. A.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43–50.

2

Khang, D. Y.; Jiang, H. Q.; Huang, Y. N.; Rogers, J. A. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 2006, 311, 208–212.

3

Wu, W. Z.; Wang, L.; Li, Y. L.; Zhang, F.; Lin, L.; Niu, S. M.; Chenet, D.; Zhang, X.; Hao, Y. F.; Heinz, T. F. et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 2014, 514, 470–474.

4

Khang, D. Y.; Rogers, J. A.; Lee, H. H. Mechanical buckling: Mechanics, metrology, and stretchable electronics. Adv. Funct. Mater. 2009, 19, 1526–1536.

5

Koo, W. H.; Jeong, S. M.; Araoka, F.; Ishikawa, K.; Nishimura, S.; Toyooka, T.; Takezoe, H. Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles. Nat. Photon. 2010, 4, 222–226.

6

Wang, M. C.; Leem, J.; Kang, P.; Choi, J.; Knapp, P.; Yong, K. O. N.; Nam, S. Mechanical instability driven self-assembly and architecturing of 2D materials. 2D Mater. 2017, 4, 022002.

7

Roldán, R.; Castellanos-Gomez, A.; Cappelluti, E.; Guinea, F. Strain engineering in semiconducting two-dimensional crystals. J. Phys. Condens. Matter 2015, 27, 313201.

8

An, C. H.; Xu, Z. H.; Shen, W. F.; Zhang, R. J.; Sun, Z. Y.; Tang, S. J.; Xiao, Y. F.; Zhang, D. H.; Sun, D.; Hu, X. D. et al. The opposite anisotropic piezoresistive effect of ReS2. ACS Nano 2019, 13, 3310–3319.

9

Island, J. O.; Barawi, M.; Biele, R.; Almazán, A.; Clamagirand, J. M.; Ares, J. R.; Sánchez, C.; Van Der Zant, H. S. J.; Álvarez, J. V.; D'Agosta, R. et al. TiS3 transistors with tailored morphology and electrical properties. Adv. Mater. 2015, 27, 2595–2601.

10

Xie, J. F.; Wang, R. X.; Bao, J.; Zhang, X. D.; Zhang, H.; Li, S.; Xie, Y. Zirconium trisulfide ultrathin nanosheets as efficient catalysts for water oxidation in both alkaline and neutral solutions. Inorg. Chem. Front. 2014, 1, 751–756.

11

Ling, X.; Huang, S. X.; Hasdeo, E. H.; Liang, L. B.; Parkin, W. M.; Tatsumi, Y.; Nugraha, A. R. T.; Puretzky, A. A.; Das, P. M.; Sumpter, B. G. et al. Anisotropic electron–photon and electron–phonon interactions in black phosphorus. Nano Lett. 2016, 16, 2260–2267.

12

Jain, J. R.; Hryciw, A.; Baer, T. M.; Miller, D. A. B.; Brongersma, M. L.; Howe, R. T. A micromachining-based technology for enhancing germanium light emission via tensile strain. Nat. Photon. 2012, 6, 398–405.

13

Feng, J.; Qian, X. F.; Huang, C. W.; Li, J. Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat. Photon. 2012, 6, 866–872.

14

Yuan, H. T.; Liu, X. G.; Afshinmanesh, F.; Li, W.; Xu, G.; Sun, J.; Lian, B.; Curto, A. G.; Ye, G. J.; Hikita, Y. et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction. Nat. Nanotechnol. 2015, 10, 707–713.

15

Guo, Q. S.; Pospischil, A.; Bhuiyan, M.; Jiang, H.; Tian, H.; Farmer, D.; Deng, B. C.; Li, C.; Han, S. J.; Wang, H. et al. Black phosphorus mid-infrared photodetectors with high gain. Nano Lett. 2016, 16, 4648–4655.

16

Polyzos, I.; Bianchi, M.; Rizzi, L.; Koukaras, E. N.; Parthenios, J.; Papagelis, K.; Sordan, R.; Galiotis, C. Suspended monolayer graphene under true uniaxial deformation. Nanoscale 2015, 7, 13033–13042.

17

Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.

18

Bertolazzi, S.; Brivio, J.; Kis, A. Stretching and breaking of ultrathin MoS2. ACS Nano 2011, 5, 9703–9709.

19

Cooper, R. C.; Lee, C.; Marianetti, C. A.; Wei, X. D.; Hone, J.; Kysar, J. W. Nonlinear elastic behavior of two-dimensional molybdenum disulfide. Phys. Rev. B 2013, 87, 035423.

20

Yun, W. S.; Han, S. W.; Hong, S. C.; Kim, I. G.; Lee, J. D. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te). Phys. Rev. B 2012, 85, 033305.

21

Ghorbani-Asl, M.; Borini, S.; Kuc, A.; Heine, T. Strain-dependent modulation of conductivity in single-layer transition-metal dichalcogenides. Phys. Rev. B 2013, 87, 235434.

22

Miró, P.; Ghorbani-Asl, M.; Heine, T. Spontaneous ripple formation in MoS2 monolayers: Electronic structure and transport effects. Adv. Mater. 2013, 25, 5473–5475.

23

Molina-Sánchez, A.; Sangalli, D.; Hummer, K.; Marini, A.; Wirtz, L. Effect of spin–orbit interaction on the optical spectra of single-layer, double-layer, and bulk MoS2. Phys. Rev. B 2013, 88, 045412.

24

Wadsten, T. The crystal structures of SiP2, SiAs2, and GeP. Acta Chem. Scand. 1967, 21, 593–594.

25

Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453.

26

Zhang, X.; Wang, S. P.; Ruan, H. P.; Zhang, G. D.; Tao, X. T. Structure and growth of single crystal SiP2 using flux method. Solid State Sci. 2014, 37, 1–5.

27

Vella, D.; Bico, J.; Boudaoud, A.; Roman, B.; Reis, P. M. The macroscopic delamination of thin films from elastic substrates. Proc. Natl. Acad. Sci. USA 2009, 106, 10901–10906.

28

Meier, M.; Weihrich, R. Ab initio simulation of the fundamental vibrational frequencies of selected pyrite-type pnictides. Chem. Phys. Lett. 2008, 461, 38–41.

29

Castellanos-Gomez, A.; Roldán, R.; Cappelluti, E.; Buscema, M.; Guinea, F.; Van Der Zant, H. S. J.; Steele, G. A. Local strain engineering in atomically thin MoS2. Nano Lett. 2013, 13, 5361–5366.

File
12274_2022_4315_MOESM1_ESM.pdf (2.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 19 November 2021
Revised: 28 January 2022
Accepted: 11 March 2022
Published: 13 May 2022
Issue date: August 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Nos. 51861145201, 52072168, 21733001, and 91750101), the National Key Basic Research Program of the Ministry of Science and Technology of China (Nos. 2018YFA0306200 and 2021YFA1202901), and Jiangsu Key Laboratory of Artificial Functional Materials. L. Y. F. acknowledges financial support from the start-up fund of Chongqing University (No. 02110011044171).

Return