Journal Home > Volume 15 , Issue 7

Functionalized two-dimensional (2D) materials play an important role in both fundamental sciences and practical applications. The construction and precise control of patterns at the atomic-scale are necessary for selective and multiple functionalization. Here we report the fabrication of monolayer pentasilver diselenide (Ag5Se2), a new type of intrinsically patterned 2D material, by direct selenization of a Ag(111) surface. The atomic arrangement is determined by a combination of scanning tunneling microscopy (STM), low-energy electron diffraction (LEED), and density-functional-theory (DFT) calculations. Large-scale STM images exhibit a quasi-periodic pattern of stoichiometric triangular domains with a side length of ~ 15 nm and apical offsets. The boundaries between triangular domains are sub-stoichiometric. Deposition of different molecules on the patterned Ag5Se2 exhibits selective adsorption behavior. Pentacene molecules preferentially adsorb on the boundaries, while tetracyanoquinodimethane (TCNQ) molecules adsorb both on the boundaries and the triangular domains. By co-depositing pentacene and TCNQ molecules, we successfully construct molecular corrals with pentacene on the boundaries encircling TCNQ molecules on the triangular domains. The realization of epitaxial large-scale and high-quality, monolayer Ag5Se2 extends the family of intrinsically patterned 2D materials and provides a paradigm for dual functionalization of 2D materials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Intrinsically patterned corrals in monolayer Ag5Se2 and selective molecular co-adsorption

Show Author's information Jianchen Lu1,4,§Shiru Song1,§Shuai Zhang1,§Yang Song1,§Yun Cao1Zhenyu Wang1Li Huang1Hongliang Lu1,3Yu-Yang Zhang1,3Sokrates T. Pantelides1,2Shixuan Du1,3( )Xiao Lin1,3( )Hong-Jun Gao1,3( )
Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
Department of Physics and Astronomy and Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA
CAS Center for Excellence in Topological Quantum Computation, Chinese Academy of Sciences, Beijing 100190, China
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China

§ Jianchen Lu, Shiru Song, Shuai Zhang, and Yang Song contributed equally to this work.

Abstract

Functionalized two-dimensional (2D) materials play an important role in both fundamental sciences and practical applications. The construction and precise control of patterns at the atomic-scale are necessary for selective and multiple functionalization. Here we report the fabrication of monolayer pentasilver diselenide (Ag5Se2), a new type of intrinsically patterned 2D material, by direct selenization of a Ag(111) surface. The atomic arrangement is determined by a combination of scanning tunneling microscopy (STM), low-energy electron diffraction (LEED), and density-functional-theory (DFT) calculations. Large-scale STM images exhibit a quasi-periodic pattern of stoichiometric triangular domains with a side length of ~ 15 nm and apical offsets. The boundaries between triangular domains are sub-stoichiometric. Deposition of different molecules on the patterned Ag5Se2 exhibits selective adsorption behavior. Pentacene molecules preferentially adsorb on the boundaries, while tetracyanoquinodimethane (TCNQ) molecules adsorb both on the boundaries and the triangular domains. By co-depositing pentacene and TCNQ molecules, we successfully construct molecular corrals with pentacene on the boundaries encircling TCNQ molecules on the triangular domains. The realization of epitaxial large-scale and high-quality, monolayer Ag5Se2 extends the family of intrinsically patterned 2D materials and provides a paradigm for dual functionalization of 2D materials.

Keywords: two-dimensional materials, epitaxial growth, scanning tunneling microscope, dual functionalization, Ag5Se2 monolayer

References(31)

1

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

2

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200.

3

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

4

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

5

Gao, L.; Sun, J. T.; Lu, J. C.; Li, H.; Qian, K.; Zhang, S.; Zhang, Y. Y.; Qian, T.; Ding, H.; Lin, X. et al. Epitaxial growth of honeycomb monolayer CuSe with Dirac nodal line fermions. Adv. Mater. 2018, 30, 1707055.

6

Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768–779.

7

Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275.

8

Mak, K. F.; Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photon. 2016, 10, 216–226.

9

Wang, X. Y.; Zhang, H.; Ruan, Z. L.; Hao, Z. L.; Yang, X. T.; Cai, J. M.; Lu, J. C. Research progress of monolayer two-dimensional atomic crystal materials grown by molecular beam epitaxy in ultra-high vacuum conditions. Acta Phys. Sin. 2020, 69, 118101.

10

Wang, X. Y.; Ruan, Z. L.; Du, R. J.; Zhang, H.; Yang, X. T.; Niu, G. F.; Cai, J. M.; Lu, J. C. Structural characterizations and electronic properties of CuSe monolayer endowed with triangular nanopores. J. Mater. Sci. 2021, 56, 10406–10413.

11

Zhang, Y.; Chang, T. R.; Zhou, B.; Cui, Y. T.; Yan, H.; Liu, Z. K.; Schmitt, F.; Lee, J.; Moore, R.; Chen, Y. L. et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat. Nanotechnol. 2014, 9, 111–115.

12

Lu, J. C.; Bao, D. L.; Qian, K.; Zhang, S.; Chen, H.; Lin, X.; Du, S. X.; Gao, H. J. Identifying and visualizing the edge terminations of single-layer MoSe2 island epitaxially grown on Au(111). ACS Nano 2017, 11, 1689–1695.

13

Lu, Q. P.; Yu, Y. F.; Ma, Q. L.; Chen, B.; Zhang, H. 2D transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions. Adv. Mater. 2016, 28, 1917–1933.

14

Wang, H. T.; Lu, Z. Y.; Xu, S. C.; Kong, D. S.; Cha, J. J.; Zheng, G. Y.; Hsu, P. C.; Yan, K.; Bradshaw, D.; Prinz, F. B. et al. Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc. Natl. Acad. Sci. USA 2013, 110, 19701–19706.

15

Panchakarla, L. S.; Subrahmanyam, K. S.; Saha, S. K.; Govindaraj, A.; Krishnamurthy, H. R.; Waghmare, U. V.; Rao, C. N. R. Synthesis, structure, and properties of boron- and nitrogen-doped graphene. Adv. Mater. 2009, 21, 4726–4730.

16

Garnica, M.; Stradi, D.; Barja, S.; Calleja, F.; Díaz, C.; Alcamí, M.; Martín, N.; De Parga, A. L. V.; Martín, F.; Miranda, R. Long-range magnetic order in a purely organic 2D layer adsorbed on epitaxial graphene. Nat. Phys. 2013, 9, 368–374.

17

Voiry, D.; Goswami, A.; Kappera, R.; E Silva, C. D. C. C.; Kaplan, D.; Fujita, T.; Chen, M. W.; Asefa, T.; Chhowalla, M. Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering. Nat. Chem. 2015, 7, 45–49.

18

Kumar, A.; Banerjee, K.; Liljeroth, P. Molecular assembly on two-dimensional materials. Nanotechnology 2017, 28, 082001.

19

Zhou, H. T.; Zhang, L. Z.; Mao, J. H.; Li, G.; Zhang, Y.; Wang, Y. L.; Du, S. X.; Hofer, W. A.; Gao, H. J. Template-directed assembly of pentacene molecules on epitaxial graphene on Ru(0001). Nano Res. 2013, 6, 131–137.

20

Dil, H.; Lobo-Checa, J.; Laskowski, R.; Blaha, P.; Berner, S.; Osterwalder, J.; Greber, T. Surface trapping of atoms and molecules with dipole rings. Science 2008, 319, 1824–1826.

21

Lin, X.; Lu, J. C.; Shao, Y.; Zhang, Y. Y.; Wu, X.; Pan, J. B.; Gao, L.; Zhu, S. Y.; Qian, K.; Zhang, Y. F. et al. Intrinsically patterned two-dimensional materials for selective adsorption of molecules and nanoclusters. Nat. Mater. 2017, 16, 717–721.

22

Liu, Z. L.; Lei, B.; Zhu, Z. L.; Tao, L.; Qi, J.; Bao, D. L.; Wu, X.; Huang, L.; Zhang, Y. Y.; Lin, X. et al. Spontaneous formation of 1D pattern in monolayer VSe2 with dispersive adsorption of Pt atoms for HER catalysis. Nano Lett. 2019, 19, 4897–4903.

23

Arnold, F.; Stan, R. M.; Mahatha, S. K.; Lund, H. E.; Curcio, D.; Dendzik, M.; Bana, H.; Travaglia, E.; Bignardi, L.; Lacovig, P. et al. Novel single-layer vanadium sulphide phases. 2D Mater. 2018, 5, 045009.

24

Du, S. X.; Gao, H. J.; Seidel, C.; Tsetseris, L.; Ji, W.; Kopf, H.; Chi, L. F.; Fuchs, H.; Pennycook, S. J.; Pantelides, S. T. Selective nontemplated adsorption of organic molecules on nanofacets and the role of bonding patterns. Phys. Rev. Lett. 2006, 97, 156105.

25

Wang, Y. L.; Li, L. F.; Yao, W.; Song, S. R.; Sun, J. T.; Pan, J. B.; Ren, X.; Li, C.; Okunishi, E.; Wang, Y. Q. et al. Monolayer PtSe2, a new semiconducting transition-metal-dichalcogenide, epitaxially grown by direct selenization of Pt. Nano Lett. 2015, 15, 4013–4018.

26

Lu, J. C.; Gao, L.; Song, S. R.; Li, H.; Niu, G. F.; Chen, H.; Qian, T.; Ding, H.; Lin, X.; Du, S. X. et al. Honeycomb AgSe monolayer nanosheets for studying two-dimensional dirac nodal line fermions. ACS Appl. Nano Mater. 2021, 4, 8845–8850.

27

Patrick, D. L.; Cee, V. J.; Beebe, T. P. Jr. “Molecule corrals” for studies of monolayer organic films. Science 1994, 265, 231–234.

28

Horcas, I.; Fernández, R.; Gómez-Rodríguez, J. M.; Colchero, J.; Gómez-Herrero, J.; Baro, A. M. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705.

29

Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133–A1138.

30

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

31

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

File
12274_2022_4314_MOESM1_ESM.pdf (2.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 31 August 2021
Revised: 07 February 2022
Accepted: 11 March 2022
Published: 04 May 2022
Issue date: July 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the financial support from the National Key R&D Program of China (Nos. 2018YFA0305800 and 2019YFA0308500), National Natural Science Foundation of China (Nos. 61901200, 61925111, 61888102, and 21661132006), the Strategic Priority Research Program of Chinese Academy of Sciences (Nos. XDB30000000 and XDB28000000), the International Partnership Program of Chinese Academy of Sciences (No. 112111KYSB20160061), the KC Wong Education Foundation, the Yunnan Fundamental Research Projects (Nos. 2019FD041, 202201AT070078, and 202101AW070010), and the China Postdoctoral Science Foundation. Part of the research was performed in the Key Laboratory of Vacuum Physics, Chinese Academy of Sciences. Computational resources were provided by the National Supercomputing Center in Tianjin Municipality, China. Work at Vanderbilt University was supported by the U. S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division grant No. DE-FG-02-09ER46554 and by the McMinn endowment.

Return