Journal Home > Volume 15 , Issue 7

Plasmon-driven catalytic reaction (PDCR) as a part of photocatalysis has attracted immense attention. Due to the collective oscillation of free electrons at the surface of metallic nanostructures, the charge distributions store energy from the incident light that could transfer energy to molecules that promote photocatalysis. As an environment-friendly and green photocatalysis process, PDCR illustrates a brilliant future. In this study, the PDCR efficiency of photo-reducing 4-nitro-benzenthiol (4-NBT) dry film to p,p'-dimercaptoazobenzene (DMAB) in ambient conditions has been studied by using Ag nanodiscs (NDs) and Ag nanoparticles (NPs) as catalysts. The distribution of catalytic efficiency of 4-NBT to DMAB using an individual Ag ND catalyst has been illustrated using spatial Raman mapping. The result is direct evidence that the PDCR efficiency has a positive correlation with plasmon-induced electromagnetic field intensity. Additionally, time-dependent surface-enhanced Raman scattering (SERS) experiments reveal that the PDCR of 4-NBT to DMAB is reciprocal. The discovery in this research will aid to improve the PDCR performance and modulate the catalysis reaction for a high reduction of 4-NBT in industrial.


menu
Abstract
Full text
Outline
About this article

A study of plasmon-driven catalytic 4-NBT to DMAB in the dry film by using spatial Raman mapping spectroscopy

Show Author's information Yansheng Liu1( )Junpeng Deng1Zhicheng Jin2Tianxing Liu1Jin Zhou1Feng Luo3( )Guofu Wang1( )
School of Microelectronics and Materials Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA
Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China

Abstract

Plasmon-driven catalytic reaction (PDCR) as a part of photocatalysis has attracted immense attention. Due to the collective oscillation of free electrons at the surface of metallic nanostructures, the charge distributions store energy from the incident light that could transfer energy to molecules that promote photocatalysis. As an environment-friendly and green photocatalysis process, PDCR illustrates a brilliant future. In this study, the PDCR efficiency of photo-reducing 4-nitro-benzenthiol (4-NBT) dry film to p,p'-dimercaptoazobenzene (DMAB) in ambient conditions has been studied by using Ag nanodiscs (NDs) and Ag nanoparticles (NPs) as catalysts. The distribution of catalytic efficiency of 4-NBT to DMAB using an individual Ag ND catalyst has been illustrated using spatial Raman mapping. The result is direct evidence that the PDCR efficiency has a positive correlation with plasmon-induced electromagnetic field intensity. Additionally, time-dependent surface-enhanced Raman scattering (SERS) experiments reveal that the PDCR of 4-NBT to DMAB is reciprocal. The discovery in this research will aid to improve the PDCR performance and modulate the catalysis reaction for a high reduction of 4-NBT in industrial.

Keywords: photocatalysis, plasmon, 4-nitro-benzenthiol (4-NBT), surface-enheanced Raman scattering (SERS)

References(30)

1

Jang, Y. H.; Jang, Y. J.; Kim, S.; Quan, L. N.; Chung, K.; Kim, D. H. Plasmonic solar cells: From rational design to mechanism overview. Chem. Rev. 2016, 116, 14982–15034.

2

Zhang, Y. C.; He, S.; Guo, W. X.; Hu, Y.; Huang, J. W.; Mulcahy, J. R.; Wei, W. D. Surface-plasmon-driven hot electron photochemistry. Chem. Rev. 2017, 118, 2927–2954.

3

Weng, L.; Zhang, H.; Govorov, A. O.; Ouyang, M. Hierarchical synthesis of non-centrosymmetric hybrid nanostructures and enabled plasmon-driven photocatalysis. Nat. Commun. 2014, 5, 4792.

4

Zhai, Y. M.; DuChene, J. S.; Wang, Y. C.; Qiu, J. J.; Johnston-Peck, A. C.; You, B.; Guo, W. X.; DiCiaccio, B.; Qian, K.; Zhao, E. W. et al. Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis. Nat. Mater. 2016, 15, 889–895.

5

Ding, Y.; Sun, Z. Q.; Gao, Y.; Zhang, S. T.; Yang, C. X.; Qian, Z. F.; Jin, L. L.; Zhang, J. J.; Zeng, C.; Mao, Z. W. et al. Plasmon-driven catalytic chemotherapy augments cancer immunotherapy through induction of immunogenic cell death and blockage of IDO pathway. Adv. Mater. 2021, 33, 2102188.

6

Geonmonond, R. S.; Da Silva, A. G. M.; Rodrigues, T. S.; De Freitas, I. C.; Ando, R. A.; Alves, T. V.; Camargo, P. H. C. Addressing the effects of size-dependent absorption, scattering, and near-field enhancements in plasmonic catalysis. ChemCatChem 2018, 10, 3447–3452.

7

Jin, Z. C.; Sugiyama, Y.; Zhang, C. Q.; Palui, G.; Xin, Y.; Du, L.; Wang, S. S.; Dridi, N.; Mattoussi, H. Rapid photoligation of gold nanocolloids with lipoic acid-based ligands. Chem. Mater. 2020, 32, 7469–7483.

8

Kale, M. J.; Avanesian, T.; Christopher, P. Direct photocatalysis by plasmonic nanostructures. ACS Catal. 2014, 4, 116–128.

9

Brongersma, M. L.; Halas, N. J.; Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 2015, 10, 25–34.

10

Yang, M. R.; Moroz, P.; Jin, Z. C.; Budkina, D. S.; Sundrani, N.; Porotnikov, D.; Cassidy, J.; Sugiyama, Y.; Tarnovsky, A. N.; Mattoussi, H. et al. Delayed photoluminescence in metal-conjugated fluorophores. J. Am. Chem. Soc. 2019, 141, 11286–11297.

11

Liz-Marzán, L. M.; Murphy, C. J.; Wang, J. F. Nanoplasmonics. Chem. Soc. Rev. 2014, 43, 3820–3822.

12

Liu, Y. S.; Luo, F. Spatial Raman mapping investigation of SERS performance related to localized surface plasmons. Nano Res. 2020, 13, 138–144.

13

Liu, Y. S.; Feng, H. Y.; Luo, F. Quantitative analysis of the defects in CVD grown graphene by plasmon-enhanced Raman scattering. Carbon 2020, 161, 153–161.

14

Liu, Y. S.; Luo, F. Large-scale highly ordered periodic Au nano-discs/graphene and graphene/Au nanoholes plasmonic substrates for surface-enhanced Raman scattering. Nano Res. 2019, 12, 2788–2795.

15

Kim, K.; Lee, Y. M.; Lee, H. B.; Park, Y.; Bae, T. Y.; Jung, Y. M.; Choi, C. H.; Shin, K. S. Visible laser-induced photoreduction of silver 4-nitrobenzenethiolate revealed by Raman scattering spectroscopy. J. Raman Spectrosc. 2010, 41, 187–192.

16

Kim, K.; Lee, I.; Lee, S. J. Photolytic reduction of 4-nitrobenzenethiol on Au mediated via Ag nanoparticles. Chem. Phys. Lett. 2003, 377, 201–204.

17

Ren, X. Q.; Tan, E. Z.; Lang, X. F.; You, T. T.; Jiang, L.; Zhang, H. Y.; Yin, P. G.; Guo, L. Observing reduction of 4-nitrobenzenthiol on gold nanoparticles in situ using surface-enhanced Raman spectroscopy. Phys. Chem. Chem. Phys. 2013, 15, 14196–14201.

18

Alam, K. M.; Kumar, P.; Manuel, A. P.; Vahidzadeh, E.; Goswami, A.; Zeng, S.; Wu, W. J.; Mahdi, N.; Cui, K.; Kobryn, A. E. et al. CVD grown nitrogen doped graphene is an exceptional visible-light driven photocatalyst for surface catalytic reactions. 2D Mater. 2019, 7, 015002.

19

Kang, L. L.; Xu, P.; Zhang, B.; Tsai, H.; Han, X. J.; Wang, H. L. Laser wavelength-and power-dependent plasmon-driven chemical reactions monitored using single particle surface enhanced Raman spectroscopy. Chem. Commun. 2013, 49, 3389–3391.

20

Keller, E. L.; Frontiera, R. R. Ultrafast nanoscale Raman thermometry proves heating is not a primary mechanism for plasmon-driven photocatalysis. ACS Nano 2018, 12, 5848–5855.

21

Golubev, A. A.; Khlebtsov, B. N.; Rodriguez, R. D.; Chen, Y.; Zahn, D. R. T. Plasmonic heating plays a dominant role in the plasmon-induced photocatalytic reduction of 4-nitrobenzenethiol. J. Phys. Chem. C 2018, 122, 5657–5663.

22

Liang, X.; You, T. T.; Liu, D. P.; Lang, X. F.; Tan, E. Z.; Shi, J. H.; Yin, P. G.; Guo, L. Direct observation of enhanced plasmon-driven catalytic reaction activity of Au nanoparticles supported on reduced graphene oxides by SERS. Phys. Chem. Chem. Phys. 2015, 17, 10176–10181.

23

Yang, X. Z.; Yu, H.; Guo, X.; Ding, Q. Q.; Pullerits, T.; Wang, R. M.; Zhang, G. Y.; Liang, W. J.; Sun, M. T. Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction. Mater. Today Energy 2017, 5, 72–78.

24

Li, Z.; Gao, Y. N.; Zhang, L. S.; Fang, Y.; Wang, P. J. Polarization-dependent surface plasmon-driven catalytic reaction on a single nanowire monitored by SERS. Nanoscale 2018, 10, 18720–18727.

25

Park, W. H.; Kim, Z. H. Charge transfer enhancement in the SERS of a single molecule. Nano Lett. 2010, 10, 4040–4048.

26

Van Schrojenstein Lantman, E. M.; Deckert-Gaudig, T.; Mank, A. J. G.; Deckert, V.; Weckhuysen, B. M. Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy. Nat. Nanotechnol. 2012, 7, 583–586.

27

Zhong, H.; Chen, J.; Chen, J. F.; Tao, R.; Jiang, J. L.; Hu, Y.; Xu, J. S.; Zhang, T. Z.; Liao, J. S. Plasmon catalytic PATP coupling reaction on Ag-NPs/graphite studied via in situ electrochemical surface-enhanced Raman spectroscopy. Phys. Chem. Chem. Phys. 2020, 22, 23482–23490.

28

Vidal-Iglesias, F. J.; Solla-Gullón, J.; Orts, J. M.; Rodes, A.; Pérez, J. M. Spectroelectrochemical study of the photoinduced catalytic formation of 4,4’-dimercaptoazobenzene from 4-aminobenzenethiol adsorbed on nanostructured copper. J. Phys. Chem. C 2015, 119, 12312–12324.

29

Dong, B.; Fang, Y. R.; Chen, X. W.; Xu, H. X.; Sun, M. T. Substrate-, wavelength-, and time-dependent plasmon-assisted surface catalysis reaction of 4-nitrobenzenethiol dimerizing to p,p'-dimercaptoazobenzene on Au, Ag, and Cu films. Langmuir 2011, 27, 10677–10682.

30

Almohammed, S.; Barwich, S. T.; Mitchell, A. K.; Rodriguez, B. J.; Rice, J. H. Enhanced photocatalysis and biomolecular sensing with field-activated nanotube-nanoparticle templates. Nat. Commun. 2019, 10, 2496.

Publication history
Copyright
Acknowledgements

Publication history

Received: 23 January 2022
Revised: 20 February 2022
Accepted: 10 March 2022
Published: 04 May 2022
Issue date: July 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work has been supported by the Guangxi Natural Science Foundation Project (No. 2021GXNSFBA196049), Guangxi Science and Technology Project (No. AD22035215), and the National Natural Science Foundation of China (No. 61761009).

Return