Journal Home > Volume 15 , Issue 7

In recent years, the rapid charge–discharge property of super capacitors based on metal-organic frameworks (MOFs) has seen excellent applications in energy storage equipment. However, the purposeful design of high-performance electrodes for MOF-derived super capacitors is still an urgent problem that needs to be solved. Herein, we rationally design and prepare three MOFs with the same crystal configuration and controllable functional groups. Through the combination of rigorous experiment and calculation, we have verified the effects of the specific surface area of the electrode material as well as the binding energy between the electrode material and the electrolyte ions on the performance of the super capacitor. This work not only extends the application of MOFs, but also provides a model-material platform for the study of charge–discharge behavior of MOF-based super capacitors, creating a way of thinking for the selection and design of MOF materials for energy storage applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Rational designed isostructural MOF for the charge–discharge behavior study of super capacitors

Show Author's information Hong ChenXiao-Fei LiuHai-Yang LiPeng Peng( )Shuang-Quan Zang( )
Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China

Abstract

In recent years, the rapid charge–discharge property of super capacitors based on metal-organic frameworks (MOFs) has seen excellent applications in energy storage equipment. However, the purposeful design of high-performance electrodes for MOF-derived super capacitors is still an urgent problem that needs to be solved. Herein, we rationally design and prepare three MOFs with the same crystal configuration and controllable functional groups. Through the combination of rigorous experiment and calculation, we have verified the effects of the specific surface area of the electrode material as well as the binding energy between the electrode material and the electrolyte ions on the performance of the super capacitor. This work not only extends the application of MOFs, but also provides a model-material platform for the study of charge–discharge behavior of MOF-based super capacitors, creating a way of thinking for the selection and design of MOF materials for energy storage applications.

Keywords: rational design, Eu-metal-organic framework (Eu-MOF), super capacitor, controllable charge–discharge behavior

References(31)

1

Sanati, S.; Abazari, R.; Albero, J.; Morsali, A.; García, H.; Liang, Z. B.; Zou, R. Q. Metal-organic framework derived bimetallic materials for electrochemical energy storage. Angew. Chem., Int. Ed. 2021, 60, 11048–11067.

2

Borchardt, L.; Leistenschneider, D.; Haase, J.; Dvoyashkin, M. Revising the concept of pore hierarchy for ionic transport in carbon materials for supercapacitors. Adv. Energy Mater. 2018, 8, 1800892.

3

Wang, J. F.; Wang, J. R.; Kong, Z.; Lv, K. L.; Teng, C.; Zhu, Y. Conducting-polymer-based materials for electrochemical energy conversion and storage. Adv. Mater. 2017, 29, 1703044.

4

Jiang, H.; Ma, J.; Li, C. Z. Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes. Adv. Mater. 2012, 24, 4197–4202.

5

Ajdari, F. B.; Kowsari, E.; Shahrak, M. N.; Ehsani, A.; Kiaei, Z.; Torkzaban, H.; Ershadi, M.; Eshkalak, S. K.; Haddadi-Asl, V.; Chinnappan, A. et al. A review on the field patents and recent developments over the application of metal organic frameworks (MOFs) in supercapacitors. Coord. Chem. Rev. 2020, 422, 213441.

6

Wang, F. X.; Wu, X. W.; Yuan, X. H.; Liu, Z. C.; Zhang, Y.; Fu, L. J.; Zhu, Y. S.; Zhou, Q. M.; Wu, Y. P.; Huang, W. Latest advances in supercapacitors: From new electrode materials to novel device designs. Chem. Soc. Rev. 2017, 46, 6816–6854.

7

Li, T.; Bai, X.; Gulzar, U.; Bai, Y. J.; Capiglia, C.; Deng, W.; Zhou, X. F.; Liu, Z. P.; Feng, Z. F.; Zaccaria, R. P. A comprehensive understanding of lithium-sulfur battery technology. Adv. Funct. Mater. 2019, 29, 1901730.

8

Yu, Z. N.; Tetard, L.; Zhai, L.; Thomas, J. Supercapacitor electrode materials: Nanostructures from 0 to 3 dimensions. Energy Environ. Sci. 2015, 8, 702–730.

9

Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.

10

Conway, B. E.; Pell, W. G. Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices. J. Solid State Electr. 2003, 7, 637–644.

11

Li, W. H.; Ding, K.; Tian, H. R.; Yao, M. S.; Nath, B.; Deng, W. H.; Wang, Y. B.; Xu, G. Conductive metal-organic framework nanowire array electrodes for high-performance solid-state supercapacitors. Adv. Funct. Mater. 2017, 27, 1702067.

12

Bi, S.; Banda, H.; Chen, M.; Niu, L.; Chen, M. Y.; Wu, T. Z.; Wang, J. S.; Wang, R. X.; Feng, J. M.; Chen, T. Y. et al. Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes. Nat. Mater. 2020, 19, 552–558.

13

Farma, R.; Siagian, W. F.; Taer, E.; Awitdrus. Preparation and characterization activated carbon based on mesocarp of bintaro fruit as electrode materials supercapacitor cell application. J. Phys.: Conf. Ser. 2020, 1655, 012157.

14

Largeot, C.; Portet, C.; Chmiola, J.; Taberna, P. L.; Gogotsi, Y.; Simon, P. Relation between the ion size and pore size for an electric double-layer capacitor. J. Am. Chem. Soc. 2008, 130, 2730–2731.

15

Bose, S.; Kuila, T.; Mishra, A. K.; Rajasekar, R.; Kim, N. H.; Lee, J. H. Carbon-based nanostructured materials and their composites as supercapacitor electrodes. J. Mater. Chem. 2012, 22, 767–784.

16

Zhang, H.; Cao, G. P.; Wang, Z. Y.; Yang, Y. S.; Shi, Z. J.; Gu, Z. N. Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. Nano Lett. 2008, 8, 2664–2668.

17

Gupta, V.; Kannan, A. M.; Kumar, S. Graphene foam (GF)/manganese oxide (MnO2) nanocomposites for high performance supercapacitors. J. Energy Storage 2020, 30, 101575.

18

Zhang, L. L.; Zhao, X. S. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 2009, 38, 2520–2531.

19

Dubey, R.; Guruviah, V. Review of carbon-based electrode materials for supercapacitor energy storage. Ionics 2019, 25, 1419–1445.

20

Zhang, S. L.; Pan, N. Supercapacitors performance evaluation. Adv. Energy Mater. 2015, 5, 1401401.

21

Forse, A. C.; Merlet, C.; Griffin, J. M.; Grey, C. P. New perspectives on the charging mechanisms of supercapacitors. J. Am. Chem. Soc. 2016, 138, 5731–5744.

22

Chmiola, J.; Yushin, G.; Gogotsi, Y.; Portet, C.; Simon, P.; Taberna, P. L. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 2006, 313, 1760–1763.

23

Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.

24

Sheberla, D.; Bachman, J. C.; Elias, J. S.; Sun, C. J.; Shao-Horn, Y.; Dinca, M. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 2017, 16, 220–224.

25

Lukatskaya, M. R.; Feng, D. W.; Bak, S. M.; To, J. W. F.; Yang, X. Q.; Cui, Y.; Feldblyum, J. I.; Bao, Z. N. Understanding the mechanism of high capacitance in nickel hexaaminobenzene-based conductive metal-organic frameworks in aqueous electrolytes. ACS Nano 2020, 14, 15919–15925.

26

Xia, Z. Q.; Jia, X.; Ge, X.; Ren, C. T.; Yang, Q.; Hu, J.; Chen, Z.; Han, J.; Xie, G.; Chen, S. P. et al. Tailoring electronic structure and size of ultrastable metalated metal-organic frameworks with enhanced electroconductivity for high-performance supercapacitors. Angew. Chem., Int. Ed. 2021, 60, 10228–10238.

27

Jia, J. H.; Lin, X.; Blake, A. J.; Champness, N. R.; Hubberstey, P.; Shao, L. M.; Walker, G.; Wilson, C.; Schröder, M. Triggered ligand release coupled to framework rearrangement: Generating crystalline porous coordination materials. Inorg. Chem. 2006, 45, 8838–8840.

28

Zhou, X. L.; Liu, W. Z.; Tian, C.; Mo, S. Q.; Liu, X. M.; Deng, H.; Lin, Z. Mussel-inspired functionalization of biological calcium carbonate for improving Eu(III) adsorption and the related mechanisms. Chem. Eng. J. 2017, 203, 740–752.

29

Trandafilović, L. V.; Jovanović, D. J.; Zhang, X.; Ptasińska, S.; Dramićanin, M. D. Enhanced photocatalytic degradation of methylene blue and methyl orange by ZnO: Eu nanoparticles. Appl. Catal. B: Environ. 2017, 203, 740–752.

30

Jayaramulu, K.; Horn, M.; Schneemann, A.; Saini, H.; Bakandritsos, A.; Ranc, V.; Petr, M.; Stavila, V.; Narayana, C.; Scheibe, B. et al. Covalent graphene-MOF hybrids for high-performance asymmetric supercapacitors. Adv. Mater. 2021, 33, 2004560.

31

Yang, R. C.; Lu, X. J.; Huang, X.; Chen, Z. M.; Zhang, X.; Xu, M. D.; Song, Q. W.; Zhu, L. T. Bi-component Cu2O-CuCl composites with tunable oxygen vacancies and enhanced photocatalytic properties. Appl. Catal. B: Environ. 2015, 170–171, 225–232.

File
12274_2022_4307_MOESM1_ESM.pdf (3.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 04 January 2022
Revised: 01 March 2022
Accepted: 08 March 2022
Published: 10 May 2022
Issue date: July 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22005273 and 21825106).

Return