Journal Home > Volume 15 , Issue 7

The rapid spread of staphylococcus aureus (S. aureus) causes an increased morbidity and mortality, as well as great economic losses in the world. Anti-S. aureus infection becomes a major challenge for clinicians and nursing professionals to address drug resistance. Hence, it is urgent to explore high efficiency, low toxicity, and environmental-friendly methods against S. aureus. Metal-organic frameworks (MOFs) represent great potential in treating S. aureus infection due to the unique features of MOFs including tunable chemical constitute, open crystalline structure, and high specific surface area. Especially, these properties endow MOF-based materials outstanding antibacterial effect, which can be mainly attributed to the continuously released active components and the exerted catalytic activity to fight bacterial infection. Herein, the structural characteristics of MOFs and evaluation method of antimicrobial activity are briefly summarized. Then we systematically give an overview on their recent progress on antibacterial mechanisms, metal ion sustained-release system, controlled delivery system, catalytic system, and energy conversion system based on MOF materials. Finally, suggestions and direction for future research to develop and mechanism understand MOF-based materials are discussed in antibacterial application.


menu
Abstract
Full text
Outline
About this article

Recent advances in metal-organic framework-based materials for anti-staphylococcus aureus infection

Show Author's information Mei Yang1Jin Zhang2Yinhao Wei1Jie Zhang2( )Chuanmin Tao1( )
Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China

Abstract

The rapid spread of staphylococcus aureus (S. aureus) causes an increased morbidity and mortality, as well as great economic losses in the world. Anti-S. aureus infection becomes a major challenge for clinicians and nursing professionals to address drug resistance. Hence, it is urgent to explore high efficiency, low toxicity, and environmental-friendly methods against S. aureus. Metal-organic frameworks (MOFs) represent great potential in treating S. aureus infection due to the unique features of MOFs including tunable chemical constitute, open crystalline structure, and high specific surface area. Especially, these properties endow MOF-based materials outstanding antibacterial effect, which can be mainly attributed to the continuously released active components and the exerted catalytic activity to fight bacterial infection. Herein, the structural characteristics of MOFs and evaluation method of antimicrobial activity are briefly summarized. Then we systematically give an overview on their recent progress on antibacterial mechanisms, metal ion sustained-release system, controlled delivery system, catalytic system, and energy conversion system based on MOF materials. Finally, suggestions and direction for future research to develop and mechanism understand MOF-based materials are discussed in antibacterial application.

Keywords: metal-organic frameworks, antibacterial mechanisms, antimicrobial activity, staphylococcus aureus (S. aureus) , controlled drug delivery systems

References(242)

1

Mermel, L. A.; Cartony, J. M.; Covington, P.; Maxey, G.; Morse, D. Methicillin-resistant Staphylococcus aureus colonization at different body sites: A prospective, quantitative analysis. J. Clin. Microbiol. 2011, 49, 1119–1121.

2

Blicharz, L.; Michalak, M.; Szymanek-Majchrzak, K.; Młynarczyk, G.; Skowroński, K.; Rudnicka, L.; Samochocki, Z. The propensity to form biofilm in vitro by Staphylococcus aureus strains isolated from the anterior nares of patients with atopic dermatitis: Clinical associations. Dermatology 2021, 237, 528–534.

3

Von Eiff, C.; Becker, K.; Machka, K.; Stammer, H.; Peters, G. Nasal carriage as a source of Staphylococcus aureus bacteremia. N. Engl. J. Med. 2001, 344, 11–16.

4

Sollid, J. U. E.; Furberg, A. S.; Hanssen, A. M.; Johannessen, M. Staphylococcus aureus: Determinants of human carriage. Infect. Genet. Evol. 2014, 21, 531–541.

5

Tong, S. Y. C.; Davis, J. S.; Eichenberger, E.; Holland, T. L.; Fowler, V. G. Jr. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 2015, 28, 603–661.

6

Laupland, K. B. Incidence of bloodstream infection: A review of population-based studies. Clin. Microbiol. Infect. 2013, 19, 492–500.

7

Sampedro, G. R.; DeDent, A. C.; Becker, R. E. N.; Berube, B. J.; Gebhardt, M. J.; Cao, H. Y.; Bubeck Wardenburg, J. Targeting Staphylococcus aureus α-toxin as a novel approach to reduce severity of recurrent skin and soft-tissue infections. J. Infect. Dis. 2014, 210, 1012–1018.

8

Laxminarayan, R.; Duse, A.; Wattal, C.; Zaidi, A. K. M.; Wertheim, H. F. L.; Sumpradit, N.; Vlieghe, E.; Hara, G. L.; Gould, I. M.; Goossens, H. et al. Antibiotic resistance—The need for global solutions. Lancet Infect. Dis. 2013, 13, 1057–1098.

9

Blair, J. M. A.; Webber, M. A.; Baylay, A. J.; Ogbolu, D. O.; Piddock, L. J. V. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 2015, 13, 42–51.

10

Li, R.; Chen, T. T.; Pan, X. L. Metal-organic-framework-based materials for antimicrobial applications. ACS Nano 2021, 15, 3808–3848.

11

Pettinari, C.; Pettinari, R.; Di Nicola, C.; Tombesi, A.; Scuri, S.; Marchetti, F. Antimicrobial MOFs. Coord. Chem. Rev. 2021, 446, 214121.

12

Nong, W. Q.; Wu, J.; Ghiladi, R. A.; Guan, Y. G. The structural appeal of metal-organic frameworks in antimicrobial applications. Coord. Chem. Rev. 2021, 442, 214007.

13

Gorai, T.; Schmitt, W.; Gunnlaugsson, T. Highlights of the development and application of luminescent lanthanide based coordination polymers, MOFs and functional nanomaterials. Dalton Trans. 2021, 50, 770–784.

14

Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067–2080.

15

Giliopoulos, D.; Zamboulis, A.; Giannakoudakis, D.; Bikiaris, D.; Triantafyllidis, K. Polymer/metal organic framework (MOF) nanocomposites for biomedical applications. Molecules 2020, 25, 185.

16

Liu, Y. W.; Zhou, L. Y.; Dong, Y.; Wang, R.; Pan, Y.; Zhuang, S. Z.; Liu, D.; Liu, J. Q. Recent developments on MOF-based platforms for antibacterial therapy. RSC Med. Chem. 2021, 12, 915–928.

17
Omidi, M. ; Firoozeh, F. ; Saffari, M. ; Sedaghat, H. ; Zibaei, M. ; Khaledi, A. Ability of biofilm production and molecular analysis of spa and ica genes among clinical isolates of methicillin-resistant Staphylococcus aureus. BMC Res. Notes 2020, 13, 19.https://doi.org/10.1186/s13104-020-4885-9
DOI
18

Williams, R. E. O. Healthy carriage of Staphylococcus aureus: Its prevalence and importance. Bacteriol. Rev. 1963, 27, 56–71.

19

Wertheim, H. F. L.; Melles, D. C.; Vos, M. C.; van Leeuwen, W.; van Belkum, A.; Verbrugh, H. A.; Nouwen, J. L. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect. Dis. 2005, 5, 751–762.

20

Boyle-Vavra, S.; Daum, R. S. Community-acquired methicillinresistant Staphylococcus aureus: The role of Panton-Valentine leukocidin. Lab. Invest. 2007, 87, 3–9.

21

Lowy, F. D. Staphylococcus aureus infections. N. Engl. J. Med. 1998, 339, 520–532.

22

Archer, G. L. Staphylococcus aureus: A well-armed pathogen. Clin. Infect. Dis. 1998, 26, 1179–1181.

23

Boyce, J. M.; Pittet, D. Guideline for hand hygiene in health-care settings. Recommendations of the healthcare infection control practices advisory committee and the HICPAC/SHEA/APIC/IDSA hand hygiene task force. Society for healthcare epidemiology of America/Association for professionals in infection control/infectious diseases society of America. MMWR Recomm. Rep. 2002, 51, 1–45.

24

Sherertz, R. J.; Reagan, D. R.; Hampton, K. D.; Robertson, K. L.; Streed, S. A.; Hoen, H. M.; Thomas, R.; Gwaltney, J. M. Jr. A cloud adult: The Staphylococcus aureus–virus interaction revisited. Ann. Intern. Med. 1996, 124, 539–547.

25

Zimmerli, W.; Sendi, P. Pathogenesis of implant-associated infection: The role of the host. Semin. Immunopathol. 2011, 33, 295–306.

26

Foster, T. J. Immune evasion by staphylococci. Nat. Rev. Microbiol. 2005, 3, 948–958.

27

Gladstone, G. P. Van Heyningen, W. E. Staphylococcal leucocidins. Br. J. Exp. Pathol. 1957, 38, 123–137.

28

Grumann, D.; Nübel, U.; Bröker, B. M. Staphylococcus aureus toxins—Their functions and genetics. Infect. Genet. Evol. 2014, 21, 583–592.

29
Ma, T. M. ; VanEpps, J. S. ; Solomon, M. J. Structure, mechanics, and instability of fibrin clot infected with Staphylococcus epidermidis. Biophys. J. 2017, 113, 2100–2109.https://doi.org/10.1016/j.bpj.2017.09.001
DOI
30

Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health 2015, 109, 309–318.

31

Manna, D. K.; Mandal, A. K.; Sen, I. K.; Maji, P. K.; Chakraborti, S.; Chakraborty, R.; Islam, S. S. Antibacterial and DNA degradation potential of silver nanoparticles synthesized via green route. Int. J. Biol. Macromol. 2015, 80, 455–459.

32

Alabi, A. S.; Frielinghaus, L.; Kaba, H.; Kösters, K.; Huson, M. A. M.; Kahl, B. C.; Peters, G.; Grobusch, M. P.; Issifou, S.; Kremsner, P. G. et al. Retrospective analysis of antimicrobial resistance and bacterial spectrum of infection in Gabon, Central Africa. BMC Infect. Dis. 2013, 13, 455.

33

Klein, E. Y.; Sun, L.; Smith, D. L.; Laxminarayan, R. The changing epidemiology of methicillin-resistant Staphylococcus aureus in the United States: A national observational study. Am. J. Epidemiol. 2013, 177, 666–674.

34

Santajit, S.; Indrawattana, N. Mechanisms of antimicrobial resistance in ESKAPE pathogens. BioMed Res. Int. 2016, 2016, 2475067.

35

Ansari, S.; Nepal, H. P.; Gautam, R.; Shrestha, S.; Chhetri, M. R.; Chapagain, M. L. Staphylococcus Aureus: Methicillin resistance and small colony variants from pyogenic infections of skin, soft tissue and bone. J. Nepal Health Res. Counc. 2015, 13, 126–132.

36

Lakhundi, S.; Zhang, K. Y. Methicillin-resistant Staphylococcus aureus: Molecular characterization, evolution, and epidemiology. Clin. Microbiol. Rev. 2018, 31, e00020–18.

37

Ansari, S.; Jha, R. K.; Mishra, S. K.; Tiwari, B. R.; Asaad, A. M. Recent advances in Staphylococcus aureus infection: Focus on vaccine development. Infect. Drug Resist. 2019, 12, 1243–1255.

38

Johnson, N. B.; Hayes, L. D.; Brown, K.; Hoo, E. C.; Ethier, K. A. CDC national health report: Leading causes of morbidity and mortality and associated behavioral risk and protective factors United States, 2005–2013. MMWR Suppl. 2014, 63, 3–27.

39

Jean, S. S.; Hsueh, P. R. High burden of antimicrobial resistance in Asia. Int. J. Antimicrob. Agents 2011, 37, 291–295.

40

Wolk, D. M.; Struelens, M. J.; Pancholi, P.; Davis, T.; Della-Latta, P.; Fuller, D.; Picton, E.; Dickenson, R.; Denis, O.; Johnson, D. et al. Rapid detection of Staphylococcus aureus and methicillinresistant S. aureus (MRSA) in wound specimens and blood cultures: Multicenter preclinical evaluation of the Cepheid Xpert MRSA/SA skin and soft tissue and blood culture assays. J. Clin. Microbiol. 2009, 47, 823–826.

41

Hurley, J. C. Risk of death from methicillin-resistant Staphylococcus aureus bacteraemia: A meta-analysis. Med. J. Aust. 2002, 176, 188.

42

Fortuin-de Smidt, M. C.; Singh-Moodley, A.; Badat, R.; Quan, V.; Kularatne, R.; Nana, T.; Lekalakala, R.; Govender, N. P.; Perovic, O. Staphylococcus aureus bacteraemia in Gauteng academic hospitals, South Africa. Int. J. Infect. Dis. 2015, 30, 41–48.

43

Zou, L. L.; Wang, J.; Gao, Y.; Ren, X. Y.; Rottenberg, M. E.; Lu, J.; Holmgren, A. Synergistic antibacterial activity of silver with antibiotics correlating with the upregulation of the ROS production. Sci. Rep. 2018, 8, 11131.

44

Mohammed, Y. H. E.; Manukumar, H. M.; Rakesh, K. P.; Karthik, C. S.; Mallu, P.; Qin, H. L. Vision for medicine: Staphylococcus aureus biofilm war and unlocking key’s for anti-biofilm drug development. Microb. Pathog. 2018, 123, 339–347.

45

Yougbare, S.; Chang, T. K.; Tan, S. H.; Kuo, J. C.; Hsu, P. H.; Su, C. Y.; Kuo, T. R. Antimicrobial gold nanoclusters: Recent developments and future perspectives. Int. J. Mol. Sci. 2019, 20, 2924.

46

Fletcher, S. Understanding the contribution of environmental factors in the spread of antimicrobial resistance. Environ. Health Prev. Med. 2015, 20, 243–252.

47

Andersson, D. I.; Hughes, D. Kubicek-Sutherland, J. Z. Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resist. Updates 2016, 26, 43–57.

48

Archer, N. K.; Mazaitis, M. J.; Costerton, J. W.; Leid, J. G.; Powers, M. E.; Shirtliff, M. E. Staphylococcus aureus biofilms: Properties, regulation, and roles in human disease. Virulence 2011, 2, 445–459.

49

Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature 2003, 423, 705–714.

50

Lee, J. Y.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. B. T.; Hupp, J. T. Metal-organic framework materials as catalysts. Chem. Soc. Rev. 2009, 38, 1450–1459.

51

Xue, Y. P.; Zhao, G. C.; Yang, R. Y.; Chu, F.; Chen, J.; Wang, L.; Huang, X. B. 2D metal-organic framework-based materials for electrocatalytic, photocatalytic and thermocatalytic applications. Nanoscale 2021, 13, 3911–3936.

52

Shen, M. F.; Forghani, F.; Kong, X. Q.; Liu, D. D.; Ye, X. Q.; Chen, S. G.; Ding, T. Antibacterial applications of metal-organic frameworks and their composites. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1397–1419.

53

Usman, K. A. S.; Maina, J. W.; Seyedin, S.; Conato, M. T.; Payawan, L. M.; Dumée, L. F.; Razal, J. M. Downsizing metalorganic frameworks by bottom-up and top-down methods. NPG Asia Mater. 2020, 12, 58.

54

Zhang, Y. M.; Zhang, X.; Song, J.; Jin, L. M.; Wang, X. T.; Quan, C. S. Ag/H-ZIF-8 nanocomposite as an effective antibacterial agent against pathogenic bacteria. Nanomaterials 2019, 9, 1579.

55

Tippayawat, P.; Phromviyo, N.; Boueroy, P.; Chompoosor, A. Green synthesis of silver nanoparticles in aloe vera plant extract prepared by a hydrothermal method and their synergistic antibacterial activity. PeerJ 2016, 4, e2589.

56

Wang, H.; Synatschke, C. V.; Raup, A.; Jérôme, V.; Freitag, R.; Agarwal, S. Oligomeric dual functional antibacterial polycaprolactone. Polym. Chem. 2014, 5, 2453–2460.

57
Carović-Stanko, K. ; Orlić, S. ; Politeo, O. ; Strikić, F. ; Kolak, I. ; Milos, M. ; Satovic, Z. Composition and antibacterial activities of essential oils of sevenOcimum taxa. Food Chem. 2010, 119, 196–201.https://doi.org/10.1016/j.foodchem.2009.06.010
DOI
58

Mao, C. Y.; Xiang, Y. M.; Liu, X. M.; Cui, Z. D.; Yang, X. J.; Li, Z. Y.; Zhu, S. L.; Zheng, Y. F.; Yeung, K. W. K.; Wu, S. L. Repeatable photodynamic therapy with triggered signaling pathways of fibroblast cell proliferation and differentiation to promote bacteria-accompanied wound healing. ACS Nano 2018, 12, 1747–1759.

59

Liu, Z. W.; Tan, L.; Liu, X. M.; Liang, Y. Q.; Zheng, Y. F.; Yeung, K. W. K.; Cui, Z. D.; Zhu, S. L.; Li, Z. Y.; Wu, S. L. Zn2+-assisted photothermal therapy for rapid bacteria-killing using biodegradable humic acid encapsulated MOFs. Colloids Surf. B Biointerfaces 2020, 188, 110781.

60

Pang, X.; Xiao, Q. C.; Cheng, Y.; Ren, E.; Lian, L. L.; Zhang, Y.; Gao, H. Y.; Wang, X. Y.; Leung, W.; Chen, X. Y. et al. Bacteria responsive nanoliposomes as smart sonotheranostics for multidrug resistant bacterial infections. ACS Nano 2019, 13, 2427–2438.

61

Zhang, L.; Liu, Z. W.; Deng, Q. Q.; Sang, Y. J.; Dong, K.; Ren, J. S.; Qu, X. G. Nature-inspired construction of MOF@COF nanozyme with active sites in tailored microenvironment and pseudopodia-like surface for enhanced bacterial inhibition. Angew. Chem. Int. Ed. 2021, 60, 3469–3474.

62

Li, T.; Qiu, H. Q.; Liu, N.; Li, J. W.; Bao, Y. H.; Tong, W. J. Construction of self-activated cascade metal-organic framework/enzyme hybrid nanoreactors as antibacterial agents. Colloids Surf. B Biointerfaces 2020, 191, 111001.

63

Lin, S.; Liu, X. M.; Tan, L.; Cui, Z. D.; Yang, X. J.; Yeung, K. W. K.; Pan, H. B.; Wu, S. L. Porous iron-carboxylate metal-organic framework: A novel bioplatform with sustained antibacterial efficacy and nontoxicity. ACS Appl. Mater. Interfaces 2017, 9, 19248–19257.

64

Fan, X.; Yang, F.; Huang, J. B.; Yang, Y.; Nie, C. X.; Zhao, W. F.; Ma, L.; Cheng, C.; Zhao, C. S.; Haag, R. Metal-organic-framework derived 2D carbon nanosheets for localized multiple bacterial eradication and augmented anti-infective therapy. Nano Lett. 2019, 19, 5885–5896.

65

Luo, Y.; Li, J.; Liu, X. M.; Tan, L.; Cui, Z. D.; Feng, X. B.; Yang, X. J.; Liang, Y. Q.; Li, Z. Y.; Zhu, S. L. et al. Dual metal-organic framework heterointerface. ACS Cent. Sci. 2019, 5, 1591–1601.

66

Ge, C. C.; Wu, R. F.; Chong, Y.; Fang, G.; Jiang, X. M.; Pan, Y.; Chen, C. Y.; Yin, J. J. Synthesis of Pt hollow nano dendrites with enhanced peroxidase-like activity against bacterial infections: Implication for wound healing. Adv. Funct. Mater. 2018, 28, 1801484.

67

Zirak Hassan Kiadeh, S.; Ghaee, A.; Farokhi, M.; Nourmohammadi, J.; Bahi, A.; Ko, F. K. Electrospun pectin/modified copper-based metal-organic framework (MOF) nanofibers as a drug delivery system. Int. J. Biol. Macromol. 2021, 173, 351–365.

68

Xiang, Y. M.; Mao, C. Y.; Liu, X. M.; Cui, Z. D.; Jing, D. D.; Yang, X. J.; Liang, Y. Q.; Li, Z. Y.; Zhu, S. L.; Zheng, Y. F. et al. Rapid and superior bacteria killing of carbon quantum dots/ZnO decorated injectable folic acid-conjugated PDA hydrogel through dual-light triggered ROS and membrane permeability. Small 2019, 15, 1900322.

69

Geveke, D. J.; Gurtler, J.; Zrang, H. Q. Inactivation of Lactobacillus plantarum in apple cider, using radio frequency electric fields. J. Food. Prot. 2009, 72, 656–661.

70

Donlan, R. M.; Costerton, J. W. Biofilms: Survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 2002, 15, 167–193.

71

Liu, Z. W.; Wang, F. M.; Ren, J. S.; Qu, X. G. A series of MOF/Cebased nanozymes with dual enzyme-like activity disrupting biofilms and hindering recolonization of bacteria. Biomaterials 2019, 208, 21–31.

72

Haas, K. L.; Franz, K. J. Application of metal coordination chemistry to explore and manipulate cell biology. Chem. Rev. 2009, 109, 4921–4960.

73

Ma, Z.; Jacobsen, F. E.; Giedroc, D. P. Coordination chemistry of bacterial metal transport and sensing. Chem. Rev. 2009, 109, 4644–4681.

74

Pearson, R. G. Hard and soft acids and bases—The evolution of a chemical concept. Coord. Chem. Rev. 1990, 100, 403–425.

75

Nies, D. H. Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol. Rev. 2003, 27, 313–339.

76

Harrison, J. J.; Ceri, H.; Turner, R. J. Multimetal resistance and tolerance in microbial biofilms. Nat. Rev. Microbiol. 2007, 5, 928–938.

77

Howarth, A. J.; Liu, Y. Y.; Li, P.; Li, Z. Y.; Wang, T. C.; Hupp, J. T.; Farha, O. K. Chemical, thermal and mechanical stabilities of metal-organic frameworks. Nat. Rev. Mater. 2016, 1, 15018.

78

Feng, M. B.; Zhang, P.; Zhou, H. C.; Sharma, V. K. Water-stable metal-organic frameworks for aqueous removal of heavy metals and radionuclides: A review. Chemosphere 2018, 209, 783–800.

79

Gordon, O.; Slenters, T. V.; Brunetto, P. S.; Villaruz, A. E.; Sturdevant, D. E.; Otto, M.; Landmann, R.; Fromm, K. M. Silver coordination polymers for prevention of implant infection: Thiol interaction, impact on respiratory chain enzymes, and hydroxyl radical induction. Antimicrob. Agents Chemother. 2010, 54, 4208–4218.

80

Lemire, J. A.; Harrison, J. J.; Turner, R. J. Antimicrobial activity of metals: Mechanisms, molecular targets and applications. Nat. Rev. Microbiol. 2013, 11, 371–384.

81
Medina, E. ; Pieper, D. H. Tackling threats and future problems of multidrug-resistant bacteria. In How to Overcome the Antibiotic Crisis: Facts, Challenges, Technologies and Future Perspectives, Cham, 2016, pp 3–33.https://doi.org/10.1007/82_2016_492
DOI
82

Singh, S. B.; Barrett, J. F. Empirical antibacterial drug discovery foundation in natural products. Biochem. Pharmacol. 2006, 71, 1006–1015.

83

Fasnacht, M.; Polacek, N. Oxidative stress in bacteria and the central dogma of molecular biology. Front. Mol. Biosci. 2021, 8, 671037.

84

West, J. D.; Marnett, L. J. Endogenous reactive intermediates as modulators of cell signaling and cell death. Chem. Res. Toxicol. 2006, 19, 173–194.

85

Van Acker, H.; Coenye, T. The role of reactive oxygen species in antibiotic-mediated killing of bacteria. Trends Microbiol. 2017, 25, 456–466.

86

Kiley, P. J.; Beinert, H. The role of Fe-S proteins in sensing and regulation in bacteria. Curr. Opin. Microbiol. 2003, 6, 181–185.

87

Soltani, S.; Akhbari, K. Cu-BTC metal-organic framework as a biocompatible nanoporous carrier for chlorhexidine antibacterial agent. J. Biol. Inorg. Chem 2022, 27, 81–81.

88

Yu, P. L.; Han, Y. J.; Han, D. L.; Liu, X. M.; Liang, Y. Q.; Li, Z. Y.; Zhu, S. L.; Wu, S. L. In-situ sulfuration of Cu-based metalorganic framework for rapid near-infrared light sterilization. J. Hazard. Mater. 2020, 390.

89

Ren, X. Y.; Yang, C. Y.; Zhang, L.; Li, S. H.; Shi, S.; Wang, R.; Zhang, X.; Yue, T. L.; Sun, J.; Wang, J. L. Copper metal-organic frameworks loaded on chitosan film for the efficient inhibition of bacteria and local infection therapy. Nanoscale 2019, 11, 11830–11838.

90

Wang, H. T.; Ao, D.; Lu, M. C.; Chang, N. Alteration of the morphology of polyvinylidene fluoride membrane by incorporating MOF-199 nanomaterials for improving water permeation with antifouling and antibacterial property. J. Chin. Chem. Soc. 2020, 67, 1807–1817.

91

Singbumrung, K.; Motina, K.; Pisitsak, P.; Chitichotpanya, P.; Wongkasemjit, S.; Inprasit, T. Preparation of Cu-BTC/PVA fibers with antibacterial applications. Fibers Polym. 2018, 19, 1373–1378.

92

Wang, S. Y.; Yan, F.; Ren, P.; Li, Y.; Wu, Q.; Fang, X. D.; Chen, F. F.; Wang, C. Incorporation of metal-organic frameworks into electrospun chitosan/poly (vinyl alcohol) nanofibrous membrane with enhanced antibacterial activity for wound dressing application. Int. J. Biol. Macromol. 2020, 158, 9–17.

93
Tang, S. L. ; Zhang, L. L. ; Mao, X. Y. ; Shao, Y. L. ; Cao, M. G. ; Zhang, L. ; Liang, X. M. Pullulan-based nanocomposite films with enhanced hydrophobicity and antibacterial performances. Polym. Bull. , in press,https://doi.org/ 10.1007/s00289-021-03996-0.
94

Gizer, S. G.; Sahiner, N. The effect of sulphur on the antibacterial properties of succinic acid-Cu(II) and mercaptosuccinic acid-Cu(II) MOFs. Inorg. Chim. Acta 2021, 528, 120611.

95

Han, D. L.; Han, Y. J.; Li, J.; Liu, X. M.; Yeung, K. W. K.; Zheng, Y. F.; Cui, Z. D.; Yang, X. J.; Liang, Y. Q.; Li, Z. Y. et al. Enhanced photocatalytic activity and photothermal effects of Cu doped metal-organic frameworks for rapid treatment of bacteria infected wounds. Appl. Catal. B-Environ. 2020, 261, 118248.

96

Liu, X. P.; Yan, Z. Q.; Zhang, Y.; Liu, Z. W.; Sun, Y. H.; Ren, J. S.; Qu, X. G. Two-dimensional metal-organic framework/enzyme hybrid nanocatalyst as a benign and self-activated cascade reagent for in vivo wound healing. ACS Nano 2019, 13, 5222–5230.

97

Allahbakhsh, A.; Jarrahi, Z.; Farzi, G.; Shavandi, A. Three dimensional nanoporous Cu-BTC/graphene oxide nanocomposites with engineered antibacterial properties synthesized via a one-pot solvosonication process. Mater. Chem. Phys. 2022, 277, 125502.

98
Wang, Z. Y. ; Guo, W. ; Zhang, K. ; Ye, Y. M. ; Wang, Y. M. ; Sui, D. ; Zhao, N. N. ; Xu, F. J. Two-dimensional copper metal-organic frameworks as antibacterial agents for biofilm treatment. Sci. ChinaTechnol. Sci. , in press,DOI: 10.1007/s11431-021-1963-3.https://doi.org/10.1007/s11431-021-1963-3
DOI
99

Gwon, K.; Kim, Y.; Cho, H.; Lee, S.; Yang, S. H.; Kim, S. J.; Lee, D. N. Robust copper metal-organic framework-embedded polysiloxanes for biomedical applications: Its antibacterial effects on MRSA and in vitro cytotoxicity. Nanomaterials 2021, 11, 719.

100

Azizabadi, O.; Akbarzadeh, F.; Danshina, S.; Chauhan, N. P. S. Sargazi, G. An efficient ultrasonic assisted reverse micelle synthesis route for Fe3O4@Cu-MOF/core–shell nanostructures and its antibacterial activities. J. Solid State Chem. 2021, 294, 121897.

101

Can, M.; Demirci, S.; Sunol, A. K.; Sahiner, N. An amino acid, Lglutamic acid-based metal-organic frameworks and their antibacterial, blood compatibility, biocompatibility, and sensor properties. Microporous Mesoporous Mater. 2020, 309, 110533.

102

Liu, Z.; Ye, J. W.; Rauf, A.; Zhang, S. Q.; Wang, G. Y.; Shi, S. Q.; Ning, G. L. A flexible fibrous membrane based on copper(II) metalorganic framework/poly(lactic acid) composites with superior antibacterial performance. Biomater. Sci. 2021, 9, 3851–3859.

103

Bhardwaj, N.; Pandey, S. K.; Mehta, J.; Bhardwaj, S. K.; Kim, K. H.; Deep, A. Bioactive nano-metal-organic frameworks as antimicrobials against Gram-positive and Gram-negative bacteria. Toxicol. Res. 2018, 7, 931–941.

104

Restrepo, J.; Serroukh, Z.; Santiago-Morales, J.; Aguado, S.; Gómez-Sal, P.; Mosquera, M. E. G.; Rosal, R. An antibacterial ZnMOF with hydrazinebenzoate linkers. Eur. J. Inorg. Chem. 2017, 2017, 574–580.

105

Tamames-Tabar, C.; Imbuluzqueta, E.; Guillou, N.; Serre, C.; Miller, S. R.; Elkaïm, E.; Horcajada, P.; Blanco-Prieto, M. J. A Zn azelate MOF: Combining antibacterial effect. Crystengcomm 2015, 17, 456–462.

106

Yang, Y.; Wu, X. Z.; He, C.; Huang, J. B.; Yin, S. Q.; Zhou, M.; Ma, L.; Zhao, W. F.; Qiu, L.; Cheng, C. et al. Metal-organic framework/Ag-based hybrid nanoagents for rapid and synergistic bacterial eradication. ACS Appl. Mater. Interfaces 2020, 12, 13698–13708.

107

Ahmed, S. A.; Bagchi, D.; Katouah, H. A.; Hasan, M. N.; Altass, H. M.; Pal, S. K. Enhanced water stability and photoresponsivity in metal-organic Framework (MOF): A potential tool to combat drug resistant bacteria. Sci. Rep. 2019, 9, 19372.

108

Ahmad, N.; Samavati, A.; Nordin, N. A. H. M.; Jaafar, J.; Ismail, A. F.; Malek, N. A. N. N. Enhanced performance and antibacterial properties of amine-functionalized ZIF-8-decorated GO for ultrafiltration membrane. Sep. Purif. Technol. 2020, 239, 116554.

109

Sacourbaravi, R.; Ansari-Asl, Z.; Kooti, M.; Nobakht, V.; Darabpour, E. Fabrication of Ag NPs/Zn-MOF nanocomposites and their application as antibacterial agents. J. Inorg. Organomet. Polym. Mater. 2020, 30, 4615–4621.

110

Balasamy, R. J.; Ravinayagam, V.; Alomari, M.; Ansari, M. A.; Almofty, S. A.; Rehman, S.; Dafalla, H.; Marimuthu, P. R.; Akhtar, S.; Al Hamad, M. Cisplatin delivery, anticancer and antibacterial properties of Fe/SBA-16/ZIF-8 nanocomposite. RSC Adv. 2019, 9, 42395–42408.

111

Chen, X. Y.; Ji, P. A microporous Zn(II)-MOF for solvent-free cyanosilylation and treatment effect against bacterial infection on burn patients via inhibiting the Staphylococcus aureus biofilm formation. J. Inorg. Organomet. Polym. Mater. 2021, 31, 492–499.

112

Nakhaei, M.; Akhbari, K.; Kalati, M.; Phuruangrat, A. Antibacterial activity of three zinc-terephthalate MOFs and its relation to their structural features. Inorg. Chim. Acta 2021, 522.

113

Hao, Q. Q.; Cheng, L.; Dong, Z. Two Zn(II)-organic frameworks: Catalytic knoevenagel condensation and treatment activity on spine surgery incision infection via inhibiting Staphylococcus aureus biofilms formation. J. Exp. Nanosci. 2021, 16, 31–42.

114

Dutta, B.; Pal, K.; Jana, K.; Sinha, C.; Mir, M. H. Fabrication of a Zn(II)-based 2D pillar bilayer metal-organic framework for antimicrobial activity. Chemistryselect 2019, 4, 9947–9951.

115

Hu, Y. C.; Yang, H.; Wang, R. H.; Duan, M. L. Fabricating Ag@MOF-5 nanoplates by the template of MOF-5 and evaluating its antibacterial activity. Colloids Surf. A:Physicochem. Eng. Aspects 2021, 626, 127093.

116

Xie, B. P.; Chai, J. W.; Fan, C.; Ouyang, J. H.; Duan, W. J.; Sun, B.; Chen, J.; Yuan, L. X.; Xu, X. Q.; Chen, J. X. Water-stable silver based metal-organic frameworks of quaternized carboxylates and their antimicrobial activity. ACS Appl. Bio Mater. 2020, 3, 8525–8531.

117

Huang, X. J.; Yu, S. J.; Lin, W. X.; Yao, X.; Zhang, M. Y.; He, Q.; Fu, F. Y.; Zhu, H. L.; Chen, J. J. A metal-organic framework MIL- 53(Fe) containing sliver ions with antibacterial property. J. Solid State Chem. 2021, 302, 122442.

118

Arenas-Vivo, A.; Amariei, G.; Aguado, S.; Rosal, R.; Horcajada, P. An Ag-loaded photoactive nano-metal organic framework as a promising biofilm treatment. Acta Biomater. 2019, 97, 490–500.

119

Zhang, M.; Wang, G. H.; Wang, D.; Zheng, Y. Q.; Li, Y. X.; Meng, W. Q.; Zhang, X.; Du, F. F.; Lee, S. Ag@MOF-loaded chitosan nanoparticle and polyvinyl alcohol/sodium alginate/chitosan bilayer dressing for wound healing applications. Int. J. Biol. Macromol. 2021, 175, 481–494.

120
Huang, R. ; Cai, G. Q. ; Li, J. ; Li, X. S. ; Liu, H. T. ; Shang, X. L. ; Zhou, J. D. ; Nie, X. M. ; Gui, R. Platelet membrane-camouflaged silver metal-organic framework drug system against infections caused by methicillin-resistant Staphylococcus aureus. J. Nanobiotechnol. 2021, 19, 229.https://doi.org/10.1186/s12951-021-00978-2
DOI
121

Hajibabaei, M.; Zendehdel, R.; Panjali, Z. Imidazole-functionalized Ag/MOFs as promising scaffolds for proper antibacterial activity and toxicity reduction of Ag nanoparticles. J. Inorg. Organomet. P 2020, 30, 4622–4626.

122

Lu, X. Y.; Ye, J. W.; Zhang, D. K.; Xie, R. X.; Bogale, R. F.; Sun, Y.; Zhao, L. M.; Zhao, Q.; Ning, G. L. Silver carboxylate metalorganic frameworks with highly antibacterial activity and biocompatibility. J. Inorg. Biochem. 2014, 138, 114–121.

123

Jaros, S. W.; da Silva, M. F. C. G.; Florek, M.; Oliveira, M. C.; Smoleński, P.; Pombeiro, A. J. L. Kirillov, A. M. Aliphatic dicarboxylate directed assembly of silver(I) 1, 3, 5-triaza-7-phosphaadamantane coordination networks: Topological versatility and antimicrobial activity. Cryst. Growth Des. 2014, 14, 5408–5417.

124

Zirehpour, A.; Rahimpour, A.; Shamsabadi, A. A.; Sharifian, G. M.; Soroush, M. Mitigation of thin-film composite membrane biofouling via immobilizing nano-sized biocidal reservoirs in the membrane active layer. Environ. Sci. Technol. 2017, 51, 5511–5522.

125

Seyedpour, S. F.; Firouzjaei, M. D.; Rahimpour, A.; Zolghadr, E.; Shamsabadi, A. A.; Das, P.; Afkhami, F. A.; Sadrzadeh, M.; Tiraferri, A.; Elliott, M. Toward sustainable tackling of biofouling implications and improved performance of TFC FO membranes modified by Ag-MOF nanorods. ACS Appl. Mater. Interfaces 2020, 12, 38285–38298.

126

Fan, X.; Yang, F.; Nie, C. X.; Yang, Y.; Ji, H. F.; He, C.; Cheng, C.; Zhao, C. S. Mussel-inspired synthesis of NIR-responsive and biocompatible Ag-graphene 2D nanoagents for versatile bacterial disinfections. ACS Appl. Mater. Interfaces 2018, 10, 296–307.

127

Yang, Y.; Ma, L.; Cheng, C.; Deng, Y. Y.; Huang, J. B.; Fan, X.; Nie, C. X.; Zhao, W. F.; Zhao, C. S. Nonchemotherapic and robust dual-responsive nanoagents with on-demand bacterial trapping, ablation, and release for efficient wound disinfection. Adv. Funct. Mater. 2018, 28, 1705708.

128

D'Agostino, A.; Taglietti, A.; Desando, R.; Bini, M.; Patrini, M.; Dacarro, G.; Cucca, L.; Pallavicini, P.; Grisoli, P. Bulk surfaces coated with triangular silver nanoplates: Antibacterial action based on silver release and photo-thermal effect. Nanomaterials 2017, 7, 7.

129

Zhang, C.; Hu, D. F.; Xu, J. W.; Ma, M. Q.; Xing, H. B.; Yao, K.; Ji, J.; Xu, Z. K. Polyphenol-assisted exfoliation of transition metal dichalcogenides into nanosheets as photothermal nanocarriers for enhanced antibiofilm activity. ACS Nano 2018, 12, 12347–12356.

130

Li, Y. T.; Jin, J.; Wang, D. W.; Lv, J. W.; Hou, K.; Liu, Y. L.; Chen, C. Y.; Tang, Z. Y. Coordination-responsive drug release inside gold nanorod@metal-organic framework core–shell nanostructures for near-infrared-induced synergistic chemophotothermal therapy. Nano Res. 2018, 11, 3294–3305.

131

Leighton, T. G.; Pickworth, M. J. W.; Walton, A. J.; Dendy, P. P. Studies of the cavitational effects of clinical ultrasound by sonoluminescence: 1. Correlation of sonoluminescence with the standing wave pattern in an acoustic field produced by a therapeutic unit. Phys. Med. Biol. 1988, 33, 1239–1248.

132

Pan, X. T.; Wang, H. Y.; Wang, S. H.; Sun, X.; Wang, L. J.; Wang, W. W.; Shen, H. Y.; Liu, H. Y. Sonodynamic therapy (SDT): A novel strategy for cancer nanotheranostics. Sci. China Life Sci. 2018, 61, 415–426.

133

Pan, X. T.; Bai, L. X.; Wang, H.; Wu, Q. Y.; Wang, H. Y.; Liu, S.; Xu, B. L.; Shi, X. H.; Liu, H. Y. Metal-organic-framework-derived carbon nanostructure augmented sonodynamic cancer therapy. Adv. Mater. 2018, 30, 1800180.

134

Karimi Alavijeh, R.; Beheshti, S.; Akhbari, K.; Morsali, A. Investigation of reasons for metal-organic framework’s antibacterial activities. Polyhedron 2018, 156, 257–278.

135

Huxford, R. C.; Della Rocca, J.; Lin, W. B. Metal-organic frameworks as potential drug carriers. Curr. Opin. Chem. Biol. 2010, 14, 262–268.

136

Yang, Q. H.; Xu, Q.; Jiang, H. L. Metal-organic frameworks meet metal nanoparticles: Synergistic effect for enhanced catalysis. Chem. Soc. Rev. 2017, 46, 4774–4808.

137

Liang, S.; Wu, X. L.; Xiong, J.; Zong, M. H.; Lou, W. Y. Metalorganic frameworks as novel matrices for efficient enzyme immobilization: An update review. Coord. Chem. Rev. 2020, 406, 213149.

138

McGuire, C. V.; Forgan, R. S. The surface chemistry of metalorganic frameworks. Chem. Commun. 2015, 51, 5199–5217.

139

Kitagawa, S.; Furukawa, S. Porous coordination polymers having guest accessible functional organic sites. Acta Cryst. 2008, A64, C104.

140

Miller, S. R.; Heurtaux, D.; Baati, T.; Horcajada, P.; Grenèche, J. M.; Serre, C. Biodegradable therapeutic MOFs for the delivery of bioactive molecules. Chem. Commun. 2010, 46, 4526–4528.

141

Xing, L.; Cao, Y. Y.; Che, S. A. Synthesis of core–shell coordination polymernanoparticles (CPNs) for pH-responsive controlled drug release. Chem. Commun. 2012, 48, 5995–5997.

142

Lashkari, E.; Wang, H.; Liu, L. S.; Li, J.; Yam, K. Innovative application of metal-organic frameworks for encapsulation and controlled release of allyl isothiocyanate. Food Chem. 2017, 221, 926–935.

143

Kornblatt, A. P.; Nicoletti, V. G.; Travaglia, A. The neglected role of copper ions in wound healing. J. Inorg. Biochem. 2016, 161, 1–8.

144

Mallick, S.; Sharma, S.; Banerjee, M.; Ghosh, S. S.; Chattopadhyay, A.; Paul, A. Iodine-stabilized Cu nanoparticle chitosan composite for antibacterial applications. ACS Appl. Mater. Interfaces 2012, 4, 1313–1323.

145

Chen, S.; Tang, F.; Tang, L. Z.; Li, L. D. Synthesis of Cu nanoparticle hydrogel with self-healing and photothermal properties. ACS Appl. Mater. Interfaces 2017, 9, 20895–20903.

146
Shams, S. ; Ahmad, W. ; Memon, A. H. ; Shams, S. ; Wei, Y. ; Yuan, Q. P. ; Liang, H. Cu/H3BTC MOF as a potential antibacterial therapeutic agent against Staphylococcus aureus and Escherichia coli. New J. Chem. 2020, 44, 17671–17678.https://doi.org/10.1039/D0NJ04120C
DOI
147
Chui, S. S. Y. ; Lo, S. M. F. ; Charmant, J. P. H. ; Orpen, A. G. ; Williams, I. D. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 1999, 283, 1148–1150.https://doi.org/10.1126/science.283.5405.1148
DOI
148

Abbasi, A. R.; Akhbari, K.; Morsali, A. Dense coating of surface mounted CuBTC metal-organic framework nanostructures on silk fibers, prepared by layer-by-layer method under ultrasound irradiation with antibacterial activity. Ultrason. Sonochem. 2012, 19, 846–852.

149

Zhang, S. Q.; Ye, J. W.; Sun, Y.; Kang, J.; Liu, J. H.; Wang, Y.; Li, Y. C.; Zhang, L. H.; Ning, G. L. Electrospun fibrous mat based on silver(I) metal-organic frameworks-polylactic acid for bacterial killing and antibiotic-free wound dressing. Chem. Eng. J. 2020, 390, 124523.

150

da Silv Pinto, M.; Sierra-Avila, C. A.; Hinestroza, J. P. In situ synthesis of a Cu-BTC metal-organic framework (MOF 199) onto cellulosic fibrous substrates: Cotton. Cellulose 2012, 19, 1771–1779.

151

Emam, H. E.; Darwesh, O. M.; Abdelhameed, R. M. In-growth metal organic framework/synthetic hybrids as antimicrobial fabrics and its toxicity. Colloids Surf. B Biointerfaces 2018, 165, 219–228.

152

Kohsari, I.; Shariatinia, Z.; Pourmortazavi, S. M. Antibacterial electrospun chitosan-polyethylene oxide nanocomposite mats containing ZIF-8 nanoparticles. Int. J. Biol. Macromol. 2016, 91, 778–788.

153

Mohanta, G. C.; Pandey, S. K.; Maurya, I. K.; Sahota, T. S.; Mondal, S. K.; Deep, A. Synergistic antimicrobial activity in ampicillin loaded core–shell ZnO@ZIF-8 Particles. ChemistrySelect 2019, 4, 12002–12009.

154

Tao, B. L.; Zhao, W. K.; Lin, C. C.; Yuan, Z.; He, Y.; Lu, L.; Chen, M. W.; Ding, Y.; Yang, Y. L.; Xia, Z. Z. L. et al. Surface modification of titanium implants by ZIF-8@Levo/LBL coating for inhibition of bacterial-associated infection and enhancement of in vivo osseointegration. Chem. Eng. J. 2020, 390, 124621.

155

Fan, X.; Yang, F.; Nie, C. X.; Ma, L.; Cheng, C.; Haag, R. Biocatalytic nanomaterials: A new pathway for bacterial disinfection. Adv. Mater. 2021, 33, 2100637.

156

Rubin, H. N.; Neufeld, B. H.; Reynolds, M. M. Surface-anchored metal-organic framework-cotton material for tunable antibacterial copper delivery. ACS Appl. Mater. Interfaces 2018, 10, 15189–15199.

157

Peng, C.; Kuai, Z. Y.; Zeng, T. Q.; Yu, Y.; Li, Z. F.; Zuo, J. T.; Chen, S.; Pan, S. J.; Li, L. WO3 nanorods/MXene composite as high performance electrode for supercapacitors. J. Alloys Compd. 2019, 810, 151928.

158

Abednejad, A.; Ghaee, A.; Nourmohammadi, J.; Mehrizi, A. A. Hyaluronic acid/carboxylated zeolitic imidazolate framework film with improved mechanical and antibacterial properties. Carbohydr. Polym. 2019, 222, 115033.

159

Liang, K.; Ricco, R.; Doherty, C. M.; Styles, M. J.; Bell, S.; Kirby, N.; Mudie, S.; Haylock, D.; Hill, A. J.; Doonan, C. J. et al. Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nat. Commun. 2015, 6, 7240.

160

Li, S. X.; Wang, K. K.; Shi, Y. J.; Cui, Y. N.; Chen, B. L.; He, B.; Dai, W. B.; Zhang, H.; Wang, X. Q.; Zhong, C. L. et al. Novel biological functions of ZIF-NP as a delivery vehicle: High pulmonary accumulation, favorable biocompatibility, and improved therapeutic outcome. Adv. Funct. Mater. 2016, 26, 2715–2727.

161

Huang, X. C.; Lin, Y. Y.; Zhang, J. P.; Chen, X. M. Ligand directed strategy for zeolite-type metal-organic frameworks: Zinc(II) imidazolates with unusual zeolitic topologies. Angew. Chem. , Int. Ed. 2006, 45, 1557–1559.

162

Esfahanian, M.; Ghasemzadeh, M. A.; Razavian, S. M. H. Synthesis, identification and application of the novel metal-organic framework Fe3O4@PAA@ZIF-8 for the drug delivery of ciprofloxacin and investigation of antibacterial activity. Artif. Cells Nanomed. Biotechnol. 2019, 47, 2024–2030.

163

Bradshaw, D.; Garai, A.; Huo, J. Metal-organic framework growth at functional interfaces: Thin films and composites for diverse applications. Chem. Soc. Rev. 2012, 41, 2344–2381.

164

Tejero, R.; Anitua, E.; Orive, G. Toward the biomimetic implant surface: Biopolymers on titanium-based implants for bone regeneration. Prog. Polym. Sci. 2014, 39, 1406–1447.

165

Tan, L.; Li, J.; Liu, X. M.; Cui, Z. D.; Yang, X. J.; Zhu, S. L.; Li, Z. Y.; Yuan, X. B.; Zheng, Y. F.; Yeung, K. W. K. et al. Rapid biofilm eradication on bone implants using red phosphorus and nearinfrared light. Adv. Mater. 2018, 30, 1801808.

166

Shen, X. K.; Zhang, Y. Y.; Ma, P. P.; Sutrisno, L.; Luo, Z.; Hu, Y.; Yu, Y. L.; Tao, B. L.; Li, C. Q.; Cai, K. Y. Fabrication of magnesium/zinc-metal organic framework on titanium implants to inhibit bacterial infection and promote bone regeneration. Biomaterials 2019, 212, 1–16.

167

Joubani, M. N.; Zanjanchi, M. A.; Sohrabnezhad, S. A novel Ag/Ag3PO4-IRMOF-1 nanocomposite for antibacterial application in the dark and under visible light irradiation. Appl. Organomet. Chem. 2020, 34, e5575.

168

Tao, B. L.; Lin, C. C.; He, Y.; Yuan, Z.; Chen, M. W.; Xu, K.; Li, K.; Guo, A.; Cai, K. Y.; Chen, L. X. Osteoimmunomodulation mediating improved osteointegration by OGP-loaded cobalt-metal organic framework on titanium implants with antibacterial property. Chem. Eng. J. 2021, 423, 130176.

169

Kim, Y. K.; Han, S. W.; Min, D. H. Graphene oxide sheath on Ag nanoparticle/graphene hybrid films as an antioxidative coating and enhancer of surface-enhanced Raman scattering. ACS Appl. Mater. Interfaces 2012, 4, 6545–6551.

170

Khanna, P. K.; Singh, N.; Kulkarni, D.; Deshmukh, S.; Charan, S.; Adhyapak, P. V. Water based simple synthesis of re-dispersible silver nano-particles. Mater. Lett. 2007, 61, 3366–3370.

171

Chen, S. Y.; Lu, J.; You, T. H.; Sun, D. P. Metal-organic frameworks for improving wound healing. Coord. Chem. Rev. 2021, 439, 213929.

172

Mao, D.; Hu, F.; Kenry; Ji, S. L.; Wu, W. B.; Ding, D.; Kong, D. L.; Liu, B. Metal-organic-framework-assisted in vivo bacterial metabolic labeling and precise antibacterial therapy. Adv. Mater. 2018, 30, 1706831.

173

Blissett, A. R.; Deng, B.; Wei, P.; Walsh, K. J.; Ollander, B.; Sifford, J.; Sauerbeck, A. D.; McComb, D. W.; McTigue, D. M.; Agarwal, G. Sub-cellular in-situ characterization of Ferritin(iron) in a rodent model of spinal cord injury. Sci. Rep. 2018, 8, 3567.

174

Jambovane, S. R.; Nune, S. K.; Kelly, R. T.; McGrail, B. P.; Wang, Z. M.; Nandasiri, M. I.; Katipamula, S.; Trader, C.; Schaef, H. T. Continuous, one-pot synthesis and post-synthetic modification of nanoMOFs using droplet nanoreactors. Sci. Rep. 2016, 6, 36657.

175

Wang, D. D.; Zhou, J. J.; Chen, R. H.; Shi, R. H.; Xia, G. L.; Zhou, S.; Liu, Z. B.; Zhang, N. Q.; Wang, H. B.; Guo, Z. et al. Magnetically guided delivery of DHA and Fe ions for enhanced cancer therapy based on pH-responsive degradation of DHA-loaded Fe3O4@C@MIL-100(Fe) nanoparticles. Biomaterials 2016, 107, 88–101.

176

Khatoon, Z.; McTiernan, C. D.; Suuronen, E. J.; Mah, T. F.; Alarcon, E. I. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon 2018, 4, e01067.

177

Easun, T. L.; Moreau, F.; Yan, Y.; Yang, S. H.; Schröder, M. Structural and dynamic studies of substrate binding in porous metalorganic frameworks. Chem. Soc. Rev. 2017, 46, 239–274.

178

Motoyama, S.; Makiura, R.; Sakata, O.; Kitagawa, H. Highly crystalline nanofilm by layering of porphyrin metal-organic framework sheets. J. Am. Chem. Soc. 2011, 133, 5640–5643.

179

Cui, C. L.; Liu, Y. Y.; Xu, H. B.; Li, S. Z.; Zhang, W. N.; Cui, P.; Huo, F. W. Self-assembled metal-organic frameworks crystals for chemical vapor sensing. Small 2014, 10, 3672–3676.

180

Mazloom-Jalali, A.; Shariatinia, Z.; Tamai, I. A.; Pakzad, S. R.; Malakootikhah, J. Fabrication of chitosan-polyethylene glycol nanocomposite films containing ZIF-8 nanoparticles for application as wound dressing materials. Int. J. Biol. Macromol. 2020, 153, 421–432.

181

Duan, C.; Meng, J. R.; Wang, X. Q.; Meng, X.; Sun, X. L.; Xu, Y. J.; Zhao, W.; Ni, Y. H. Synthesis of novel cellulose-based antibacterial composites of Ag nanoparticles@metal-organic frameworks@carboxymethylated fibers. Carbohydr. Polym. 2018, 193, 82–88.

182

Liu, J. Y.; Sonshine, D. A.; Shervani, S.; Hurt, R. H. Controlled release of biologically active silver from nanosilver surfaces. ACS Nano 2010, 4, 6903–6913.

183

Liu, Z. G.; Wang, Y. L.; Zu, Y. G.; Fu, Y. J.; Li, N.; Guo, N.; Liu, R. S.; Zhang, Y. M. Synthesis of polyethylenimine (PEI) functionalized silver nanoparticles by a hydrothermal method and their antibacterial activity study. Mater. Sci. Eng. C 2014, 42, 31–37.

184

Kim, J. S.; Kuk, E.; Yu, K. N.; Kim, J. H.; Park, S. J.; Lee, H. J.; Kim, S. H.; Park, Y. K.; Park, Y. H.; Hwang, C. Y. et al. Antimicrobial effects of silver nanoparticles. Nanomed. :Nanotechnol. , Biol. Med. 2007, 3, 95–101.

185

Huang, Y.; Zhao, M. T.; Han, S. K.; Lai, Z. C.; Yang, J.; Tan, C. L.; Ma, Q. L.; Lu, Q. P.; Chen, J. Z.; Zhang, X. et al. Growth of Au nanoparticles on 2D metalloporphyrinic metal-organic framework nanosheets used as biomimetic catalysts for cascade reactions. Adv. Mater. 2017, 29, 1700102.

186

Feng, G. N.; Huang, X. T.; Jiang, X. L.; Deng, T. W.; Li, Q. X.; Li, J. X.; Wu, Q. N.; Li, S. P.; Sun, X. Q.; Huang, Y. G. et al. The antibacterial effects of supermolecular nano-carriers by combination of silver and photodynamic therapy. Front. Chem. 2021, 9, 666408.

187

Gunawan, C.; Teoh, W. Y.; Marquis, C. P.; Amal, R. Cytotoxic origin of copper(II) oxide nanoparticles: Comparative studies with micron-sized particles, leachate, and metal salts. ACS Nano 2011, 5, 7214–7225.

188

Fang, F. C. Perspectives series: Host/pathogen interactions. Mechanisms of nitric oxide-related antimicrobial activity. J. Clin. Invest. 1997, 99, 2818–2825.

189

Wheatley, P. S.; Butler, A. R.; Crane, M. S.; Fox, S.; Xiao, B.; Rossi, A. G.; Megson, I. L.; Morris, R. E. NO-releasing zeolites and their antithrombotic properties. J. Am. Chem. Soc. 2006, 128, 502–509.

190

Fox, S.; Wilkinson, T. S.; Wheatley, P. S.; Xiao, B.; Morris, R. E.; Sutherland, A.; Simpson, A. J.; Barlow, P. G.; Butler, A. R.; Megson, I. L. et al. NO-loaded Zn2+-exchanged zeolite materials: A potential bifunctional anti-bacterial strategy. Acta Biomater. 2010, 6, 1515–1521.

191

Pinto, M. L.; Rocha, J.; Gomes, J. R. B.; Pires, J. Slow release of NO by microporous titanosilicate ETS-4. J. Am. Chem. Soc. 2011, 133, 6396–6402.

192

Cattaneo, D.; Warrender, S. J.; Duncan, M. J.; Kelsall, C. J.; Doherty, M. K.; Whitfield, P. D.; Megson, I. L.; Morris, R. E. Tuning the nitric oxide release from CPO-27 MOFs. RSC Adv. 2016, 6, 14059–14067.

193

Taylor-Edinbyrd, K.; Li, T. P.; Kumar, R. Effect of chemical structure of S-nitrosothiols on nitric oxide release mediated by the copper sites of a metal organic framework based environment. Phys. Chem. Chem. Phys. 2017, 19, 11947–11959.

194

Duncan, M. J.; Wheatley, P. S.; Coghill, E. M.; Vornholt, S. M.; Warrender, S. J.; Megson, I. L.; Morris, R. E. Antibacterial efficacy from NO-releasing MOF-polymer films. Mater. Adv. 2020, 1, 2509–2519.

195

Luan, X. K.; Wang, H. Z.; Xiang, Z. H.; Ma, Z. F.; Zhao, J. R.; Feng, Y.; Shi, Q.; Yin, J. H. Biomimicking dual-responsive extracellular matrix restoring extracellular balance through the Na/K-ATPase pathway. ACS Appl. Mater. Interfaces 2019, 11, 21258–21267.

196

Vatansever, F.; de Melo, W. C. M. A.; Avci, P.; Vecchio, D.; Sadasivam, M.; Gupta, A.; Chandran, R.; Karimi, M.; Parizotto, N. A.; Yin, R. et al. Antimicrobial strategies centered around reactive oxygen species-bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiol. Rev. 2013, 37, 955–989.

197

Tao, Y.; Ju, E. G.; Ren, J. S.; Qu, X. G. Bifunctionalized mesoporous silica-supported gold nanoparticles: Intrinsic oxidase and peroxidase catalytic activities for antibacterial applications. Adv. Mater. 2015, 27, 1097–1104.

198

Jiao, L.; Wang, Y.; Jiang, H. L.; Xu, Q. Metal-organic frameworks as platforms for catalytic applications. Adv. Mater. 2018, 30, 1703663.

199

Nath, I.; Chakraborty, J.; Verpoort, F. Metal organic frameworks mimicking natural enzymes: A structural and functional analogy. Chem. Soc. Rev. 2016, 45, 4127–4170.

200

Sun, H. J.; Gao, N.; Dong, K.; Ren, J. S.; Qu, X. G. Graphene quantum dots-band-aids used for wound disinfection. ACS Nano 2014, 8, 6202–6210.

201

Gao, L. Z.; Giglio, K. M.; Nelson, J. L.; Sondermann, H.; Travis, A. J. Ferromagnetic nanoparticles with peroxidase-like activity enhance the cleavage of biological macromolecules for biofilm elimination. Nanoscale 2014, 6, 2588–2593.

202

Natalio, F.; André, R.; Hartog, A. F.; Stoll, B.; Jochum, K. P.; Wever, R.; Tremel, W. Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation. Nat. Nanotechnol. 2012, 7, 530–535.

203

Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.

204

Wei, H.; Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093.

205

Zhang, J. Y.; Chen, Y. P.; Miller, K. P.; Ganewatta, M. S.; Bam, M.; Yan, Y.; Nagarkatti, M.; Decho, A. W.; Tang, C. B. Antimicrobial metallopolymers and their bioconjugates with conventional antibiotics against multidrug-resistant bacteria. J. Am. Chem. Soc. 2014, 136, 4873–4876.

206

Wang, D. D.; Jana, D.; Zhao, Y. L. Metal-organic framework derived nanozymes in biomedicine. Acc. Chem. Res. 2020, 53, 1389–1400.

207

Ali, A.; Ovais, M.; Zhou, H. G.; Rui, Y. K.; Chen, C. Y. Tailoring metal-organic frameworks-based nanozymes for bacterial theranostics. Biomaterials 2021, 275, 120951.

208

Hu, W. C.; Younis, M. R.; Zhou, Y.; Wang, C.; Xia, X. H. In situ fabrication of ultrasmall gold nanoparticles/2D MOFs hybrid as nanozyme for antibacterial therapy. Small 2020, 16, 2000553.

209

Zhang, P.; Sun, D. R.; Cho, A.; Weon, S.; Lee, S.; Lee, J.; Han, J. W.; Kim, D. P.; Choi, W. Modified carbon nitride nanozyme as bifunctional glucose oxidase-peroxidase for metal-free bioinspired cascade photocatalysis. Nat. Commun. 2019, 10, 940.

210

Wang, J. N.; Bao, M. Y.; Wei, T. X.; Wang, Z. Y.; Dai, Z. H. Bimetallic metal-organic framework for enzyme immobilization by biomimetic mineralization: Constructing a mimic enzyme and simultaneously immobilizing natural enzymes. Anal. Chim. Acta 2020, 1098, 148–154.

211

Xu, W. Q.; Jiao, L.; Yan, H. Y.; Wu, Y.; Chen, L. J.; Gu, W. L.; Du, D.; Lin, Y. H.; Zhu, C. Z. Glucose oxidase-integrated metalorganic framework hybrids as biomimetic cascade nanozymes for ultrasensitive glucose biosensing. ACS Appl. Mater. Interfaces 2019, 11, 22096–22101.

212

Xu, B. L.; Wang, H.; Wang, W. W.; Gao, L. Z.; Li, S. S.; Pan, X. T.; Wang, H. Y.; Yang, H. L.; Meng, X. Q.; Wu, Q. W. et al. A single-atom nanozyme for wound disinfection applications. Angew. Chem. , Int. Ed. 2019, 58, 4911–4916.

213

Zhong, X.; Xia, H.; Huang, W. Q.; Li, Z. X.; Jiang, Y. B. Biomimetic metal-organic frameworks mediated hybrid multienzyme mimic for tandem catalysis. Chem. Eng. J. 2020, 381, 122758.

214

Hu, D. F.; Li, H.; Wang, B. L.; Ye, Z.; Lei, W. X.; Jia, F.; Jin, Q.; Ren, K. F.; Ji, J. Surface-adaptive gold nanoparticles with effective adherence and enhanced photothermal ablation of methicillinresistant Staphylococcus aureus biofilm. ACS Nano 2017, 11, 9330–9339.

215

Teng, W. S. Y.; Zhang, Z. J.; Wang, Y. K.; Ye, Y. X.; Yinwang, E.; Liu, A.; Zhou, X. Z.; Xu, J. X.; Zhou, C. W.; Sun, H. X. et al. Iodine immobilized metal-organic framework for NIR-triggered antibacterial therapy on orthopedic implants. Small 2021, 17, 2102315.

216

Yang, Y. Q.; Huang, K.; Wang, M. Q.; Wang, Q. S.; Chang, H. S.; Liang, Y. K.; Wang, Q.; Zhao, J.; Tang, T. T.; Yang, S. B. Ubiquitination flow repressors: Enhancing wound healing of infectious diabetic ulcers through stabilization of polyubiquitinated hypoxia-inducible factor-1α by theranostic nitric oxide nanogenerators. Adv. Mater. 2021, 33, 2103593.

217

Yu, Y.; Tan, L.; Li, Z. Y.; Liu, X. M.; Zheng, Y. F.; Feng, X. B.; Liang, Y. Q.; Cui, Z. D.; Zhu, S. L.; Wu, S. L. Single-atom catalysis for efficient sonodynamic therapy of methicillin-resistant Staphylococcus aureus-infected osteomyelitis. ACS Nano 2021, 15, 10628–10639.

218

Chilakamarthi, U.; Giribabu, L. Photodynamic therapy: Past, present and future. Chem. Rec. 2017, 17, 775–802.

219

Lu, K. D.; He, C. B.; Lin, W. B. Nanoscale metal-organic framework for highly effective photodynamic therapy of resistant head and neck cancer. J. Am. Chem. Soc. 2014, 136, 16712–16715.

220

Ethirajan, M.; Chen, Y. H.; Joshi, P.; Pandey, R. K. The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chem. Soc. Rev. 2011, 40, 340–362.

221

Guo, J.; Wan, Y.; Zhu, Y. F.; Zhao, M. T.; Tang, Z. Y. Advanced photocatalysts based on metal nanoparticle/metal-organic framework composites. Nano Res. 2021, 14, 2037–2052.

222

Cheng, L.; Wang, C.; Feng, L. Z.; Yang, K.; Liu, Z. Functional nanomaterials for phototherapies of cancer. Chem. Rev. 2014, 114, 10869–10939.

223

Agostinis, P.; Berg, K.; Cengel, K. A.; Foster, T. H.; Girotti, A. W.; Gollnick, S. O.; Hahn, S. M.; Hamblin, M. R.; Juzeniene, A.; Kessel, D. et al. Photodynamic therapy of cancer: An update. CA Cancer J. Clin. 2011, 61, 250–281.

224

Castano, A. P.; Demidova, T. N.; Hamblin, M. R. Mechanisms in photodynamic therapy: Part one-photosensitizers, photochemistry and cellular localization. Photodiagn. Photodyn. Ther. 2004, 1, 279–293.

225

Ge, J. C.; Lan, M. H.; Zhou, B. J.; Liu, W. M.; Guo, L.; Wang, H.; Jia, Q. Y.; Niu, G. L.; Huang, X.; Zhou, H. Y. et al. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat. Commun. 2014, 5, 4596.

226

Tan, L.; Li, J.; Liu, X. M.; Cui, Z. D.; Yang, X. J.; Yeung, K. W. K.; Pan, H. B.; Zheng, Y. F.; Wang, X. B.; Wu, S. L. In situ disinfection through photoinspired radical oxygen species storage and thermal-triggered release from black phosphorous with strengthened chemical stability. Small 2018, 14, 1703197.

227

Hong, L.; Liu, X. M.; Tan, L.; Cui, Z. D.; Yang, X. J.; Liang, Y. Q.; Li, Z. Y.; Zhu, S. L.; Zheng, Y. F; Yeung, K. W. K. et al. Rapid biofilm elimination on bone implants using near-infrared-activated inorganic semiconductor heterostructures. Adv. Healthc. Mater. 2019, 8, 1900835.

228

Yang, X. Y.; Wang, D. Y.; Shi, Y. H.; Zou, J. H.; Zhao, Q. S.; Zhang, Q.; Huang, W.; Shao, J. J.; Xie, X. J.; Dong, X. C. Black phosphorus nanosheets immobilizing Ce6 for imaging-guided photothermal/photodynamic cancer therapy. ACS Appl. Mater. Interfaces 2018, 10, 12431–12440.

229

Yin, Z. H.; Chen, D. P.; Zou, J. H.; Shao, J. J.; Tang, H.; Xu, H.; Si, W. L.; Dong, X. C. Tumor microenvironment responsive oxygenself-generating nanoplatform for dual-imaging guided photodynamic and photothermal therapy. Chemistryselect 2018, 3, 4366–4373.

230

Li, L.; Chen, Y. S.; Chen, W. J.; Tan, Y.; Chen, H. Y.; Yin, J. Photodynamic therapy based on organic small molecular fluorescent dyes. Chin. Chem. Lett. 2019, 30, 1689–1703.

231

Dai, X. M.; Zhao, Y.; Yu, Y. J.; Chen, X. L.; Wei, X. S.; Zhang, X. G.; Li, C. X. Single continuous near-infrared laser-triggered photodynamic and photothermal ablation of antibiotic-resistant bacteria using effective targeted copper sulfide nanoclusters. ACS Appl. Mater. Interfaces 2017, 9, 30470–30479.

232

Liang, S.; Deng, X. R.; Chang, Y.; Sun, C. Q.; Shao, S.; Xie, Z. X.; Xiao, X.; Ma, P.; Zhang, H. Y.; Cheng, Z. Y. et al. Intelligent hollow Pt-CuS janus architecture for synergistic catalysis-enhanced sonodynamic and photothermal cancer therapy. Nano Lett. 2019, 19, 4134–4145.

233

Huo, M. F.; Wang, L. Y.; Wang, Y. W.; Chen, Y.; Shi, J. L. Nanocatalytic tumor therapy by single-atom catalysts. ACS Nano 2019, 13, 2643–2653.

234

Yumita, N.; Nishigaki, R.; Umemura, K.; Umemura, S. I. Hematoporphyrin as a sensitizer of cell-damaging effect of ultrasound. Jpn. J. Cancer Res. 1989, 80, 219–222.

235

Wang, X. N.; Ip, M.; Leung, A. W.; Xu, C. S. Sonodynamic inactivation of methicillin-resistant Staphylococcus aureus in planktonic condition by curcumin under ultrasound sonication. Ultrasonics 2014, 54, 2109–2114.

236
Wang, X. N. ; Ip, M. ; Leung, A. W. ; Yang, Z. R. ; Wang, P. ; Zhang, B. T. ; Ip, S. ; Xu, C. S. Sonodynamic action of curcumin on foodborne bacteria Bacillus cereus and Escherichia coli. Ultrasonics 2015, 62, 75–79.https://doi.org/10.1016/j.ultras.2015.05.003
DOI
237

Nakonechny, F.; Nisnevitch, M.; Nitzan, Y.; Nisnevitch, M. Sonodynamic excitation of rose bengal for eradication of grampositive and gram-negative bacteria. BioMed Res. Int. 2013, 2013, 684930.

238
Wang, X. N. ; Ip, M. ; Leung, A. W. ; Wang, P. ; Zhang, H. W. ; Hua, H. Y. ; Xu, C. S. Sonodynamic action of hypocrellin B on methicillin-resistant Staphylococcus aureus. Ultrasonics 2016, 65, 137–144.https://doi.org/10.1016/j.ultras.2015.10.008
DOI
239
Xu, C. S. ; Dong, J. H. ; Ip, M. ; Wang, X. N. ; Leung, A. W. Sonodynamic action of chlorin e6 on Staphylococcus aureus and Escherichia coli. Ultrasonics 2016, 64, 54–57.https://doi.org/10.1016/j.ultras.2015.07.010
DOI
240
Zhuang, D. S. ; Hou, C. Y. ; Bi, L. J. ; Han, J. L. ; Hao, Y. R. ; Cao, W. W. ; Zhou, Q. Sonodynamic effects of hematoporphyrin monomethyl ether on Staphylococcus aureus in vitro. FEMS Microbiol. Lett. 2014, 361, 174–180.https://doi.org/10.1111/1574-6968.12628
DOI
241

Huo, M. F.; Wang, L. Y.; Chen, Y.; Shi, J. L. Tumor-selective catalytic nanomedicine by nanocatalyst delivery. Nat. Commun. 2017, 8, 357.

242

Li, W. P.; Su, C. H.; Chang, Y. C.; Lin, Y. J.; Yeh, C. S. Ultrasoundinduced reactive oxygen species mediated therapy and imaging using a fenton reaction activable polymersome. ACS Nano 2016, 10, 2017–2027.

Publication history
Copyright

Publication history

Received: 14 January 2022
Revised: 04 March 2022
Accepted: 07 March 2022
Published: 11 May 2022
Issue date: July 2022

Copyright

© Tsinghua University Press 2022
Return