Journal Home > Volume 15 , Issue 8

Achieving superior performance of nanoparticle systems is one of the biggest challenges in catalysis. Two major phenomena, occurring during the reactions, hinder the development of the full potential of nanoparticle catalysts: sintering and contamination with carbon containing species, sometimes called coking. Here, we demonstrate that Ir nanocrystals, arranged into periodic networks on hexagonal boron nitride (h-BN) supports, can be restored without sintering after contamination by persistent carbon. This restoration yields the complete removal of carbon from the nanocrystals, which keep their crystalline structure, allowing operation without degradation. These findings, together with the possibility of fine tuning the nanocrystals size, confer this nanoparticle system a great potential as a testbed to extract key information about catalysis-mediated oxidation reactions. For the case of the CO oxidation by O2, reaction of interest in environmental science and green energy production, the existence of chemical processes not observed before in other nanoparticle systems is demonstrated.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

There is life after coking for Ir nanocatalyst superlattices

Show Author's information Antonio J. Martínez-Galera1,2,( )Haojie Guo1Mariano D. Jiménez-Sánchez1Stefano Franchi3,Kevin C. Prince3José M. Gómez-Rodríguez1,2,4,
Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid E-28049, Spain
Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, Madrid E-28049, Spain
Elettra-Sincrotrone Trieste S.C.p.A., in Area Science Park, Basovizza (Trieste) 34149, Italy
Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid E-28049, Spain
Present address: Departamento de Física de Materiales, Universidad Autónoma de Madrid, Madrid E-28049, Spain
Present address: Institute of Structure of Matter (ISM), National Research Council (CNR), Rome 00133, Italy
Deceased

Abstract

Achieving superior performance of nanoparticle systems is one of the biggest challenges in catalysis. Two major phenomena, occurring during the reactions, hinder the development of the full potential of nanoparticle catalysts: sintering and contamination with carbon containing species, sometimes called coking. Here, we demonstrate that Ir nanocrystals, arranged into periodic networks on hexagonal boron nitride (h-BN) supports, can be restored without sintering after contamination by persistent carbon. This restoration yields the complete removal of carbon from the nanocrystals, which keep their crystalline structure, allowing operation without degradation. These findings, together with the possibility of fine tuning the nanocrystals size, confer this nanoparticle system a great potential as a testbed to extract key information about catalysis-mediated oxidation reactions. For the case of the CO oxidation by O2, reaction of interest in environmental science and green energy production, the existence of chemical processes not observed before in other nanoparticle systems is demonstrated.

Keywords: catalysis, nanoparticles, scanning tunneling microscopy (STM), coke, X-ray photoemission spectroscopy (XPS)

References(48)

1

Armor, J. N. A history of industrial catalysis. Catal. Today 2011, 163, 3–9.

2

Johnson, N. B.; Lennon, I. C.; Moran, P. H.; Ramsden, J. A. Industrial-scale synthesis and applications of asymmetric hydrogenation catalysts. Acc. Chem. Res. 2007, 40, 1291–1299.

3

Savile, C. K.; Janey, J. M.; Mundorff, E. C.; Moore, J. C.; Tam, S.; Jarvis, W. R.; Colbeck, J. C.; Krebber, A.; Fleitz, F. J.; Brands, J. et al. Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science 2010, 329, 305–309.

4

Primo, A.; Garcia, H. Zeolites as catalysts in oil refining. Chem. Soc. Rev. 2014, 43, 7548–7561.

5

Steele, B. C. H.; Heinzel, A. Materials for fuel-cell technologies. Nature 2001, 414, 345–352.

6

Chong, M. N.; Jin, B.; Chow, C. W. K.; Saint, C. Recent developments in photocatalytic water treatment technology: A review. Water Res. 2010, 44, 2997–3027.

7

Valange, S.; Vedrine, J. C. General and prospective views on oxidation reactions in heterogeneous catalysis. Catalysts 2018, 8, 483.

8

Ertl, G. Reactions at surfaces: From atoms to complexity (Nobel lecture). Angew. Chem., Int. Ed. 2008, 47, 3524–3535.

9

Anenberg, S. C.; Miller, J.; Minjares, R.; Du, L.; Henze, D. K.; Lacey, F.; Malley, C. S.; Emberson, L.; Franco, V.; Klimont, Z. et al. Impacts and mitigation of excess diesel-related NOx emissions in 11 major vehicle markets. Nature 2017, 545, 467–471.

10

Datye, A. K.; Votsmeier, M. Opportunities and challenges in the development of advanced materials for emission control catalysts. Nat. Mater. 2021, 20, 1049–1059.

11

Li, Q. F.; He, R. H.; Jensen, J. O.; Bjerrum, N. J. Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 °C. Chem. Mater. 2003, 15, 4896–4915.

12

Farrauto, R.; Hwang, S.; Shore, L.; Ruettinger, W.; Lampert, J.; Giroux, T.; Liu, Y.; Ilinich, O. New material needs for hydrocarbon fuel processing: Generating hydrogen for the PEM fuel cell. Annu. Rev. Mater. Res. 2003, 33, 1–27.

13

Daniel, M. C.; Astruc, D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004, 104, 293–346.

14

Cuenya, B. R. Synthesis and catalytic properties of metal nanoparticles: Size, shape, support, composition, and oxidation state effects. Thin Solid Films 2010, 518, 3127–3150.

15

Jin, R. C. The impacts of nanotechnology on catalysis by precious metal nanoparticles. Nanotechnol. Rev. 2012, 1, 31–56.

16

Cuenya, B. R.; Behafarid, F. Nanocatalysis: Size- and shape-dependent chemisorption and catalytic reactivity. Surf. Sci. Rep. 2015, 70, 135–187.

17

Gao, J. J.; Liu, Q.; Gu, F. N.; Liu, B.; Zhong, Z. Y.; Su, F. B. Recent advances in methanation catalysts for the production of synthetic natural gas. RSC Adv. 2015, 5, 22759–22776.

18

She, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

19

Lu, J. L.; Fu, B. S.; Kung, M. C.; Xiao, G. M.; Elam, J. W.; Kung, H. H.; Stair, P. C. Coking- and sintering-resistant palladium catalysts achieved through atomic layer deposition. Science 2012, 335, 1205–1208.

20

Al Abdulghani, A. J.; Park, J. H.; Kozlov, S. M.; Kang, D. C.; AlSabban, B.; Pedireddy, S.; Aguilar-Tapia, A.; Ould-Chikh, S.; Hazemann, J. L.; Basset, J. M. et al. Methane dry reforming on supported cobalt nanoparticles promoted by boron. J. Catal. 2020, 392, 126–134.

21

Corso, M.; Auwärter, W.; Muntwiler, M.; Tamai, A.; Greber, T.; Osterwalder. J. Boron nitride nanomesh. Science 2004, 303, 217–220.

22

Martínez-Galera, A. J.; Gómez-Rodríguez, J. M. Pseudo-ordered distribution of Ir nanocrystals on h-BN. Nanoscale 2019, 11, 2317–2325.

23

N’Diaye, A. T.; Gerber, T.; Busse, C.; Mysliveček, J.; Coraux, J.; Michely, T. A versatile fabrication method for cluster superlattices. New J. Phys. 2009, 11, 103045.

24

Custance, O.; Brochard, S.; Brihuega, I.; Artacho, E.; Soler, J. M.; Baró, A. M.; Gómez-Rodríguez, J. M. Single adatom adsorption and diffusion on Si (111)-(7 × 7) surfaces: Scanning tunneling microscopy and first-principles calculations. Phys. Rev. B 2003, 67, 235410.

25

Martínez-Galera, A. J.; Gómez-Rodríguez, J. M. Nucleation and growth of the prototype azabenzene 1, 3, 5-triazine on graphite surfaces at low temperatures. J. Phys. Chem. C 2011, 115, 11089–11094.

26

Horcas, I.; Fernández, R.; Gómez-Rodríguez, J. M.; Colchero, J.; Gómez-Herrero, J.; Baro, A. M. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705.

27

Martínez-Galera, A. J.; Brihuega, I.; Gutiérrez-Rubio, A.; Stauber, T.; Gómez-Rodríguez, J. M. Towards scalable nano-engineering of graphene. Sci. Rep. 2014, 4, 7314.

28

Grånäs, E.; Knudsen, J.; Schröder, U. A.; Gerber, T.; Busse, C.; Arman, M. A.; Schulte, K.; Andersen, J. N.; Michely, T. Oxygen intercalation under graphene on Ir (111): Energetics, kinetics, and the role of graphene edges. ACS Nano 2012, 6, 9951–9963.

29

Marinova, T. S.; Kostov, K. L. Interaction of oxygen with a clean Ir (111) surface. Surf. Sci. 1987, 185, 203–212.

30

Johansson, N.; Andersen, M.; Monya, Y.; Andersen, J. N.; Kondoh, H.; Schnadt, J.; Knudsen, J. Ambient pressure phase transitions over Ir (111): At the onset of CO oxidation. J. Phys. Condens. Matter 2017, 29, 444002.

31

Grånäs, E.; Andersen, M.; Arman, M. A.; Gerber, T.; Hammer, B.; Schnadt, J.; Andersen, J. N.; Michely, T.; Knudsen, J. CO intercalation of graphene on Ir (111) in the millibar regime. J. Phys. Chem. C 2013, 117, 16438–16447.

32

Knudsen, J.; Feibelman, P. J.; Gerber, T.; Grånäs, E.; Schulte, K.; Stratmann, P.; Andersen, J. N.; Michely, T. Clusters binding to the graphene moire on Ir (111): X-ray photoemission compared to density functional calculations. Phys. Rev. B 2012, 85, 035407.

33

Herbig, C.; Knispel, T.; Simon, S.; Schröder, U. A.; Martínez-Galera, A. J.; Arman, M. A.; Teichert, C.; Knudsen, J.; Krasheninnikov, A. V.; Michely, T. From permeation to cluster arrays: Graphene on Ir (111) exposed to carbon vapor. Nano Lett. 2017, 17, 3105–3112.

34

Chavanne, A.; Arnault, J. C.; Barjon, J.; Arabski, J. Bias-enhanced nucleation of diamond on iridium: A comprehensive study of the first stages by sequential surface analysis. Surf. Sci. 2011, 605, 564–569.

35

Mérel, P.; Tabbal, M.; Chaker, M.; Moisa, S.; Margot, J. Direct evaluation of the sp3 content in diamond-like-carbon films by XPS. Appl. Surf. Sci. 1998, 136, 105–110.

36

Rey, S.; Le Normand, F. Surface transformations of carbon (graphene, graphite, diamond, carbide), deposited on polycrystalline nickel by hot filaments chemical vapour deposition. Thin Solid Films 2011, 519, 4426–4428.

37

Young, J. R. Interaction of oxygen with incandescent filaments. J. Appl. Phys. 1959, 30, 1671–1673.

38

Hagen, D. I.; Nieuwenhuys, B. E.; Rovida, G.; Somorjai, G. A. Low-energy electron diffraction, Auger electron spectroscopy, and thermal desorption studies of chemisorbed CO and O2 on the (111) and stepped [6(111) × (100)] iridium surfaces. Surf. Sci. 1976, 57, 632–650.

39

Wehner, S.; Baumann, F.; Ruckdeschel, M.; Küpers, J. Kinetic phase transitions in the reaction CO + O → CO2 on Ir (111) surfaces. J. Chem. Phys. 2003, 119, 6823–6831.

40

Liu, C. L.; Zhu, L.; Ren, P. J.; Wen, X. D.; Li, Y. W.; Jiao, H. J. High-coverage CO adsorption and dissociation on Ir (111), Ir (100), and Ir (110) from computations. J. Phys. Chem. C 2019, 123, 6487–6495.

41

Gerber, T.; Knudsen, J.; Feibelman, P. J.; Grånäs, E.; Stratmann, P.; Schulte, K.; Andersen, J. N.; Michely, T. CO-induced Smoluchowski ripening of Pt cluster arrays on the graphene/Ir (111) moire. ACS Nano 2013, 7, 2020–2031.

42

Gotterbarm, K.; Späth, F.; Bauer, U.; Bronnbauer, C.; Steinrück, H. P.; Papp, C. Reactivity of graphene-supported Pt nanocluster arrays. ACS Catal. 2015, 5, 2397–2403.

43

Ivanov, V. P.; Boreskov, G. K.; Savchenko, V. I.; Egelhoff, W. F. Jr.; Weinberg, W. H. The chemisorption of oxygen on the iridium (111) surface. Surf. Sci. 1976, 61, 207–220.

44

Cornish, J. C. L.; Avery, N. R. Adsorption of N2, O2, N2O and NO on Ir (111) by EELS and TPD. Surf. Sci. 1990, 235, 209–216.

45

Liu, L. C.; Meira, D. M.; Arenal, R; Concepcion, P.; Puga, A. V.; Corma, A. Determination of the evolution of heterogeneous single metal atoms and nanoclusters under reaction conditions: Which are the working catalytic sites. ACS Catal. 2019, 9, 10626–10639.

46

Liu, L. C.; Corma, A. Evolution of isolated atoms and clusters in catalysis. Trends Chem. 2020, 2, 383–400.

47

Vendelbo, S. B.; Elkjær, C. F.; Falsig, H.; Puspitasari, I.; Dona, P.; Mele, L.; Morana, B.; Nelissen, B. J.; van Rijn, R.; Creemer, J. F. et al. Visualization of oscillatory behaviour of Pt nanoparticles catalysing CO oxidation. Nat. Mater. 2014, 13, 884–890.

48

Chee, S. W.; Arce-Ramos, J. M.; Li, W. Q.; Genest, A.; Mirsaidov, U. Structural changes in noble metal nanoparticles during CO oxidation and their impact on catalyst activity. Nat. Commun. 2020, 11, 2133.

File
12274_2022_4300_MOESM1_ESM.pdf (619.2 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 02 December 2021
Revised: 07 March 2022
Accepted: 07 March 2022
Published: 14 June 2022
Issue date: August 2022

Copyright

© The Author(s) 2022

Acknowledgements

Acknowledgements

The authors dedicate this work to the memory of Prof. José María Gómez Rodríguez, personal friend, mentor, and colleague. The authors acknowledge Prof. Enrique G. Michel for fruitful discussions. This work was supported by the Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER) (AEI/FEDER, UE) (project No. MAT2016-77852-C2-2-R), the Comunidad de Madrid and the Universidad Autónoma de Madrid under project No. SI3/PJI/2021-00500, and the CERIC-ERIC Consortium (No. 20187040).

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return