Journal Home > Volume 15 , Issue 7

The development of cathode oxygen reduction reaction (ORR) catalysts with high characteristics for practical, direct methanol fuel cells (DMFCs) has continuously increased the attention of researchers. In this work, interface-rich Au-doped PdBi (PdBiAu) branched one-dimensional (1D) alloyed nanochains assembled by sub-6.5 nm particles have been prepared, exhibiting an ORR mass activity (MA) of 6.40 A·mgPd−1 and long-term durability of 5,000 cycles in an alkaline medium. The MA of PdBiAu nanochains is 46 times and 80 times higher than that of commercial Pt/C (0.14 A·mgPt−1) and Pd/C (0.08 A·mgPd−1). The MA of binary PdBi nanochains also reaches 5.71 A·mgPd−1. Notably, the PdBiAu nanochains exhibit high in-situ carbon monoxide poisoning resistance and high methanol tolerance. In actual DMFC device tests, the PdBiAu nanochains enhance power density of 140.1 mW·cm−2 (in O2)/112.4 mW·cm−2 (in air) and durability compared with PdBi nanochains and Pt/C. The analysis of the structure–function relationship indicates that the enhanced performance of PdBiAu nanochains is attributed to integrated functions of surficial defect-rich 1D chain structure, improved charge transfer capability, downshift of the d-band center of Pd, as well as the synergistic effect derived from “Pd-Bi” and/or “Pd-Au” dual active sites.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Interface-rich Au-doped PdBi alloy nanochains as multifunctional oxygen reduction catalysts boost the power density and durability of a direct methanol fuel cell device

Show Author's information Xin Li1Ke Xin Yao2Fengling Zhao1Xiaotong Yang1Jingwei Li4Yongfei Li2Qiang Yuan1,3( )
State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing 100084, China
Multi-scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China

Abstract

The development of cathode oxygen reduction reaction (ORR) catalysts with high characteristics for practical, direct methanol fuel cells (DMFCs) has continuously increased the attention of researchers. In this work, interface-rich Au-doped PdBi (PdBiAu) branched one-dimensional (1D) alloyed nanochains assembled by sub-6.5 nm particles have been prepared, exhibiting an ORR mass activity (MA) of 6.40 A·mgPd−1 and long-term durability of 5,000 cycles in an alkaline medium. The MA of PdBiAu nanochains is 46 times and 80 times higher than that of commercial Pt/C (0.14 A·mgPt−1) and Pd/C (0.08 A·mgPd−1). The MA of binary PdBi nanochains also reaches 5.71 A·mgPd−1. Notably, the PdBiAu nanochains exhibit high in-situ carbon monoxide poisoning resistance and high methanol tolerance. In actual DMFC device tests, the PdBiAu nanochains enhance power density of 140.1 mW·cm−2 (in O2)/112.4 mW·cm−2 (in air) and durability compared with PdBi nanochains and Pt/C. The analysis of the structure–function relationship indicates that the enhanced performance of PdBiAu nanochains is attributed to integrated functions of surficial defect-rich 1D chain structure, improved charge transfer capability, downshift of the d-band center of Pd, as well as the synergistic effect derived from “Pd-Bi” and/or “Pd-Au” dual active sites.

Keywords: oxygen reduction reaction, direct methanol fuel cells, Au-doped PdBi (PdBiAu) nanochains, one-dimensional structure, active auxiliary

References(74)

1

Greeley, J.; Stephens, I. E. L.; Bondarenko, A. S.; Johansson, T. P.; Hansen, H. A.; Jaramillo, T. F.; Rossmeisl, J.; Chorkendorff, I.; Nørskov, J. K. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 2009, 1, 552–556.

2

Din, M. A. U.; Saleem, F.; Ni, B.; Yong, Y.; Wang, X. Porous tetrametallic PtCuBiMn nanosheets with a high catalytic activity and methanol tolerance limit for oxygen reduction reactions. Adv. Mater. 2017, 29, 1604994.

3

Wang, D. L.; Xin, H. L.; Hovden, R.; Wang, H. S.; Yu, Y. C.; Muller, D. A.; DiSalvo, F. J.; Abruña, H. D. Structurally ordered intermetallic platinum-cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 2013, 12, 81–87.

4

Tang, T.; Ding, L.; Jiang, Z.; Hu, J. S.; Wan, L. J. Advanced transition metal/nitrogen/carbon-based electrocatalysts for fuel cell applications. Sci. China Chem. 2020, 63, 1517–1542.

5

Li, Y. J.; Zhang, H. C.; Han, N. N.; Kuang, Y.; Liu, J. F.; Liu, W.; Duan, H. H.; Sun, X. M. Janus electrode with simultaneous management on gas and liquid transport for boosting oxygen reduction reaction. Nano Res. 2019, 12, 177–182.

6

Che, Z. W.; Lu, X. Y.; Cai, B. F.; Xu, X. X.; Bao, J. C.; Liu, Y. Ligand-controlled synthesis of high density and ultra-small Ru nanoparticles with excellent electrocatalytic hydrogen evolution performance. Nano Res. 2022, 15, 1269–1275.

7

Chen, A. C.; Ostrom, C. Palladium-based nanomaterials: Synthesis and electrochemical applications. Chem. Rev. 2015, 115, 11999–12044.

8

Zhang, Z. D.; Zhou, M.; Chen, Y. J.; Liu, S. J.; Wang, H. F.; Zhang, J.; Ji, S. F.; Wang, D. S.; Li, Y. D. Pd single-atom monolithic catalyst: Functional 3D structure and unique chemical selectivity in hydrogenation reaction. Sci. China Mater. 2021, 64, 1919–1929.

9

Li, Y. L.; He, J. F.; Cheng, W. R.; Su, H.; Li, C. L.; Zhang, H.; Liu, M. H.; Zhou, W. L.; Chen, X.; Liu, Q. H. High mass-specific reactivity of a defect-enriched Ru electrocatalyst for hydrogen evolution in harsh alkaline and acidic media. Sci. China Mater. 2021, 64, 2467–2476.

10

Gao, F.; Zhang, Y. P.; You, H. M.; Li, Z. L.; Zou, B.; Du, Y. K. Solvent-mediated shell dimension reconstruction of core@shell PdAu@Pd nanocrystals for robust C1 and C2 alcohol electrocatalysis. Small 2021, 17, 2101428.

11

Yuan, X. L.; Zhang, Y.; Cao, M. H.; Zhou, T.; Jiang, X. J.; Chen, J. X.; Lyu, F. L.; Xu, Y.; Luo, J.; Zhang, Q. et al. Bi(OH)3/PdBi composite nanochains as highly active and durable electrocatalysts for ethanol oxidation. Nano Lett. 2019, 19, 4752–4759.

12

Zhang, Z. C.; Liu, G. G.; Cui, X. Y.; Gong, Y.; Yi, D.; Zhang, Q. H.; Zhu, C. Z.; Saleem, F.; Chen, B.; Lai, Z. C. et al. Evoking ordered vacancies in metallic nanostructures toward a vacated Barlow packing for high-performance hydrogen evolution. Sci. Adv. 2021, 7, eabd6647.

13

Wang, L.; Zeng, Z. H.; Gao, W. P.; Maxson, T.; Raciti, D.; Giroux, M.; Pan, X. Q.; Wang, C.; Greeley, J. Tunable intrinsic strain in two-dimensional transition metal electrocatalysts. Science 2019, 363, 870–874.

14

Jin, M. S.; Zhang, H.; Xie, Z. X.; Xia, Y. N. Palladium nanocrystals enclosed by {100} and {111} facets in controlled proportions and their catalytic activities for formic acid oxidation. Energy Environ. Sci. 2012, 5, 6352–6357.

15

Zhang, J.; Sasaki, K.; Sutter, E.; Adzic, R. R. Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 2007, 315, 220–222.

16

Li, C. Z.; Yuan, Q.; Ni, B.; He, T.; Zhang, S. M.; Long, Y.; Gu, L.; Wang, X. Dendritic defect-rich palladium-copper-cobalt nanoalloys as robust multifunctional non-platinum electrocatalysts for fuel cells. Nat. Commun. 2018, 9, 3702.

17

Shao, M. H.; Sasaki, K.; Adzic, R. R. Pd-Fe nanoparticles as electrocatalysts for oxygen reduction. J. Am. Chem. Soc. 2006, 128, 3526–3527.

18

Zhou, M.; Guo, J. N.; Zhao, B.; Li, C.; Zhang, L. H.; Fang, J. Y. Improvement of oxygen reduction performance in alkaline media by tuning phase structure of Pd-Bi nanocatalysts. J. Am. Chem. Soc. 2021, 143, 15891–15897.

19

Li, X.; Li, X. X.; Liu, C. X.; Huang, H. W.; Gao, P. F.; Ahmad, F.; Luo, L. H.; Ye, Y. F.; Geng, Z. G.; Wang, G. X. et al. Atomic-level construction of tensile-strained PdFe alloy surface toward highly efficient oxygen reduction electrocatalysis. Nano Lett. 2020, 20, 1403–1409.

20

Sun, D.; Wang, Y. F.; Livi, K. J. T.; Wang, C. H.; Luo, R. C.; Zhang, Z. Q.; Alghamdi, H.; Li, C. Y.; An, F. F.; Gaskey, B. et al. Ordered intermetallic Pd3Bi prepared by an electrochemically induced phase transformation for oxygen reduction electrocatalysis. ACS Nano 2019, 13, 10818–10825.

21

Luo, M. C.; Zhao, Z. L.; Zhang, Y. L.; Sun, Y. J.; Xing, Y.; Lv, F.; Yang, Y.; Zhang, X.; Hwang, S.; Qin, Y. N. et al. PdMo bimetallene for oxygen reduction catalysis. Nature 2019, 574, 81–85.

22

Sarkar, S.; Ramarao, S. D.; Das, T.; Das, R.; Vinod, C. P.; Chakraborty, S.; Peter, S. C. Unveiling the roles of lattice strain and descriptor species on Pt-like oxygen reduction activity in Pd-Bi catalysts. ACS Catal. 2021, 11, 800–808.

23

Qi, J.; Benipal, N.; Liang, C. H.; Li, W. Z. PdAg/CNT catalyzed alcohol oxidation reaction for high-performance anion exchange membrane direct alcohol fuel cell (alcohol = methanol, ethanol, ethylene glycol, and glycerol). Appl. Catal. B: Environ. 2016, 199, 494–503.

24

Hu, Q. Y.; Zhan, W.; Guo, Y. F.; Luo, L. M.; Zhang, R. H.; Chen, D.; Zhou, X. W. Heat treatment bimetallic PdAu nanocatalyst for oxygen reduction reaction. J. Energy Chem. 2020, 40, 217–223.

25

Mai, H. D.; Kim, S.; Yoo, H. Controllable growth of palladium on gold multipod nanoparticles and their enhanced electrochemical oxygen reduction reaction performances. J. Catal. 2020, 388, 20–29.

26

Liu, S. L.; Mu, X. Q.; Li, W. Q.; Lv, M.; Chen, B. Y.; Chen, C. Y.; Mu, S. C. Cation vacancy-modulated PtPdRuTe five-fold twinned nanomaterial for catalyzing hydrogen evolution reaction. Nano Energy 2019, 61, 346–351.

27

Wang, Y. R.; Hu, R. M.; Li, Y. C.; Wang, F. H.; Shang, J. X.; Shui, J. L. High-throughput screening of carbon-supported single metal atom catalysts for oxygen reduction reaction. Nano Res. 2022, 15, 1054–1060.

28

Lin, L. X.; Miao, N. H.; Wallace, G. G.; Chen, J.; Allwood, D. A. Engineering carbon materials for electrochemical oxygen reduction reactions. Adv. Energy Mater. 2021, 11, 2100695.

29

Chala, S. A.; Tsai, M. C.; Su, W. N.; Ibrahim, K. B.; Duma, A. D.; Yeh, M. H.; Wen, C. Y.; Yu, C. H.; Chan, T. S.; Dai, H. J. et al. Site activity and population engineering of NiRu-layered double hydroxide nanosheets decorated with silver nanoparticles for oxygen evolution and reduction reactions. ACS Catal. 2019, 9, 117–129.

30

Gao, Y.; Kong, D. B.; Liang, J. X.; Han, D. L.; Wang, B.; Yang, Q. H.; Zhi, L. J. Inside-out dual-doping effects on tubular catalysts: Structural and chemical variation for advanced oxygen reduction performance. Nano Res. 2022, 15, 361–367.

31

Zhao, F. L.; Zheng, L. R.; Yuan, Q.; Yang, X. T.; Zhang, Q. H.; Xu, H.; Guo, Y. L.; Yang, S.; Zhou, Z. Y.; Gu, L. et al. Ultrathin PdAuBiTe nanosheets as high-performance oxygen reduction catalysts for a direct methanol fuel cell device. Adv. Mater. 2021, 33, 2103383.

32

Li, J.; Yin, H. M.; Li, X. B.; Okunishi, E.; Shen, Y. L.; He, J.; Tang, Z. K.; Wang, W. X.; Yücelen, E.; Li, C. et al. Surface evolution of a Pt-Pd-Au electrocatalyst for stable oxygen reduction. Nat. Energy 2017, 2, 17111.

33

Choi, J.; Cho, J.; Roh, C. W.; Kim, B. S.; Choi, M. S.; Jeong, H.; Ham, H. C.; Lee, H. Au-doped PtCo/C catalyst preventing Co leaching for proton exchange membrane fuel cells. Appl. Catal. B: Environ. 2019, 247, 142–149.

34

Lu, B. A.; Sheng, T.; Tian, N.; Zhang, Z. C.; Xiao, C.; Cao, Z. M.; Ma, H. B.; Zhou, Z. Y.; Sun, S. G. Octahedral PtCu alloy nanocrystals with high performance for oxygen reduction reaction and their enhanced stability by trace Au. Nano Energy 2017, 33, 65–71.

35

Yang, X. T.; Yao, K. X.; Ye, J. Y.; Yuan, Q.; Zhao, F. L.; Li, Y. F.; Zhou, Z. Y. Interface-rich three-dimensional Au-doped PtBi intermetallics as highly effective anode catalysts for application in alkaline ethylene glycol fuel cells. Adv. Funct. Mater. 2021, 31, 2103671.

36

Wang, Y.; Zhuo, H. Y.; Sun, H.; Zhang, X.; Dai, X. P.; Luan, C. L.; Qin, C. L.; Zhao, H. H.; Li, J.; Wang, M. L. et al. Implanting Mo atoms into surface lattice of Pt3Mn alloys enclosed by high-indexed facets: Promoting highly active sites for ethylene glycol oxidation. ACS Catal. 2019, 9, 442–455.

37

Huang, X. Q.; Zhao, Z. P.; Cao, L.; Chen, Y.; Zhu, E. B.; Lin, Z. Y.; Li, M. F.; Yan, A. M.; Zettl, A.; Wang, Y. M. et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230–1234.

38

Huang, H. W.; Li, K.; Chen, Z.; Luo, L. H.; Gu, Y. Q.; Zhang, D. Y.; Ma, C.; Si, R.; Yang, J. L.; Peng, Z. M. et al. Achieving remarkable activity and durability toward oxygen reduction reaction based on ultrathin Rh-doped Pt nanowires. J. Am. Chem. Soc. 2017, 139, 8152–8159.

39

Beermann, V.; Gocyla, M.; Willinger, E.; Rudi, S.; Heggen, M.; Dunin-Borkowski, R. E.; Willinger, M. G.; Strasser, P. Rh-doped Pt-Ni octahedral nanoparticles: Understanding the correlation between elemental distribution, oxygen reduction reaction, and shape stability. Nano Lett. 2016, 16, 1719–1725.

40

Wang, Y.; Zheng, M.; Sun, H.; Zhang, X.; Luan, C. L.; Li, Y. R.; Zhao, L.; Zhao, H. H.; Dai, X. P.; Ye, J. Y. et al. Catalytic Ru containing Pt3Mn nanocrystals enclosed with high-indexed facets: Surface alloyed Ru makes Pt more active than Ru particles for ethylene glycol oxidation. Appl. Catal. B: Environ. 2019, 253, 11–20.

41

Shang, X.; Yan, K. L.; Lu, S. S.; Dong, B.; Gao, W. K.; Chi, J. Q.; Liu, Z. Z.; Chai, Y. M.; Liu, C. G. Controlling electrodeposited ultrathin amorphous Fe hydroxides film on V-doped nickel sulfide nanowires as efficient electrocatalyst for water oxidation. J. Power Sources 2017, 363, 44–53.

42

Javaid, S.; Xu, X. M.; Chen, W.; Chen, J. Y.; Hsu, H. Y.; Wang, S.; Yang, X. Y.; Li, Y. G.; Shao, Z. P.; Jones, F. et al. Ni2+/Co2+ doped Au-Fe7S8 nanoplatelets with exceptionally high oxygen evolution reaction activity. Nano Energy 2021, 89, 106463.

43

Polani, S.; MacArthur, K. E.; Klingenhof, M.; Wang, X. L.; Paciok, P.; Pan, L. J.; Feng, Q. C.; Kormányos, A.; Cherevko, S.; Heggen, M. et al. Size and composition dependence of oxygen reduction reaction catalytic activities of Mo-doped PtNi/C octahedral nanocrystals. ACS Catal. 2021, 11, 11407–11415.

44

Wang, D. L.; Liu, S. F.; Wang, J.; Lin, R. Q.; Kawasaki, M.; Rus, E.; Silberstein, K. E.; Lowe, M. A.; Lin, F.; Nordlund, D. et al. Spontaneous incorporation of gold in palladium-based ternary nanoparticles makes durable electrocatalysts for oxygen reduction reaction. Nat. Commun. 2016, 7, 11941.

45

Wang, F.; Zhang, Q.; Rui, Z. Y.; Li, J.; Liu, J. G. High-loading Pt-Co/C catalyst with enhanced durability toward the oxygen reduction reaction through surface Au modification. ACS Appl. Mater. Interfaces 2020, 12, 30381–30389.

46

Li, Y. J.; Quan, F. X.; Chen, L.; Zhang, W. J.; Yu, H. B.; Chen, C. F. Synthesis of Fe-doped octahedral Pt3Ni nanocrystals with high electro-catalytic activity and stability towards oxygen reduction reaction. RSC Adv. 2014, 4, 1895–1899.

47

Kuttiyiel, K. A.; Sasaki, K.; Su, D.; Wu, L. J.; Zhu, Y. M.; Adzic, R. R. Gold-promoted structurally ordered intermetallic palladium cobalt nanoparticles for the oxygen reduction reaction. Nat. Commun. 2014, 5, 5185.

48

Zhu, H.; Cai, Y. Z.; Wang, F. H.; Gao, P.; Cao, J. D. Scalable preparation of the chemically ordered Pt-Fe-Au nanocatalysts with high catalytic reactivity and stability for oxygen reduction reactions. ACS Appl. Mater. Interfaces 2018, 10, 22156–22166.

49

Fidiani, E.; Thirunavukkarasu, G.; Li, Y.; Chiu, Y. L.; Du, S. F. Au integrated AgPt nanorods for the oxygen reduction reaction in proton exchange membrane fuel cells. J. Mater. Chem. A 2021, 9, 5578–5587.

50

Wang, Y. Z.; Wang, B.; Yuan, H. T.; Liang, Z. Z.; Huang, Z. H.; Zhou, Y. Y.; Zhang, W.; Zheng, H. Q.; Cao, R. Inherent mass transfer engineering of a Co, N co-doped carbon material towards oxygen reduction reaction. J. Energy Chem. 2021, 58, 391–396.

51

Guo, L. M.; Zhang, D. F.; Guo, L. Structure design reveals the role of Au for ORR catalytic performance optimization in PtCo-based catalysts. Adv. Funct. Mater. 2020, 30, 2001575.

52

Qin, Y. C.; Zhang, W. L.; Guo, K.; Liu, X. B.; Liu, J. Q.; Liang, X. Y.; Wang, X. P.; Gao, D. W.; Gan, L. Y.; Zhu, Y. T. et al. Fine-tuning intrinsic strain in penta-twinned Pt-Cu-Mn nanoframes boosts oxygen reduction catalysis. Adv. Funct. Mater. 2020, 30, 1910107.

53

Zhu, E. B.; Xue, W.; Wang, S. Y.; Yan, X. C.; Zhou, J. X.; Liu, Y.; Cai, J.; Liu, E. S.; Jia, Q. Y.; Duan, X. F. et al. Enhancement of oxygen reduction reaction activity by grain boundaries in platinum nanostructures. Nano Res. 2020, 13, 3310–3314.

54

Gong, M. X.; Deng, Z. P.; Xiao, D. D.; Han, L. L.; Zhao, T. H.; Lu, Y.; Shen, T.; Liu, X. P.; Lin, R. Q.; Huang, T. et al. One-nanometer-thick Pt3Ni bimetallic alloy nanowires advanced oxygen reduction reaction: Integrating multiple advantages into one catalyst. ACS Catal. 2019, 9, 4488–4494.

55
Li, S. N.; Wang, Y.; Li, Y. R.; Fang, X.; Liu, Y. J.; Li, M. X.; Wang, Z.; Gao, Y. F.; Sun, H. X.; Gao, F. et al. PtNiCu nanowires with advantageous lattice-plane boundary for enhanced ethanol electrooxidation. Nano Res., in press, https://doi.org/10.1007/s12274-021-3881-2.
56

Jiao, W. L.; Chen, C.; You, W. B.; Zhao, X. R.; Zhang, J.; Feng, Y. Z.; Wang, P.; Che, R. C. Hollow palladium-gold nanochains with periodic concave structures as superior ORR electrocatalysts and highly efficient SERS substrates. Adv. Energy Mater. 2020, 10, 1904072.

57

Mai, L. Q.; Tian, X. C.; Xu, X.; Chang, L.; Xu, L. Nanowire electrodes for electrochemical energy storage devices. Chem. Rev. 2014, 114, 11828–11862.

58

Lv, G. Z.; Wu, Y.; Wang, Y. W.; Kang, W.; Zhang, H. J.; Zhou, M.; Huang, Z. Y.; Li, J.; Guo, Z. P.; Wang, Y. Rational design of perfect interface coupling to boost electrocatalytical oxygen reduction. Nano Energy 2020, 76, 105055.

59

Sahoo, L.; Garg, R.; Kaur, K.; Vinod, C. P.; Gautam, U. K. Ultrathin twisty PdNi alloy nanowires as highly active ORR electrocatalysts exhibiting morphology-induced durability over 200k cycles. Nano Lett. 2022, 22, 246–254.

60

Chattot, R.; Le Bacq, O.; Beermann, V.; Kühl, S.; Herranz, J.; Henning, S.; Kühn, L.; Asset, T.; Guétaz, L.; Renou, G. et al. Surface distortion as a unifying concept and descriptor in oxygen reduction reaction electrocatalysis. Nat. Mater. 2018, 17, 827–833.

61

Wang, P.; Cui, H.; Wang, C. X. Ultrathin PtMo-CeOx hybrid nanowire assemblies as high-performance multifunctional catalysts for methanol oxidation, oxygen reduction, and hydrogen oxidation. Chem. Eng. J. 2022, 429, 132435.

62

Liao, H. B.; Hou, Y. L. Liquid-phase templateless synthesis of Pt-on-Pd0.85Bi0.15 nanowires and PtPdBi porous nanoparticles with superior electrocatalytic activity. Chem. Mater. 2013, 25, 457–465.

63

Yang, F.; Ye, J. Y.; Yuan, Q.; Yang, X. T.; Xie, Z. X.; Zhao, F. L.; Zhou, Z. Y.; Gu, L.; Wang, X. Ultrasmall Pd-Cu-Pt trimetallic twin icosahedrons boost the electrocatalytic performance of glycerol oxidation at the operating temperature of fuel cells. Adv. Funct. Mater. 2020, 30, 1908235.

64

Huang, L.; Zheng, X. L.; Gao, G.; Zhang, H.; Rong, K.; Chen, J. X.; Liu, Y. Q.; Zhu, X. Y.; Wu, W. W.; Wang, Y. et al. Interfacial electron engineering of palladium and molybdenum carbide for highly efficient oxygen reduction. J. Am. Chem. Soc. 2021, 143, 6933–6941.

65

Lankiang, S.; Chiwata, M.; Baranton, S.; Uchida, H.; Coutanceau, C. Oxygen reduction reaction at binary and ternary nanocatalysts based on Pt, Pd, and Au. Electrochim. Acta 2015, 182, 131–142.

66

Yang, Y.; Xiao, W. P.; Feng, X. R.; Xiong, Y.; Gong, M. X.; Shen, T.; Lu, Y.; Abruña, H. D.; Wang, D. L. Golden palladium zinc ordered intermetallics as oxygen reduction electrocatalysts. ACS Nano 2019, 13, 5968–5974.

67

Tian, X. L.; Zhao, X.; Su, Y. Q.; Wang, L. J.; Wang, H. M.; Dang, D.; Chi, B.; Liu, H. F.; Hensen, E. J. M.; Lou, X. W. et al. Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 2019, 366, 850–856.

68

He, D. P.; Zhang, L. B.; He, D. S.; Zhou, G.; Lin, Y.; Deng, Z. X.; Hong, X.; Wu, Y. E.; Chen, C.; Li, Y. D. Amorphous nickel boride membrane on a platinum-nickel alloy surface for enhanced oxygen reduction reaction. Nat. Commun. 2016, 7, 12362.

69

Luo, L. X.; Fu, C. H.; Wu, A. M.; Zhuang, Z. C.; Zhu, F. J.; Jiang, F. L.; Shen, S. Y.; Cai, X. Y.; Kang, Q.; Zheng, Z. F. et al. Hydrogen-assisted scalable preparation of ultrathin Pt shells onto surfactant-free and uniform Pd nanoparticles for highly efficient oxygen reduction reaction in practical fuel cells. Nano Res. 2022, 15, 1892–1900.

70

Liang, Y. Y.; Lei, H.; Wang, S. J.; Wang, Z. L.; Mai, W. J. Pt/Zn heterostructure as efficient air-electrocatalyst for long-life neutral Zn-air batteries. Sci. China Mater. 2021, 64, 1868–1875.

71

Lyu, Z. X.; Zhang, X. G.; Wang, Y. C.; Liu, K.; Qiu, C. Y.; Liao, X. Y.; Yang, W. H.; Xie, Z. X.; Xie, S. F. Amplified interfacial effect in an atomically dispersed RuOx-on-Pd 2D inverse nanocatalyst for high-performance oxygen reduction. Angew. Chem., Int. Ed. 2021, 60, 16093–16100.

72

Wang, Y. F.; Hall, A. S. Pulsed electrodeposition of metastable Pd31Bi12 nanoparticles for oxygen reduction electrocatalysis. ACS Energy Lett. 2020, 5, 17–22.

73

Ma, Z. H.; Tian, H.; Meng, G.; Peng, L. X.; Chen, Y. F.; Chen, C.; Chang, Z. W.; Cui, X. Z.; Wang, L. J.; Jiang, W. et al. Size effects of platinum particles@CNT on HER and ORR performance. Sci. China Mater. 2020, 63, 2517–2529.

74

Zhang, Y.; Huang, B. L.; Luo, G.; Sun, T.; Feng, Y. G.; Wang, Y. C.; Ma, Y. H.; Shao, Q.; Li, Y. F.; Zhou, Z. Y. et al. Atomically deviated Pd-Te nanoplates boost methanol-tolerant fuel cells. Sci. Adv. 2020, 6, eaba9731.

File
12274_2022_4299_MOESM1_ESM.pdf (1.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 January 2022
Revised: 20 February 2022
Accepted: 04 March 2022
Published: 20 April 2022
Issue date: July 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21571038), Foundation of Guizhou Province (No. 2019-5666), Education Department of Guizhou Province (No. 2021312), State Key Laboratory of Coal Mine Disaster Dynamics and Control (Chongqing University; No. 2011DA105287-ZR202101), the Open Fund of the Key Lab of Organic Optoelectronics & Molecular Engineering (Tsinghua University), and State Key Laboratory of Physical Chemistry of Solid Surfaces (No. 202009). We gratefully acknowledge Analytical and Testing Center of Chongqing University.

Return