Journal Home > Volume 15 , Issue 7

Ammonia plays a vital role in the development of modern agriculture and industry. Compared to the conventional Haber–Bosch ammonia synthesis in industry, electrocatalytic nitrogen reduction reaction (NRR) is considered as a promising and environmental friendly strategy to synthesize ammonia. Here, inspired by biological nitrogenase, we designed iron doped tin oxide (Fe-doped SnO2) for nitrogen reduction. In this work, iron can optimize the interface electron transfer and improve the poor conductivity of the pure SnO2, meanwhile, the synergistic effect between iron and Sn ions improves the catalyst activity. In the electrocatalytic NRR test, Fe-doped SnO2 exhibits a NH3 yield of 28.45 μg·h−1·mgcat−1, which is 2.1 times that of pure SnO2, and Faradaic efficiency of 6.54% at −0.8 V vs. RHE in 0.1 M Na2SO4. It also shows good stability during a 12-h long-term stability test. Density functional theory calculations show that doped Fe atoms in SnO2 enhance catalysis performance of some Sn sites by strengthening N–Sn interaction and lowering the energy barrier of the rate-limiting step of NRR. The transient photovoltage test reveals that electrons in the low-frequency region are the key to determining the electron transfer ability of Fe-doped SnO2.

File
12274_2022_4298_MOESM1_ESM.pdf (2.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 08 February 2022
Revised: 04 March 2022
Accepted: 07 March 2022
Published: 25 April 2022
Issue date: July 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51802126 and 52072152), the Jiangsu University Jinshan Professor Fund and the Jiangsu Specially-Appointed Professor Fund, Open Fund from Guangxi Key Laboratory of Electrochemical Energy Materials, and the Science and Technology Planning Social Development Project of Zhenjiang City (No. SH2019010).

Return