Journal Home > Volume 15 , Issue 12

Developing non-precious metal catalysts to selectively reduce functionalized nitroarenes with high efficiency is urgently desirable for the production of value-added amines. Herein, we report a novel, efficient, anti-poisoning single-atom cobalt catalyst (Co-NAC) for the highly selective hydrogenation of the nitro to amino group for nitroarenes baring various functional groups, including vinyl, cyano, and halogen. Using a combination of structure characterization techniques, we have confirmed that the cobalt species are predominantly present in the form of four-coordinated Co single sites anchored on nitrogen-assembly carbon (NAC) as the ordered mesoporous support. Co-NAC catalysts enable the full conversion and > 99% selectivity with molecular H2 as a green reductant under mild conditions (80 °C, 2 MPa H2). As for the selective hydrogenation of 3-nitrostyrene, Co-NAC catalyst affords high catalytic productivity (19.7 h−1), which is superior to the cobalt nanoparticles (NPs) catalysts and most of the recently reported Co-based catalysts. This is attributed to the highly accessible atomically-dispersed Co active sites, the high surface area with ordered-mesoporous morphology and the prominent high content of nitrogen dopants. Notably, Co-NAC catalyst displays resistance towards sulfur-containing poisons (20 equivalents) and strong non-oxidizing acid (8 M), showing great potential for continuous application in the chemical industry.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Highly efficient and anti-poisoning single-atom cobalt catalyst for selective hydrogenation of nitroarenes

Show Author's information Yuemin Lin1Renfeng Nie4Yuting Li2Xun Wu3Jiaqi Yu3Shaohua Xie5Yajing Shen1,7Shanjun Mao6Yuzhuo Chen6Dan Lu1Zongbi Bao1,7Qiwei Yang1,7Qilong Ren1,7Yiwen Yang1,7Fudong Liu5Long Qi2( )Wenyu Huang3( )Zhiguo Zhang1,7( )
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
U.S. DOE Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
College of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, FL 32816, USA
Advanced Materials and Catalysis Group, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou 310028, China
Institute of Zhejiang University-Quzhou, Quzhou 324000, China

Abstract

Developing non-precious metal catalysts to selectively reduce functionalized nitroarenes with high efficiency is urgently desirable for the production of value-added amines. Herein, we report a novel, efficient, anti-poisoning single-atom cobalt catalyst (Co-NAC) for the highly selective hydrogenation of the nitro to amino group for nitroarenes baring various functional groups, including vinyl, cyano, and halogen. Using a combination of structure characterization techniques, we have confirmed that the cobalt species are predominantly present in the form of four-coordinated Co single sites anchored on nitrogen-assembly carbon (NAC) as the ordered mesoporous support. Co-NAC catalysts enable the full conversion and > 99% selectivity with molecular H2 as a green reductant under mild conditions (80 °C, 2 MPa H2). As for the selective hydrogenation of 3-nitrostyrene, Co-NAC catalyst affords high catalytic productivity (19.7 h−1), which is superior to the cobalt nanoparticles (NPs) catalysts and most of the recently reported Co-based catalysts. This is attributed to the highly accessible atomically-dispersed Co active sites, the high surface area with ordered-mesoporous morphology and the prominent high content of nitrogen dopants. Notably, Co-NAC catalyst displays resistance towards sulfur-containing poisons (20 equivalents) and strong non-oxidizing acid (8 M), showing great potential for continuous application in the chemical industry.

Keywords: selective hydrogenation, 3-nitrostyrene, nitroarenes, cobalt single-atom, poisoning resistance

References(58)

[1]

Song, J. J.; Huang, Z. F.; Pan, L.; Li, K.; Zhang, X. W.; Wang, L.; Zou, J. J. Review on selective hydrogenation of nitroarene by catalytic, photocatalytic and electrocatalytic reactions. Appl. Catal. B Environ. 2018, 227, 386–408.

[2]

Formenti, D.; Ferretti, F.; Scharnagl, F. K.; Beller, M. Reduction of nitro compounds using 3D-non-noble metal catalysts. Chem. Rev. 2019, 119, 2611–2680.

[3]

Zhang, L. L.; Zhou, M. X.; Wang, A. Q.; Zhang, T. Selective hydrogenation over supported metal catalysts: From nanoparticles to single atoms. Chem. Rev. 2020, 120, 683–733.

[4]

Macino, M.; Barnes, A. J.; Althahban, S. M.; Qu, R. Y.; Gibson, E. K.; Morgan, D. J.; Freakley, S. J.; Dimitratos, N.; Kiely, C. J.; Gao, X. et al. Tuning of catalytic sites in Pt/TiO2 catalysts for the chemoselective hydrogenation of 3-nitrostyrene. Nat. Catal. 2019, 2, 873–881.

[5]

Trandafir, M. M.; Neaţu, F.; Chirica, I. M.; Neaţu, Ş.; Kuncser, A. C.; Cucolea, E. I.; Natu, V.; Barsoum, M. W.; Florea, M. Highly efficient ultralow Pd loading supported on MAX phases for chemoselective hydrogenation. ACS Catal. 2020, 10, 5899–5908.

[6]

Lara, P.; Philippot, K. The hydrogenation of nitroarenes mediated by platinum nanoparticles: An overview. Catal. Sci. Technol. 2014, 4, 2445–2465.

[7]

Makosch, M.; Lin, W. I.; Bumbálek, V.; Sá, J.; Medlin, J. W.; Hungerbühler, K.; Van Bokhoven, J. A. Organic thiol modified Pt/TiO2 catalysts to control chemoselective hydrogenation of substituted nitroarenes. ACS Catal. 2012, 2, 2079–2081.

[8]

Li, J.; Long, Y.; Liu, Y.; Zhang, L. L.; Wang, Q. S.; Wang, X.; Song, S. Y.; Zhang, H. J. Robust synthesis of gold-based multishell structures as plasmonic catalysts for selective hydrogenation of 4-nitrostyrene. Angew. Chem., Int. Ed. 2020, 59, 1103–1107.

[9]

Beier, M. J.; Andanson, J. M.; Baiker, A. Tuning the chemoselective hydrogenation of nitrostyrenes catalyzed by ionic liquid-supported platinum nanoparticles. ACS Catal. 2012, 2, 2587–2595.

[10]

Ferlin, F.; Cappelletti, M.; Vivani, R.; Pica, M.; Piermatti, O.; Vaccaro, L. Au@zirconium-phosphonate nanoparticles as an effective catalytic system for the chemoselective and switchable reduction of nitroarenes. Green Chem. 2019, 21, 614–626.

[11]

Mao, J. J.; Chen, W. X.; Sun, W. M.; Chen, Z.; Pei, J. J.; He, D. S.; Lv, C. L.; Wang, D. S.; Li, Y. D. Rational control of the selectivity of a ruthenium catalyst for hydrogenation of 4-nitrostyrene by strain regulation. Angew. Chem., Int. Ed. 2017, 56, 11971–11975.

[12]

Fu, J. H.; Dong, J. H.; Si, R.; Sun, K. J.; Zhang, J. Y.; Li, M. R.; Yu, N. N.; Zhang, B. S.; Humphrey, M. G.; Fu, Q. et al. Synergistic effects for enhanced catalysis in a dual single-atom catalyst. ACS Catal. 2021, 11, 1952–1961.

[13]

Gao, S.; Wang, L. X.; Li, H.; Liu, Z. F.; Shi, G. L.; Peng, J. F.; Wang, B.; Wang, W. C.; Cho, K. Core–shell PdAu nanocluster catalysts to suppress sulfur poisoning. Phys. Chem. Chem. Phys. 2021, 23, 15010–15019.

[14]

Heck, K. N.; Nutt, M. O.; Alvarez, P.; Wong, M. S. Deactivation resistance of Pd/Au nanoparticle catalysts for water-phase hydrodechlorination. J. Catal. 2009, 267, 97–104.

[15]

Wang, W. L.; Zhang, F.; Zhang, Y. F.; Xu, L.; Pei, Y. S.; Niu, J. F. Liquid-phase hydrodechlorination of trichloroethylene driven by nascent H2 under an open system: Hydrogenation activity, solvent effect and sulfur poisoning. J. Environ. Sci. 2021, 108, 96–106.

[16]

Liu, G.; Gao, P. X. A review of NOx storage/reduction catalysts: Mechanism, materials and degradation studies. Catal. Sci. Technol. 2011, 1, 552–568.

[17]

Xiong, R. J.; Ren, W. Q.; Wang, Z. Q.; Zhang, M. H. Triphenylphosphine as efficient antidote for the sulfur-poisoning of the Pd/C hydrogenation catalyst. ChemCatChem 2021, 13, 548–552.

[18]

Jagadeesh, R. V.; Surkus, A. E.; Junge, H.; Pohl, M. M.; Radnik, J.; Rabeah, J.; Huan, H. M.; Schünemann, V.; Brückner, A.; Beller, M. Nanoscale Fe2O3-based catalysts for selective hydrogenation of nitroarenes to anilines. Science 2013, 342, 1073–1076.

[19]

Westerhaus, F. A.; Jagadeesh, R. V.; Wienhöfer, G.; Pohl, M. M.; Radnik, J.; Surkus, A. E.; Rabeah, J.; Junge, K.; Junge, H.; Nielsen, M. et al. Heterogenized cobalt oxide catalysts for nitroarene reduction by pyrolysis of molecularly defined complexes. Nat. Chem. 2013, 5, 537–543.

[20]

Lakhi, K. S.; Park, D. H.; Al-Bahily, K.; Cha, W.; Viswanathan, B.; Choy, J. H.; Vinu, A. Mesoporous carbon nitrides: Synthesis, functionalization, and applications. Chem. Soc. Rev. 2017, 46, 72–101.

[21]

Li, M. M.; Xu, F.; Li, H. R.; Wang, Y. Nitrogen-doped porous carbon materials: Promising catalysts or catalyst supports for heterogeneous hydrogenation and oxidation. Catal. Sci. Technol. 2016, 6, 3670–3693.

[22]

Li, G. Q.; Yang, H. H.; Zhang, H. F.; Qi, Z. Y.; Chen, M. D.; Hu, W.; Tian, L. H.; Nie, R. F.; Huang, W. Y. Encapsulation of nonprecious metal into ordered mesoporous N-doped carbon for efficient quinoline transfer hydrogenation with formic acid. ACS Catal. 2018, 8, 8396–8405.

[23]

Li, M. H.; Chen, S. Y.; Jiang, Q. K.; Chen, Q. L.; Wang, X.; Yan, Y.; Liu, J.; Lv, C. C.; Ding, W. P.; Guo, X. F. Origin of the activity of Co-N-C catalysts for chemoselective hydrogenation of nitroarenes. ACS Catal. 2021, 11, 3026–3039.

[24]

Zhang, L. K.; Shang, N. Z.; Gao, S. T.; Wang, J. M.; Meng, T.; Du, C. C.; Shen, T. D.; Huang, J. Y.; Wu, Q. H.; Wang, H. J. et al. Atomically dispersed Co catalyst for efficient hydrodeoxygenation of lignin-derived species and hydrogenation of nitroaromatics. ACS Catal. 2020, 10, 8672–8682.

[25]

Chen, S.; Ling, L. L.; Jiang, S. F.; Jiang, H. Selective hydrogenation of nitroarenes under mild conditions by the optimization of active sites in a well defined Co@NC catalyst. Green Chem. 2020, 22, 5730–5741.

[26]

Li, W.; Artz, J.; Broicher, C.; Junge, K.; Hartmann, H.; Besmehn, A.; Palkovits, R.; Beller, M. Superior activity and selectivity of heterogenized cobalt catalysts for hydrogenation of nitroarenes. Catal. Sci. Technol. 2019, 9, 157–162.

[27]

Wei, X. R.; Zhou, M. Y.; Zhang, X. C.; Wang, X. N.; Wu, Z. X. Amphiphilic mesoporous sandwich-structured catalysts for selective hydrogenation of 4-nitrostyrene in water. ACS Appl. Mater. Interfaces 2019, 11, 39116–39124.

[28]

Wei, X. R.; Zhang, Z. J.; Zhou, M. Y.; Zhang, A. J.; Wu, W. D.; Wu, Z. X. Solid-state nanocasting synthesis of ordered mesoporous CoNx-carbon catalysts for highly efficient hydrogenation of nitro compounds. Nanoscale 2018, 10, 16839–16847.

[29]

Sun, X. H.; Olivos-Suarez, A. I.; Osadchii, D.; Romero, M. J. V.; Kapteijn, F.; Gascon, J. Single cobalt sites in mesoporous N-doped carbon matrix for selective catalytic hydrogenation of nitroarenes. J. Catal. 2018, 357, 20–28.

[30]

Eckardt, M.; Zaheer, M.; Kempe, R. Nitrogen-doped mesoporous SiC materials with catalytically active cobalt nanoparticles for the efficient and selective hydrogenation of nitroarenes. Sci. Rep. 2018, 8, 2567.

[31]

Zhou, P.; Jiang, L.; Wang, F.; Deng, K. J.; Lv, K. L.; Zhang, Z. H. High performance of a cobalt-nitrogen complex for the reduction and reductive coupling of nitro compounds into amines and their derivatives. Sci. Adv. 2017, 3, e1601945.

[32]

Zhang, F. W.; Zhao, C.; Chen, S.; Li, H.; Yang, H. Q.; Zhang, X. M. In situ mosaic strategy generated Co-based N-doped mesoporous carbon for highly selective hydrogenation of nitroaromatics. J. Catal. 2017, 348, 212–222.

[33]

Sun, X. H.; Olivos-Suarez, A. I.; Oar-Arteta, L.; Rozhko, E.; Osadchii, D.; Bavykina, A.; Kapteijn, F.; Gascon, J. Metal-organic framework mediated cobalt/nitrogen-doped carbon hybrids as efficient and chemoselective catalysts for the hydrogenation of nitroarenes. ChemCatChem 2017, 9, 1854–1862.

[34]

Sahoo, B.; Formenti, D.; Topf, C.; Bachmann, S.; Scalone, M.; Junge, K.; Beller, M. Biomass-derived catalysts for selective hydrogenation of nitroarenes. ChemSusChem 2017, 10, 3035–3039.

[35]

Wang, X.; Li, Y. W. Chemoselective hydrogenation of functionalized nitroarenes using MOF-derived Co-based catalysts. J. Mol. Catal. A Chem. 2016, 420, 56–65.

[36]

Schwob, T.; Kempe, R. A reusable Co catalyst for the selective hydrogenation of functionalized nitroarenes and the direct synthesis of imines and benzimidazoles from nitroarenes and aldehydes. Angew. Chem., Int. Ed. 2016, 55, 15175–15179.

[37]

Liu, L. C.; Concepción, P.; Corma, A. Non-noble metal catalysts for hydrogenation: A facile method for preparing Co nanoparticles covered with thin layered carbon. J. Catal. 2016, 340, 1–9.

[38]

Luo, Z. C.; Nie, R. F.; Nguyen, V. T.; Biswas, A.; Behera, R. K.; Wu, X.; Kobayashi, T.; Sadow, A.; Wang, B.; Huang, W. Y. et al. Transition metal-like carbocatalyst. Nat. Commun. 2020, 11, 4091.

[39]

Serna, P.; Gates, B. C. Molecular metal catalysts on supports: Organometallic chemistry meets surface science. Acc. Chem. Res. 2014, 47, 2612–2620.

[40]

Bazin, D.; Guczi, L. Soft X-ray absorption spectroscopy in heterogeneous catalysis. Appl. Catal. A Gen. 2001, 213, 147–162.

[41]

Wang, H. J.; Wang, Y.; Li, Y. F.; Lan, X. C.; Ali, B.; Wang, T. F. Highly efficient hydrogenation of nitroarenes by N-doped carbon-supported cobalt single-atom catalyst in ethanol/water mixed solvent. ACS Appl. Mater. Interfaces 2020, 12, 34021–34031.

[42]

Wei, Z. Z.; Wang, J.; Mao, S. J.; Su, D. F.; Jin, H. Y.; Wang, Y. H.; Xu, F.; Li, H. R.; Wang, Y. In situ-generated Co0-Co3O4/N-doped carbon nanotubes hybrids as efficient and chemoselective catalysts for hydrogenation of nitroarenes. ACS Catal. 2015, 5, 4783–4789.

[43]

Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. 2021, 14, 2418–2423.

[44]

Wang, P.; Ren, Y. Y.; Wang, R. T.; Zhang, P.; Ding, M. J.; Li, C. X.; Zhao, D. Y.; Qian, Z.; Zhang, Z. W.; Zhang, L. Y. et al. Atomically dispersed cobalt catalyst anchored on nitrogen-doped carbon nanosheets for lithium-oxygen batteries. Nat. Commun. 2020, 11, 1576.

[45]

Jacobs, G.; Ji, Y. Y.; Davis, B. H.; Cronauer, D.; Kropf, A. J.; Marshall, C. L. Fischer-tropsch synthesis: Temperature programmed EXAFS/XANES investigation of the influence of support type, cobalt loading, and noble metal promoter addition to the reduction behavior of cobalt oxide particles. Appl. Catal. A Gen. 2007, 333, 177–191.

[46]

Jiang, T.; Ellis, D. E. X-ray absorption near edge structures in cobalt oxides. J. Mater. Res. 1996, 11, 2242–2256.

[47]

Hunault, M.; Calas, G.; Galoisy, L.; Lelong, G.; Newville, M. Local ordering around tetrahedral Co2+ in silicate glasses. J. Am. Ceram. Soc. 2014, 97, 60–62.

[48]

Zitolo, A.; Ranjbar-Sahraie, N.; Mineva, T.; Li, J. K.; Jia, Q. Y.; Stamatin, S.; Harrington, G. F.; Lyth, S. M.; Krtil, P.; Mukerjee, S. et al. Identification of catalytic sites in cobalt-nitrogen-carbon materials for the oxygen reduction reaction. Nat. Commun. 2017, 8, 957.

[49]

Joyner, R. W.; Van Veen, J. A. R.; Sachtler, W. M. H. Extended X-ray absorption fine structure (EXAFS) study of cobalt-porphyrin catalysts supported on active carbon. J. Chem. Soc., Faraday Trans. 1 1982, 78, 1021–1028.

[50]

Zhu, C. Z.; Shi, Q. R.; Xu, B. Z.; Fu, S. F.; Wan, G.; Yang, C.; Yao, S. Y.; Song, J. H.; Zhou, H.; Du, D. et al. Hierarchically porous M-N-C (M = Co and Fe) single-atom electrocatalysts with robust MNx active moieties enable enhanced ORR performance. Adv. Energy Mater. 2018, 8, 1801956.

[51]

Wang, Z. L.; Hao, X. F.; Jiang, Z.; Sun, X. P.; Xu, D.; Wang, J.; Zhong, H. X.; Meng, F. L.; Zhang, X. B. C and N hybrid coordination derived Co-C-N complex as a highly efficient electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 2015, 137, 15070–15073.

[52]

Pisiewicz, S.; Formenti, D.; Surkus, A. E.; Pohl, M. M.; Radnik, J.; Junge, K.; Topf, C.; Bachmann, S.; Scalone, M.; Beller, M . Synthesis of nickel nanoparticles with N-doped graphene shells for catalytic reduction reactions. ChemCatchem 2016, 8, 129–1076.

[53]

Yang, S. L.; Peng, L.; Sun, D. T.; Oveisi, E.; Bulut, S.; Queen, W. L. Metal-organic-framework-derived Co3S4 hollow nanoboxes for the selective reduction of nitroarenes. ChemSusChem 2018, 11, 3131–3138.

[54]

Inagaki, M.; Toyoda, M.; Soneda, Y.; Morishita, T. Nitrogen-doped carbon materials. Carbon 2018, 132, 104–140.

[55]

Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Electronic metal-support interaction of single-atom catalysts and applications in electrocatalysis. Adv. Mater. 2020, 32, 2003300.

[56]

Li, G. N.; Wang, B.; Resasco, D. E. Water-mediated heterogeneously catalyzed reactions. ACS Catal. 2020, 10, 1294–1309.

[57]

Cheng, T. Y.; Yu, H.; Peng, F.; Wang, H. J.; Zhang, B. S.; Su, D. S. Identifying active sites of CoNC/CNT from pyrolysis of molecularly defined complexes for oxidative esterification and hydrogenation reactions. Catal. Sci. Technol. 2016, 6, 1007–1015.

[58]

Huang, K. T.; Fu, H. Q.; Shi, W.; Wang, H. J.; Cao, Y. H.; Yang, G. X.; Peng, F.; Wang, Q.; Liu, Z. G.; Zhang, B. S. et al. Competitive adsorption on single-atom catalysts: Mechanistic insights into the aerobic oxidation of alcohols over Co-N-C. J. Catal. 2019, 377, 283–292.

File
12274_2022_4294_MOESM1_ESM.pdf (2.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 December 2021
Revised: 05 March 2022
Accepted: 06 March 2022
Published: 20 April 2022
Issue date: December 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2016YFA0202900), and the National Natural Science Foundation of China (Nos. 21878266, 22078288, and 22108243). L. Q. and Y. T. L. were supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The Ames Laboratory is operated for the U.S. DOE by Iowa State University under Contract No. DE‐AC02‐07CH11358. W. Y. H., J. Q. Y., and X. W. thank the support from Iowa State University. F. D. L. thanks the Startup Fund from the University of Central Florida (UCF). S. H. X. thanks the support from the Preeminent Postdoctoral Program (P3) at UCF. This research used beamline 7-BM (QAS) of the National Synchrotron Light Source II, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract No. DE-SC0012704.

Return