Journal Home > Volume 15 , Issue 7

Porous monolithic catalysts with high specific surface areas, which can not only facilitate heat/mass transfer, but also help to expose active sites, are highly desired in strongly exothermic or endothermic gas–solid phase reactions. In this work, hierarchical spinel monolithic catalysts with a porous woodpile architecture were fabricated via extrusion-based three-dimensional (3D) printing (direct ink writing, DIW in brief) of aluminate-intercalated layered double hydroxide (AI-LDH) followed by low temperature calcination. The intercalation of aluminate in LDH is found crucial to tailor the M2+/Al3+ ratio, integrate LDH nanosheets into monolithic catalyst, and enable the conversion of LDH to spinel at the temperature as low as 500 °C with high specific surface areas (> 350 m2/g). The rapid mass/heat transfer resulted from the versatile 3D network at macroscale and the highly dispersed and fully exposed active sites benefited from the porous structure at microscale endow the 3D-printed Pd loaded spinel MgAl-mixed metal oxide (3D-AI-Pd/MMO) catalyst with excellent catalytic performance in semi-hydrogenation of acetylene, achieving 100% conversion at 60 °C with more than 84% ethylene selectivity.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

3D printed hierarchical spinel monolithic catalysts for highly efficient semi-hydrogenation of acetylene

Show Author's information Zijian Yuan1,2Lu Liu1Wei Ru1,3Daojin Zhou1( )Yun Kuang1Junting Feng1,3( )Bin Liu2( )Xiaoming Sun1( )
State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing 100029, China

Abstract

Porous monolithic catalysts with high specific surface areas, which can not only facilitate heat/mass transfer, but also help to expose active sites, are highly desired in strongly exothermic or endothermic gas–solid phase reactions. In this work, hierarchical spinel monolithic catalysts with a porous woodpile architecture were fabricated via extrusion-based three-dimensional (3D) printing (direct ink writing, DIW in brief) of aluminate-intercalated layered double hydroxide (AI-LDH) followed by low temperature calcination. The intercalation of aluminate in LDH is found crucial to tailor the M2+/Al3+ ratio, integrate LDH nanosheets into monolithic catalyst, and enable the conversion of LDH to spinel at the temperature as low as 500 °C with high specific surface areas (> 350 m2/g). The rapid mass/heat transfer resulted from the versatile 3D network at macroscale and the highly dispersed and fully exposed active sites benefited from the porous structure at microscale endow the 3D-printed Pd loaded spinel MgAl-mixed metal oxide (3D-AI-Pd/MMO) catalyst with excellent catalytic performance in semi-hydrogenation of acetylene, achieving 100% conversion at 60 °C with more than 84% ethylene selectivity.

Keywords: layered double hydroxide, spinel, direct ink writing, 3D-printing catalyst, semi-hydrogenation of acetylene

References(60)

1

Feng, J. T.; He, Y. F.; Liu, Y. N.; Du, Y. Y.; Li, D. Q. Supported catalysts based on layered double hydroxides for catalytic oxidation and hydrogenation: General functionality and promising application prospects. Chem. Soc. Rev. 2015, 44, 5291–5319.

2

Yue, H. R.; Ma, X. B.; Gong, J. L. An alternative synthetic approach for efficient catalytic conversion of syngas to ethanol. Acc. Chem. Res. 2014, 47, 1483–1492.

3

De Smit, M.; Weckhuysen, B. M. The renaissance of iron-based Fischer-Tropsch synthesis: On the multifaceted catalyst deactivation behaviour. Chem. Soc. Rev. 2008, 37, 2758–2781.

4

Honkala, K.; Hellman, A.; Remediakis, I. N.; Logadottir, A.; Carlsson, A.; Dahl, S.; Christensen, C. H.; Nørskov, J. K. Ammonia synthesis from first-principles calculations. Science 2005, 307, 555–558.

5

Macino, M.; Barnes, A. J.; Althahban, S. M.; Qu, R. Y.; Gibson, E. K.; Morgan, D. J.; Freakley, S. J.; Dimitratos, N.; Kiely, C. J.; Gao, X. et al. Tuning of catalytic sites in Pt/TiO2 catalysts for the chemoselective hydrogenation of 3-nitrostyrene. Nat. Catal. 2019, 2, 873–881.

6

Zhong, J. W.; Yang, X. F.; Wu, Z. L.; Liang, B. L.; Huang, Y. Q.; Zhang, T. State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol. Chem. Soc. Rev. 2020, 49, 1385–1413.

7

Studt, F.; Abild-Pedersen, F.; Bligaard, T.; Sørensen, R. Z.; Christensen, C. H.; Nørskov, J. K. Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene. Science 2008, 320, 1320–1322.

8

Cao, Y. Q.; Zhang, H.; Ji, S. F.; Sui, Z. J.; Jiang, Z.; Wang, D. S.; Zaera, F.; Zhou, X. G.; Duan, X. Z.; Li, Y. D. Adsorption site regulation to guide atomic design of Ni-Ga catalysts for acetylene semi-hydrogenation. Angew. Chem., Int. Ed. 2020, 59, 11647–11652.

9

Liu, Y. W.; Wang, B. X.; Fu, Q.; Liu, W.; Wang, Y.; Gu, L.; Wang, D. S.; Li, Y. D. Polyoxometalate-based metal-organic framework as molecular sieve for highly selective semi-hydrogenation of acetylene on isolated single Pd atom sites. Angew. Chem., Int. Ed. 2021, 60, 22522–22528.

10

Wittstock, A.; Zielasek, V.; Biener, J.; Friend, C. M.; Bäumer, M. Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature. Science 2010, 327, 319–322.

11

Lu, H.; Deng, K. M.; Yan, N. N.; Ma, Y. L.; Gu, B. K.; Wang, Y.; Li, L. Efficient perovskite solar cells based on novel three-dimensional TiO2 network architectures. Sci. Bull. 2016, 61, 778–786.

12

Matatov-Meytal, Y.; Sheintuch, M. Catalytic fibers and cloths. Appl. Catal. A:Gen. 2002, 231, 1–16.

13

Koffler, J.; Zhu, W.; Qu, X.; Platoshyn, O.; Dulin, J. N.; Brock, J.; Graham, L.; Lu, P.; Sakamoto, J.; Marsala, M. et al. Biomimetic 3D-printed scaffolds for spinal cord injury repair. Nat. Med. 2019, 25, 263–269.

14

Grigoryan, B.; Paulsen, S. J.; Corbett, D. C.; Sazer, D. W.; Fortin, C. L.; Zaita, A. J.; Greenfield, P. T.; Calafat, N. J.; Gounley, J. P.; Ta, A. H. et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science 2019, 364, 458–464.

15

Ahn, B. Y.; Duoss, E. B.; Motala, M. J.; Guo, X. Y.; Park, S. I.; Xiong, Y. J.; Yoon, J.; Nuzzo, R. G.; Rogers, J. A.; Lewis, J. A. Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. Science 2009, 323, 1590–1593.

16

Kim, Y.; Yuk, H.; Zhao, R. K.; Chester, S. A.; Zhao, X. H. Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature 2018, 558, 274–279.

17

Minas, C.; Carnelli, D.; Tervoort, E.; Studart, A. R. 3D printing of emulsions and foams into hierarchical porous ceramics. Adv. Mater. 2016, 28, 9993–9999.

18

Manzano, J. S.; Weinstein, Z. B.; Sadow, A. D.; Slowing, I. I. Direct 3D printing of catalytically active structures. ACS Catal. 2017, 7, 7567–7577.

19

Kitson, P. J.; Glatzel, S.; Chen, W.; Lin, C. G.; Song, Y. F.; Cronin, L. 3D printing of versatile reactionware for chemical synthesis. Nat. Protocols 2016, 11, 920–936.

20

Jungst, T.; Smolan, W.; Schacht, K.; Scheibel, T.; Groll, J. Strategies and molecular design criteria for 3D printable hydrogels. Chem. Rev. 2016, 116, 1496–1539.

21

Wang, C. W.; Ping, W. W.; Bai, Q.; Cui, H. C.; Hensleigh, R.; Wang, R. L.; Brozena, A. H.; Xu, Z. P.; Dai, J. Q.; Pei, Y.; Zheng, C. L. et al. A general method to synthesize and sinter bulk ceramics in seconds. Science 2020, 368, 521–526.

22

Schüth, F. Endo- and exotemplating to create high-surface-area inorganic materials. Angew. Chem., Int. Ed. 2003, 42, 3604–3622.

23

Azuaje, J.; Tubío, C. R.; Escalante, L.; Gómez, M.; Guitián, F.; Coelho, A.; Caamaño, O.; Gil, A.; Sotelo, E. An efficient and recyclable 3D printed α-Al2O3 catalyst for the multicomponent assembly of bioactive heterocycles. Appl. Catal. A: Gen. 2017, 530, 203–210.

24

Duoss, E. B.; Twardowski, M.; Lewis, J. A. Sol-gel inks for direct-write assembly of functional oxides. Adv. Mater. 2007, 19, 3485–3489.

25

Wang, Q.; O’Hare, D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 2012, 112, 4124–4155.

26

He, S.; An, Z.; Wei, M.; Evans, D. G.; Duan, X. Layered double hydroxide-based catalysts: Nanostructure design and catalytic performance. Chem. Commun. 2013, 49, 5912–5920.

27

Liu, J. J.; Li, F.; Evans, D. G.; Duan, X. Stoichiometric synthesis of a pure ferrite from a tailored layered double hydroxide (hydrotalcite-like) precursor. Chem. Commun. 2003, 542–543.

28

Liu, Z. P.; Ma, R. Z.; Osada, M.; Iyi, N.; Ebina, Y.; Takada, K.; Sasaki, T. Synthesis, anion exchange, and delamination of Co-Al layered double hydroxide: Assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies. J. Am. Chem. Soc. 2006, 128, 4872–4880.

29

Song, F.; Hu, X. L. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 2014, 5, 4477.

30

Zhou, D. J.; Cai, Z.; Bi, Y. M.; Tian, W. L.; Luo, M.; Zhang, Q.; Zhang, Q.; Xie, Q. X.; Wang, J. D.; Li, Y. P. et al. Effects of redox-active interlayer anions on the oxygen evolution reactivity of NiFe-layered double hydroxide nanosheets. Nano Res. 2018, 11, 1358–1368.

31

Radnai, T.; May, P. M.; Hefter, G. T.; Sipos, P. Structure of aqueous sodium aluminate solutions: A solution X-ray diffraction study. J. Phys. Chem. A 1998, 102, 7841–7850.

32

Gao, R.; Yan, D. P. Fast formation of single-unit-cell-thick and defect-rich layered double hydroxide nanosheets with highly enhanced oxygen evolution reaction for water splitting. Nano Res. 2018, 11, 1883–1894.

33

Kwak, J. H.; Hu, J. Z.; Mei, D. H.; Yi, C. W.; Kim, D. H.; Peden, C. H. F.; Allard, L. F.; Szanyi, J. Coordinatively unsaturated Al3+ centers as binding sites for active catalyst phases of platinum on γ-Al2O3. Science 2009, 325, 1670–1673.

34

Watling, H. Spectroscopy of concentrated sodium aluminate solutions. Appl. Spectrosc. 1998, 52, 250–258.

35

Zhao, M. Q.; Zhang, Q.; Zhang, W.; Huang, J. Q.; Zhang, Y. H.; Su, D. S.; Wei, F. Embedded high density metal nanoparticles with extraordinary thermal stability derived from guest–host mediated layered double hydroxides. J. Am. Chem. Soc. 2010, 132, 14739–14741.

36

Ambrosi, A.; Pumera, M. 3D-printing technologies for electrochemical applications. Chem. Soc. Rev. 2016, 45, 2740–2755.

37

Zhu, C.; Qi, Z.; Beck, V. A.; Luneau, M.; Lattimer, J.; Chen, W.; Worsley, M. A.; Ye, J. C.; Duoss, E. B.; Spadaccini, C. M. et al. Toward digitally controlled catalyst architectures: Hierarchical nanoporous gold via 3D printing. Sci. Adv. 2018, 4, eaas9459.

38

Kokkinis, D.; Schaffner, M.; Studart, A. R. Multimaterial magnetically assisted 3D printing of composite materials. Nat. Commun. 2015, 6, 8643.

39

Tang, X. W.; Zhou, H.; Cai, Z. C.; Cheng, D. D.; He, P. S.; Xie, P. W.; Zhang, D.; Fan, T. X. Generalized 3D printing of graphene-based mixed-dimensional hybrid aerogels. ACS Nano 2018, 12, 3502–3511.

40

Fu, K.; Yao, Y. G.; Dai, J. Q.; Hu, L. B. Progress in 3D printing of carbon materials for energy-related applications. Adv. Mater. 2017, 29, 1603486.

41

Valenzuela, M. A.; Jacobs, J. P.; Bosch, P.; Reijne, S.; Zapata, B.; Brongersma, H. H. The influence of the preparation method on the surface structure of ZnAl2O4. Appl. Catal. A: Gen. 1997, 148, 315–324.

42

Li, F.; Liu, J. J.; Evans, D. G.; Duan, X. Stoichiometric synthesis of pure MFe2O4 (M = Mg, Co, and Ni) spinel ferrites from tailored layered double hydroxide (hydrotalcite-like) precursors. Chem. Mater. 2004, 16, 1597–1602.

43

Li, Z. X.; Hu, M. L.; Liu, J. H.; Wang, W. W.; Li, Y. J.; Fan, W. B.; Gong, Y. X.; Yao, J. S.; Wang, P.; He, M. et al. Mesoporous silica stabilized MOF nanoreactor for highly selective semi-hydrogenation of phenylacetylene via synergistic effect of Pd and Ru single site. Nano Res. 2022, 15, 1983–1992.

44

Zou, L.; Li, F.; Xiang, X.; Evans, D. G.; Duan, X. Self-generated template pathway to high-surface-area zinc aluminate spinel with mesopore network from a single-source inorganic precursor. Chem. Mater. 2006, 18, 5852–5859.

45

Zhou, H. R.; Yang, X. F.; Li, L.; Liu, X. Y.; Huang, Y. Q.; Pan, X. L.; Wang, A. Q.; Li, J.; Zhang, T. PdZn intermetallic nanostructure with Pd-Zn-Pd ensembles for highly active and chemoselective semi-hydrogenation of acetylene. ACS Catal. 2016, 6, 1054–1061.

46

Jeong, H.; Kwon, O.; Kim, B. S.; Bae, J.; Shin, S.; Kim, H. E.; Kim, J.; Lee, H. Highly durable metal ensemble catalysts with full dispersion for automotive applications beyond single-atom catalysts. Nat. Catal. 2020, 3, 368–375.

47

Tian, X. L.; Zhao, X.; Su, Y. Q.; Wang, L. J.; Wang, H. M.; Dang, D.; Chi, B.; Liu, H. F.; Hensen, E. J. M.; Lou, X. W. et al. Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 2019, 366, 850–856.

48

Giani, L.; Groppi, G.; Tronconi, E. Mass-transfer characterization of metallic foams as supports for structured catalysts. Ind. Eng. Chem. Res. 2005, 44, 4993–5002.

49

Sanz, O.; Echave, F. J.; Sánchez, M.; Monzón, A.; Montes, M. Aluminium foams as structured supports for volatile organic compounds (VOCs) oxidation. Appl. Catal. A: Gen. 2008, 340, 125–132.

50

Feng, Q. C.; Zhao, S.; Wang, Y.; Dong, J. C.; Chen, W. X.; He, D. S.; Wang, D. S.; Yang, J.; Zhu, Y. M.; Zhu, H. L. et al. Isolated single-atom Pd sites in intermetallic nanostructures: High catalytic selectivity for semihydrogenation of alkynes. J. Am. Chem. Soc. 2017, 139, 7294–7301.

51

Yang, J.; Zhang, F. J.; Lu, H. Y.; Hong, X.; Jiang, H. L.; Wu, Y. E.; Li, Y. D. Hollow Zn/Co ZIF particles derived from core-shell ZIF-67@ZIF-8 as selective catalyst for the semi-hydrogenation of acetylene. Angew. Chem., Int. Ed. 2015, 54, 10889–10893.

52

Huang, F.; Deng, Y. C.; Chen, Y. L.; Cai, X. B.; Peng, M.; Jia, Z. M.; Xie, J. L.; Xiao, D. Q.; Wen, X. D.; Wang, N. et al. Anchoring Cu1 species over nanodiamond-graphene for semi-hydrogenation of acetylene. Nat. Commun. 2019, 10, 4431.

53

Liu, Y. N.; Fu, F. Z.; McCue, A.; Jones, W.; Rao, D. M.; Feng, J. T.; He, Y. F.; Li, D. Q. Adsorbate-induced structural evolution of Pd catalyst for selective hydrogenation of acetylene. ACS Catal. 2020, 10, 15048–15059.

54

Ru, W.; Liu, Y. N.; Fu, B. A.; Fu, F. Z.; Feng, J. T.; Li, D. Q. Control of local electronic structure of Pd single atom catalyst by adsorbate induction. Small 2022, 18, 2103852.

55

Armbrüster, M.; Kovnir, K.; Behrens, M.; Teschner, D.; Grin, Y.; Schlögl, R. Pd-Ga intermetallic compounds as highly selective semihydrogenation catalysts. J. Am. Chem. Soc. 2010, 132, 14745–14747.

56

He, Y. F.; Fan, J. X.; Feng, J. T.; Luo, C. Y.; Yang, P. F.; Li, D. Q. Pd nanoparticles on hydrotalcite as an efficient catalyst for partial hydrogenation of acetylene: Effect of support acidic and basic properties. J. Catal. 2015, 331, 118–127.

57

Liu, Y. N.; Zhao, J. Y.; He, Y. F.; Feng, J. T.; Wu, T.; Li, D. Q. Highly efficient PdAg catalyst using a reducible Mg-Ti mixed oxide for selective hydrogenation of acetylene: Role of acidic and basic sites. J. Catal. 2017, 348, 135–145.

58

Copeland, J. R.; Santillan, I. A.; Schimming, S. M.; Ewbank, J. L.; Sievers, C. Surface interactions of glycerol with acidic and basic metal oxides. J. Phys. Chem. C 2013, 117, 21413–21425.

59

Yang, C. C.; Yu, Y. H.; Van Der Linden, B.; Wu, J. C. S.; Mul, G. Artificial photosynthesis over crystalline TiO2-based catalysts: Fact or fiction. J. Am. Chem. Soc. 2010, 132, 8398–8406.

60

Huang, X. H.; Xia, Y. J.; Cao, Y. J.; Zheng, X. S.; Pan, H. B.; Zhu, J. F.; Ma, C.; Wang, H. E.; Li, J. J.; You, R. et al. Enhancing both selectivity and coking-resistance of a single-atom Pd1/C3N4 catalyst for acetylene hydrogenation. Nano Res. 2017, 10, 1302–1312.

File
12274_2022_4291_MOESM1_ESM.pdf (2.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 06 February 2022
Revised: 01 March 2022
Accepted: 03 March 2022
Published: 25 April 2022
Issue date: July 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

We thank Prof. Yixiang Shi and Haohong Duan from Tsinghua University, Prof. Dianqing Li, Xue Duan and Junfeng Liu from Beijing University of Chemical Technology and Prof. Zhiyi Lu from Chinese Academy of Sciences (Ningbo Institute of Materials Technology and Engineering) for the helpful discussion and the help on the facilities. This research was supported by the National Natural Science Foundation of China (Nos. 21935001, 22005022 and 22175012), the Program for Changjiang Scholars and Innovation Research Team in the University (No. IRT1205), the starting-up foundation from Beijing University of Chemical Technology (No. BUCTRC202025), the fellowship of China Postdoctoral Science Foundation (No. 2020M670107), the Natural Science Foundation of Beijing, China (No. 2214062), the Fundamental Research Funds for the Central Universities, and the long-term subsidy mechanism from the Ministry of Finance and the Ministry of Education of PRC.

Return