AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Construction of isolated Ni sites on nitrogen-doped hollow carbon spheres with Ni–N3 configuration for enhanced reduction of nitroarenes

Binbin Feng1,§Rou Guo1,§Qiulan Cai1,§Yaping Song1Nan Li1Yanghe Fu1De-Li Chen1( )Jiangwei Zhang2( )Weidong Zhu1( )Fumin Zhang1( )
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
Dalian National Laboratory for Clean Energy & State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China

§ Binbin Feng, Rou Guo, and Qiulan Cai contributed equally to this work.

Show Author Information

Graphical Abstract

A high-loading Ni single-atom catalyst anchored on N-doped hollow carbon nanospheres has been designed and prepared through one-step carbothermal annealing a core–shell structured Zn/Ni bimetallic zeolitic imidazolate framework (ZIF) composite. The prepared Ni single-atom sites/nitrogen-doped hollow carbon sphere (Ni SAs/NHCS) delivers superior catalytic performance for the chemo-selective reduction of various substituted aromatic nitro compounds to the desired anilines under environmentally benign conditions. The experimental and theoretical analyses demonstrate that both isolated Ni single-atom sites with Ni–N3 configuration and hollow structure promote the catalytic performance.

Abstract

Designing and synthesizing high-efficiency non-precious metal-based catalysts having uniform active sites increases the reactivity and selectivity of materials and provides a platform for an in-depth understanding of their catalytic reaction mechanism. In this study, we provided an approach for fabricating isolated nickel single-atom sites (Ni SAs) with high loading (4.9 wt.%) stabilized on nitrogen-doped hollow carbon spheres (NHCS) using a core–shell structured Zn/Ni bimetallic zeolitic imidazolate framework (ZIF) composite as the sacrificial template. The as-fabricated Ni SAs/NHCS catalyst shows superior activity, selectivity, and recycling durability for the catalytic transfer hydrogenation of nitrobenzene to aniline, thus achieving 100% yield of aniline with a turn-over frequency (TOF) value as high as 29.9 h−1 under mild conditions. This TOF value is considerably superior to the supported Ni nanoparticle catalysts. The experiments designed show that the hollow structure feature of NHCS facilitates accessible active sites and mass transfer, which thus contributes to the enhancement of the catalytic performance of Ni SAs/NHCS. Density functional theory calculations show the high chemo-selectivity and activity of the Ni SAs catalyst, arising from the unique role of the single Ni-N3 site on simultaneously activating the H donor (N2H4) and substrate, as well as the hydrogenation of the –NOH group as the rate-determining step.

Electronic Supplementary Material

Download File(s)
12274_2022_4290_MOESM1_ESM.pdf (7.2 MB)

References

1

Huang, H. G.; Shen, K.; Chen, F. F.; Li, Y. W. Metal-organic frameworks as a good platform for the fabrication of single-atom catalysts. ACS Catal. 2020, 10, 6579–6586.

2

Zhao, Q.; Sun, J.; Li, S. C.; Huang, C. P.; Yao, W. F.; Chen, W.; Zeng, T.; Wu. Q.; Xu, Q. J. Single nickel atoms anchored on nitrogen-doped graphene as a highly active cocatalyst for photocatalytic H2 evolution. ACS Catal. 2018, 8, 11863–11874.

3

Zhang, Q. Q.; Guan, J. Q. Applications of single-atom catalysts. Nano Res. 2022, 15, 38–70.

4

Wang, M. G.; Wang, Z. Single Ni atom incorporated with pyridinic nitrogen graphene as an efficient catalyst for CO oxidation: First-principles investigation. RSC Adv. 2017, 7, 48819–48824.

5

Zhao, J.; Ji, S. F.; Guo, C. X.; Li, H. J.; Dong, J. C.; Guo, P.; Wang, D. S.; Li, Y. D; Toste, F. D. A heterogeneous iridium single-atom-site catalyst for highly regioselective carbenoid O–H bond insertion. Nat. Catal. 2021, 4, 523–531.

6

Li, W. H.; Yang, J. R.; Wang, D. S.; Li, Y. D. Striding the threshold of an atom era of organic synthesis by single-atom catalysis. Chem 2022, 8, 119–140.

7

Zhang, X. F.; Chang, L.; Yang, Z. J.; Shi, Y. N.; Long, C.; Han, J. Y.; Zhang, B. H.; Qiu, X. Y.; Li, G. D.; Tang, Z. Y. Facile synthesis of ultrathin metal-organic framework nanosheets for Lewis acid catalysis. Nano Res. 2019, 12, 437–440.

8

Yin, P. Q.; Yao, T.; Wu, Y. E.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Deng, Z. X. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem., Int. Ed. 2016, 55, 10800–10805.

9

Zhang, J.; Zheng, C. Y.; Zhang, M. L.; Qiu, Y. J.; Xu, Q.; Cheong, W. C.; Chen, W. X.; Zheng, L. R.; Gu, L.; Hu, Z. P. et al. Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline. Nano Res. 2020, 13, 3082–3087.

10

Jiao, L.; Jiang, H. L. Metal-organic-framework-based single-atom catalysts for energy applications. Chem 2019, 5, 786–804.

11

Jiang, J. J.; Jiang, P.; Wang, D. S.; Li, Y. D. The synthetic strategies for single atomic site catalysts based on metal-organic frameworks. Nanoscale 2020, 12, 20580–20589.

12

Wang, Y. R.; Hu, R. M.; Li, Y. C.; Wang, F. H.; Shang, J. X.; Shui, J. L. High-throughput screening of carbon-supported single metal atom catalysts for oxygen reduction reaction. Nano Res. 2022, 15, 1054–1060.

13

Lin, L. L.; Zhou, W.; Gao, R.; Yao, S. Y.; Zhang, X.; Xu, W. Q.; Zheng, S. J.; Jiang, Z.; Yu, Q. L.; Li, Y. W. et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature 2017, 544, 80–83.

14

Ma, D. D.; Zhu, Q. L. MOF-based atomically dispersed metal catalysts: Recent progress towards novel atomic configurations and electrocatalytic applications. Coordin. Chem. Rev. 2020, 422, 213483.

15

Cao, Y. Q.; Zhang, H.; Ji, S. F.; Sui, Z. J.; Jiang, Z.; Wang, D. S.; Zaera, F.; Zhou, X. G.; Duan, X. Z.; Li, Y. D. Adsorption site regulation to guide atomic design of Ni-Ga catalysts for acetylene semi-hydrogenation. Angew. Chem., Int. Ed. 2020, 59, 11647–11652.

16

Liu, M. M.; Wang, L. L.; Zhao, K. N.; Shi, S. S.; Shao, Q. S.; Zhang, L.; Sun, X. L.; Zhao, Y. F.; Zhang, J. J. Atomically dispersed metal catalysts for the oxygen reduction reaction: Synthesis, characterization, reaction mechanisms and electrochemical energy applications. Energy Environ. Sci. 2019, 12, 2890–2923.

17

Liang, J. X.; Yu, Q.; Yang, X. F.; Zhang, T.; Li, J. A systematic theoretical study on FeOx-supported single-atom catalysts: M1/FeOx for CO oxidation. Nano Res. 2018, 11, 1599–1611.

18

Luo, F.; Zhu, J. B.; Ma, S. X.; Li, M.; Xu, R. Z.; Zhang, Q.; Yang, Z. H.; Qu, K. G.; Cai, W. W.; Chen, Z. W. Regulated coordination environment of Ni single atom catalyst toward high-efficiency oxygen electrocatalysis for rechargeable zinc-air batteries. Energy Storage Mater. 2021, 35, 723–730.

19
Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2021, 100013, in press, https://doi.org/10.1016/j.apmate.2021.10.004.
20

Xiong, Y.; Sun, W. M.; Xin, P. Y.; Chen, W. X.; Zheng, X. S.; Yan, W. S.; Zheng, L. R.; Dong, J. C.; Zhang, J.; Wang, D. S. et al. Gram-scale synthesis of high-loading single-atomic-site Fe catalysts for effective epoxidation of styrene. Adv. Mater. 2020, 32, 2000896.

21

Manna, K.; Ji, P. F.; Lin, Z. K.; Greene, F. X.; Urban, A.; Thacker, N. C.; Lin, W. B. Chemoselective single-site earth-abundant metal catalysts at metal-organic framework nodes. Nat. Commun. 2016, 7, 12610.

22

Gan, G. Q.; Li, X. Y.; Wang, L.; Fan, S. Y.; Mu, J. C.; Wang, P. L.; Chen, G. H. Active sites in single-atom Fe-Nx-C nanosheets for selective electrochemical dechlorination of 1, 2-dichloroethane to ethylene. ACS Nano 2020, 14, 9929–9937.

23

Jiang, K.; Siahrostami, S.; Zheng, T. T.; Hu, Y. F.; Hwang, S.; Stavitski, E.; Peng, Y. D.; Dynes, J.; Gangisetty, M.; Su, D. et al. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ. Sci. 2018, 11, 893–903.

24

Jing, H. Y.; Zhao, Z. Y.; Zhang, J. W.; Zhu, C.; Liu, W.; Li, N. N.; Hao, C.; Shi, Y. T.; Wang, D. S. Atomic evolution of metal-organic frameworks into Co-N3 coupling vacancies by cooperative cascade protection strategy for promoting triiodide reduction. J. Phys. Chem. C 2021, 125, 6147–6156.

25

Jing, H. Y.; Liu, W.; Zhao, Z. Y.; Zhang, J. W.; Zhu, C.; Shi, Y. T.; Wang, D. S.; Li, Y. D. Electronics and coordination engineering of atomic cobalt trapped by oxygen-driven defects for efficient cathode in solar cells. Nano Energy 2021, 89, 106365.

26

Hu, L. Y.; Li, W. R.; Wang, L.; Wang, B. Turning metal-organic frameworks into efficient single-atom catalysts via pyrolysis with a focus on oxygen reduction reaction catalysts. EnergyChem 2021, 3, 100056.

27

Ning, L. M.; Liao, S. Y.; Li, H.; Tong, R. Y.; Dong, C. Q.; Zhang, M. T.; Gu, W.; Liu, X. Carbon-based materials with tunable morphology confined Ni(0) and Ni-Nx active sites: Highly efficient selective hydrogenation catalysts. Carbon 2019, 154, 48–57.

28

Gong, Y. N.; Jiao, L.; Qian, Y. Y.; Pan, C. Y.; Zheng, L. R.; Cai, X. C.; Liu, B.; Yu, S. H.; Jiang, H. L. Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 2705–2709.

29

Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067–2080.

30

Qu, Y. T.; Li, Z. J.; Chen, W. X.; Lin, Y.; Yuan, T. W.; Yang, Z. K.; Zhao, C. M.; Wang, J.; Zhao, C.; Wang, X. et al. Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nat. Catal. 2018, 1, 781–786.

31

Wang, G. H.; Hilgert, J.; Richter, F. H.; Wang, F.; Bongard, H. J.; Spliethoff, B.; Weidenthaler, C.; Schüth, F. Platinum-cobalt bimetallic nanoparticles in hollow carbon nanospheres for hydrogenolysis of 5-hydroxymethylfurfural. Nat. Mater. 2014, 13, 293–300.

32

Wei, Y. S.; Zhang, M.; Zou, R. Q.; Xu, Q. Metal-organic framework-based catalysts with single metal sites. Chem. Rev. 2020, 120, 12089–12174.

33

Fan, R. Y.; Hu, Z.; Chen, C.; Zhu, X. G.; Zhang, H. M.; Zhang, Y. X.; Zhao, H. J.; Wang, G. Z. Highly dispersed nickel anchored on a N-doped carbon molecular sieve derived from metal-organic frameworks for efficient hydrodeoxygenation in the aqueous phase. Chem. Commun. 2020, 56, 6696–6699.

34

Liu, J.; Li, Z. Y.; Zhang, X.; Otake, K. I.; Zhang, L.; Peters, A. W.; Young, M. J.; Bedford, N. M.; Letourneau, S. P.; Mandia, D. J. et al. Introducing nonstructural ligands to zirconia-like metal-organic framework nodes to tune the activity of node-supported nickel catalysts for ethylene hydrogenation. ACS Catal. 2019, 9, 3198–3207.

35

Xu, Y.; Shan, W. X.; Liang, X.; Gao, X. H.; Li, W. Z.; Li, H. M.; Qiu, X. Q. Cobalt nanoparticles encapsulated in nitrogen-doped carbon shells: Efficient and stable catalyst for nitrobenzene reduction. Ind. Eng. Chem. Res. 2020, 59, 4367–4376.

36

Lee, J. H.; Jang, J. H.; Kim, J.; Yoo, S. J. Bimetallic ZIFs derived nitrogen-doped hollow carbon with carbon nanotube bridges as a superior oxygen reduction reaction electrocatalyst. J. Ind. Eng. Chem. 2021, 97, 466–475.

37

Cai, Q. L.; Xu, Q. H.; Zhang, Y. Y.; Fu, Y. H.; Chen, D. L.; Zhang, J. W.; Zhu, W. D.; Zhang, F. M. Boosted catalytic hydrogenation performance using isolated Co sites anchored on nitrogen-incorporated hollow porous carbon. J. Phys. Chem. C 2021, 125, 5088–5098.

38

Dai, X. Y.; Chen, Z.; Yao, T.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Wei, S. Q. et al. Single Ni sites distributed on N-doped carbon for selective hydrogenation of acetylene. Chem. Commun. 2017, 53, 11568–11571.

39

Chen. Y. J.; Ji, S. F.; Wang, Y. G.; Dong, J. C.; Chen, W. X.; Li, Z.; Shen, R. G.; Zheng, L. R.; Zhuang, Z. B.; Wang, D. S. et al. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2017, 129, 6937–6941.

40

Yang, Q. H.; Yang, C. C.; Lin, C. H.; Jiang, H. L. Metal-organic-framework-derived hollow N-doped porous carbon with ultrahigh concentrations of single Zn atoms for efficient carbon dioxide conversion. Angew. Chem., Int. Ed. 2019, 58, 3511–3515.

41

Li, Y.; Li, S. F. Low-cost CuFeCo@MIL-101 as an efficient catalyst for catalytic hydrolysis of ammonia borane. Int. J. Hydrogen Energy 2019, 45, 10433–10441.

42

Pan, H. J.; Peng, Y. Y.; Lu, X. H.; He, J.; He, L.; Wang, C. L.; Yue, F. F.; Zhang, H. F.; Zhou, D.; Xia, Q. H. Well-constructed Ni@CN material derived from di-ligands Ni-MOF to catalyze mild hydrogenation of nitroarenes. Mol. Catal. 2020, 485, 110838.

43

Zhou, Y. H.; Yang, Q. H.; Chen, Y. Z.; Jiang, H. L. Low-cost CuNi@MIL-101 as an excellent catalyst toward cascade reaction: Integration of ammonia borane dehydrogenation with nitroarene hydrogenation. Chem. Commun. 2017, 53, 12361–12364.

44

Advani, J. H.; Ravi, K.; Naikwadi, D. R.; Baja, H. C.; Gawande, M. B.; Biradar, A. V. Bio-waste chitosan-derived N-doped CNT-supported Ni nanoparticles for selective hydrogenation of nitroarenes. Dalton Trans. 2020, 49, 10431–10440.

45

Zhou, M.; Jiang, Y.; Wang, G.; Wu, W. J.; Chen, W. X.; Yu, P.; Lin, Y. Q.; Mao, J. J.; Mao, L. Q. Single-atom Ni-N4 provides a robust cellular NO sensor. Nat. Commun. 2020, 11, 3188.

46

Ma, X.; Zhou, Y. X.; Liu, H.; Li, Y.; Jiang, H. L. A MOF-derived Co-CoO@N-doped porous carbon for efficient tandem catalysis: Dehydrogenation of ammonia borane and hydrogenation of nitro compounds. Chem. Commun. 2016, 52, 7719–7722.

47

Yun, R. R.; Zhang, S.; Ma, W. J.; Lv, X.; Wang, S. J.; Sheng, T.; Wang, S. N. Fe/Fe3C encapsulated in N-doped carbon tubes: A recyclable catalyst for hydrogenation with high selectivity. Inorg. Chem. 2019, 58, 9469–9475.

48

She, W.; Qi, T. Q. J.; Cui, M. X.; Yan, P. F.; Ng, S. W.; Li, W. Z.; Li, G. M. High catalytic performance of a CeO2-supported Ni catalyst for hydrogenation of nitroarenes, fabricated via coordination-assisted strategy. ACS Appl. Mater. Interfaces 2018, 10, 14698–17487.

49

Xiong, W. F.; Li, H. F.; Wang, H. M.; Yi, J. D.; You, H. H.; Zhang, S. Y.; Hou, Y.; Cao, M. N.; Zhang, T.; Cao, R. Hollow mesoporous carbon sphere loaded Ni-N4 single-atom: Support structure study for CO2 electrocatalytic reduction catalyst. Small 2020, 16, 2003943.

50

Liu, W. G.; Chen, Y. J.; Qi, H. F.; Zhang, L. L.; Yan, W. S.; Liu, X. Y.; Yang, X. F.; Miao, S.; Wang, W. T.; Liu, C. G. et al. A durable nickel single-atom catalyst for hydrogenation reactions and cellulose valorization under harsh conditions. Angew. Chem., Int. Ed. 2018, 57, 7071–7075.

51

Lee, S. Y.; Jang, H. W.; Lee, H. R.; Joh, H. I. Size effect of metal-organic frameworks with iron single-atom catalysts on oxygen-reduction reactions. Carbon Lett. 2021, 31, 1349–1355.

52

Wang, F.; Feng, T.; Jin, X. J.; Zhou, Y. L.; Xu, Y. J.; Gao, Y. H.; Li, H. S.; Lei, J. F. Atomic Co/Ni active sites assisted MOF-derived rich nitrogen-doped carbon hollow nanocages for enhanced lithium storage. Chem. Eng. J. 2021, 420, 127583.

53

Xu, D.; Pan, Y.; Zhu, L. K.; Yusran, Y.; Zhang, D. L.; Fang, Q. R.; Xue, M.; Qiu, S. L. Simple coordination complex-derived Ni NP anchored N-doped porous carbons with high performance for reduction of nitroarenes. CrystEngComm 2017, 19, 6612–6619.

54

Wang, L. N.; Zhang, J. W.; Zheng, L. R.; Yang, J. R.; Li, Y. C; Wan, X.; Liu, X. F.; Zhang, X. X.; Yu, R. H.; Shui, J. L. Carbon black-supported FM-N-C (FM = Fe, Co, Ni) single-atom catalysts synthesized by the self-catalysis of oxygen-coordinated ferrous metal atoms. J. Mater. Chem. A 2020, 8, 13166–13172.

55

Zhao, C. M.; Dai, X. Y.; Yao, T.; Chen, W. X.; Wang, X. Q.; Wang, J.; Yang, J.; Wei, S. Q.; Wu, Y. E.; Li, Y. D. Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO2. J. Am. Chem. Soc. 2017, 139, 8078–8081.

56

Hu, B. T.; Huang, A. J.; Zhang, X. J.; Chen, Z.; Tu, R. Y.; Zhu, W.; Zhuang, Z. B.; Chen, C.; Peng, Q.; Li, Y. D. Atomic Co/Ni dual sites with N/P-coordination as bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries. Nano Res. 2021, 14, 3482–3488.

57

Zhang, M.; Hu, Z.; Gu, L.; Zhang, Q. H.; Zhang, L. H.; Song, Q.; Zhou, W.; Hu, S. Electrochemical conversion of CO2 to syngas with a wide range of CO/H2 ratio over Ni/Fe binary single-atom catalysts. Nano Res. 2020, 13, 3206–3211.

58

Chen, Y. Q.; Yao, Y. J.; Xia, Y. J.; Mao, K.; Tang, G. G.; Wu, Q.; Yang, L. J.; Wang, X. Z.; Sun, X. H.; Hu, Z. Advanced Ni-Nx-C single-site catalysts for CO2 electroreduction to CO based on hierarchical carbon nanocages and S-doping. Nano Res. 2020, 13, 2777–2783.

59

Zhao, S. Y.; Cheng, Y.; Veder, J. P.; Johannessen, B.; Saunders, M.; Zhang, L. J.; Liu, C.; Chisholm, M. F.; De Marco, R.; Liu, J. et al. One-pot pyrolysis method to fabricate carbon nanotube supported Ni single-atom catalysts with ultrahigh loading. ACS Appl. Energy Mater. 2018, 1, 5286–5297.

60

Abbas, S. A.; Song, J. T.; Tan, Y. C.; Nam, K. M.; Oh, J.; Jung, K. D. Synthesis of a nickel single-atom catalyst based on Ni-N4−xCx active sites for highly efficient CO2 reduction utilizing a gas diffusion electrode. ACS Appl. Energy Mater. 2020, 3, 8739–8745.

61

Song, X. Z.; Li, N.; Zhang, H.; Wang, L.; Yan, Y. J.; Wang, H.; Wang, L. Y.; Bian, Z. Y. Graphene-supported single nickel atom catalyst for highly selective and efficient hydrogen peroxide production. ACS Appl. Mater. Interfaces 2020, 12, 17519–17527.

62

Jiao, L.; Zhu, J. T.; Zhang, Y.; Yang, W. J.; Zhou, S. Y.; Li, A. W.; Xie, C. F.; Zheng, X. S.; Zhou, W.; Yu, S. H. et al. Non-bonding interaction of neighboring Fe and Ni single-atom pairs on MOF-derived N-doped carbon for enhanced CO2 electroreduction. J. Am. Chem. Soc. 2021, 143, 19417–19424.

63

Meza, E.; Diaz, R. E.; Li, C. W. Solution-phase activation and functionalization of colloidal WS2 nanosheets with Ni single atoms. ACS Nano 2020, 14, 2238–2247.

64

Wang, Y.; Jiang, Z.; Zhang, X.; Niu, Z. Y.; Zhou, Q. Q.; Wang, X. J.; Li, H.; Lin, Z. C.; Zheng, H. Z.; Liang, Y. Y. Metal phthalocyanine-derived single-atom catalysts for selective CO2 electroreduction under high current densities. ACS Appl. Mater. Interfaces 2020, 12, 33795–33802.

65

Yang, F.; Wang, M. J.; Liu, W.; Yang, B.; Wang, Y.; Luo, J.; Tang, Y. S.; Hou, L. Q.; Li, Y.; Li, Z. H. et al. Atomically dispersed Ni as the active site towards selective hydrogenation of nitroarenes. Green Chem. 2019, 21, 704–711.

66

Zhou, D.; Zhang, L. L.; Liu, X. Y.; Qi, H. F.; Liu, Q. G.; Yang, J.; Su, Y.; Ma, J. Y.; Yin, J. Z.; Wang, A. Q. Tuning the coordination environment of single-atom catalyst M-N-C towards selective hydrogenation of functionalized nitroarenes. Nano Res. 2022, 15, 519–527.

67

Yuan, C. Z.; Zhan, L. Y.; Liu, S. J.; Chen, F.; Lin, H. J.; Wu, X. L.; Chen, J. R. Semi-sacrificial template synthesis of single-atom Ni sites supported on hollow carbon nanospheres for efficient and stable electrochemical CO2 reduction. Inorg. Chem. Front. 2020, 7, 1719–1725.

68

Martín-Jimeno, F. J.; Suárez-García, F.; Paredes, J. I.; Martínez-Alonso, A.; Tascón, J. M. D. Nickel nanoparticle/carbon catalysts derived from a novel aqueous-synthesized metal-organic framework for nitroarene reduction. J. Alloys Compd. 2021, 853, 157348.

69

Feng, Y. C.; Long, S. S.; Chen, B. L.; Jia, W. L.; Xie, S. J.; Sun, Y.; Tang, X.; Yang, S. L.; Zeng, X. H.; Lin, L. Inducing electron dissipation of pyridinic N enabled by single Ni-N4 sites for the reduction of aldehydes/ketones with ethanol. ACS Catal. 2021, 11, 6398–6405.

70

Fan, Y. F.; Zhuang, C. F.; Li, S. J.; Wang, Y.; Zou, X. Q.; Liu, X. T.; Huang, W. M.; Zhu, G. S. Efficient single-atom Ni for catalytic transfer hydrogenation of furfural to furfuryl alcohol. J. Mater. Chem. A 2021, 9, 1110–1118.

71

Mahata, A.; Rai, R. K.; Choudhuri, I.; Singh, S. K.; Pathak, B. Direct vs. indirect pathway for nitrobenzene reduction reaction on a Ni catalyst surface: A density functional study. Phys. Chem. Chem. Phys. 2014, 16, 26365–26374.

Nano Research
Pages 6001-6009
Cite this article:
Feng B, Guo R, Cai Q, et al. Construction of isolated Ni sites on nitrogen-doped hollow carbon spheres with Ni–N3 configuration for enhanced reduction of nitroarenes. Nano Research, 2022, 15(7): 6001-6009. https://doi.org/10.1007/s12274-022-4290-x
Topics:

1073

Views

32

Crossref

33

Web of Science

33

Scopus

4

CSCD

Altmetrics

Received: 24 January 2022
Revised: 01 March 2022
Accepted: 03 March 2022
Published: 04 May 2022
© Tsinghua University Press 2022
Return