AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Single Cu atom dispersed on S,N-codoped nanocarbon derived from shrimp shells for highly-efficient oxygen reduction reaction

Hao Zhang1Qingdi Sun1Qian He1Ying Zhang1Xiaohui He1Tao Gan1,2( )Hongbing Ji1,2,3( )
Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
School of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
Show Author Information

Graphical Abstract

We propose a ball-milling method to synthesize isolated metal single-atom catalysts (SACs) embedded in S, N-codoped nanocarbon (M-NSDC, M = Cu, Fe, Co, Ni, Mn, Pt, and Pd). In particular, the Cu-NSDC SACs exhibit high electrochemical activity for the oxygen reduction reaction (ORR) with half-wave potential (E1/2) of 0.84 V (vs. reversible hydrogen electrode (RHE), 20 mV higher than Pt/C) in alkaline electrolyte, excellent stability, and electrocatalytic selectivity.

Abstract

Recently, Cu-based single-atom catalysts (SACs) have garnered increasing attention as substitutes for platinum-based catalysts in the oxygen reduction reaction (ORR). Therefore, a facile, economical, and efficient synthetic methodology for the preparation of a high-performance Cu-based SAC electrocatalyst for the ORR is extremely desired, but is also significantly challenging. In this study, we propose a ball-milling method to synthesize isolated metal SACs embedded in S,N-codoped nanocarbon (M-NSDC, M = Cu, Fe, Co, Ni, Mn, Pt, and Pd). In particular, the Cu-NSDC SACs exhibit high electrochemical activity for the ORR with half-wave potential (E1/2) of 0.84 V (vs. reversible hydrogen electrode (RHE), 20 mV higher than Pt/C) in alkaline electrolyte, excellent stability, and electrocatalytic selectivity. Density functional theory (DFT) calculations demonstrated that the desorption of OH* intermediates was the rate-determining step over Cu-NSDC. This study creates a pathway for high-performance ORR single atomic electrocatalysts for fuel cell applications and provides opportunities to convert biowaste materials into commercial opportunities.

Electronic Supplementary Material

Download File(s)
12274_2022_4289_MOESM1_ESM.pdf (1.6 MB)

References

1

Chen, Y. F.; Li, Z. J.; Zhu, Y. B.; Sun, D. M.; Liu, X. E.; Xu, L.; Tang, Y. W. Atomic Fe dispersed on N-doped carbon hollow nanospheres for high-efficiency electrocatalytic oxygen reduction. Adv. Mater. 2019, 31, 1806312.

2
Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater., in press, DOI: 10.1016/j.apmate.2021.10.004.https://doi.org/10.1016/j.apmate.2021.10.004
3

Cui, L. T.; Cui, L. R.; Li, Z. J.; Zhang, J.; Wang, H. N.; Lu, S. F.; Xiang, Y. A copper single-atom catalyst towards efficient and durable oxygen reduction for fuel cells. J. Mater. Chem. A 2019, 7, 16690–16695.

4

Han, A.; Wang, X. J.; Tang, K.; Zhang, Z. D.; Ye, C. L.; Kong, K. J.; Hu, H. B.; Zheng, L. R.; Jiang, P.; Zhao, C. X. et al. An adjacent atomic platinum site enables single-atom iron with high oxygen reduction reaction performance. Angew. Chem., Int. Ed. 2021, 60, 19262–19271.

5

Xiong, Y.; Yang, Y.; Feng, X. R.; DiSalvo, F. J.; Abruna, H. D. A strategy for increasing the efficiency of the oxygen reduction reaction in Mn-doped cobalt ferrites. J. Am. Chem. Soc. 2019, 141, 4412–4421.

6
Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed., in press, DOI: 10.1002/anie.202115219.https://doi.org/10.1002/anie.202115219
7

Xu, Y. S.; Zhu, L. P.; Cui, X. X.; Zhao, M. Y.; Li, Y. L.; Chen, L. L.; Jiang, W. C.; Jiang, T.; Yang, S. G.; Wang, Y. Graphitizing N-doped mesoporous carbon nanospheres via facile single atom iron growth for highly efficient oxygen reduction reaction. Nano Res. 2020, 13, 752–758.

8

Guo, Y. C.; Liu, F.; Feng, L.; Wang, X. M.; Zhang, X.; Liang, J. S. Single Co atoms anchored on nitrogen-doped hierarchically ordered porous carbon for selective hydrogenation of quinolines and efficient oxygen reduction. Chem. Eng. J. 2022, 429, 132150.

9

Wang, Y. Y.; Kumar, A.; Ma, M.; Jia, Y.; Wang, Y.; Zhang, Y.; Zhang, G. X.; Sun, X. M.; Yan, Z. F. Hierarchical peony-like FeCo-NC with conductive network and highly active sites as efficient electrocatalyst for rechargeable Zn-air battery. Nano Res. 2020, 13, 1090–1099.

10

Fei, H. L.; Dong, J. C.; Feng, Y. X.; Allen, C. S.; Wan, C. Z.; Volosskiy, B.; Li, M. F.; Zhao, Z. P.; Wang, Y. L.; Sun, H. T. et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 2018, 1, 63–72.

11

Bhagi-Damodaran, A.; Michael, M. A.; Zhu, Q. H.; Reed, J.; Sandoval, B. A.; Mirts, E. N.; Chakraborty, S.; Moënne-Loccoz, P.; Zhang, Y.; Lu, Y. Why copper is preferred over iron for oxygen activation and reduction in haem-copper oxidases. Nat. Chem. 2017, 9, 257–263.

12

Wu, H. H.; Li, H. B.; Zhao, X. F.; Liu, Q. F.; Wang, J.; Xiao, J. P.; Xie, S. H.; Si, R.; Yang, F.; Miao, S. et al. Highly doped and exposed Cu(I)-N active sites within graphene towards efficient oxygen reduction for zinc-air batteries. Energy Environ. Sci. 2016, 9, 3736–3745.

13

Yuan, K.; Lützenkirchen-Hecht, D.; Li, L. B.; Shuai, L.; Li, Y. Z.; Cao, R.; Qiu, M.; Zhuang, X. D.; Leung, M. K. H.; Chen, Y. W. et al. Boosting oxygen reduction of single iron active sites via geometric and electronic engineering: Nitrogen and phosphorus dual coordination. J. Am. Chem. Soc. 2020, 142, 2404–2412.

14

Sun, H.; Wang, M. F.; Du, X. C.; Jiao, Y.; Liu, S. S.; Qian, T.; Yan, Y. C.; Liu, C.; Liao, M.; Zhang, Q. H. et al. Modulating the d-band center of boron doped single-atom sites to boost the oxygen reduction reaction. J. Mater. Chem. A 2019, 7, 20952–20957.

15

Jia, C.; Tan, X.; Zhao, Y.; Ren, W. H.; Li, Y. B.; Su, Z.; Smith, S. C.; Zhao, C. Sulfur-dopant-promoted electroreduction of CO2 over coordinatively unsaturated Ni-N2 moieties. Angew. Chem., Int. Ed. 2021, 60, 23342–23348.

16

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

17

Chen, D. T.; Zhang, L. H.; Du, J.; Wang, H. H.; Guo, J. Y.; Zhan, J. Y.; Li, F.; Yu, F. S. A tandem strategy for enhancing electrochemical CO2 reduction activity of single-atom Cu-S1N3 catalysts via integration with Cu nanoclusters. Angew. Chem., Int. Ed. 2021, 60, 24022–24027.

18

Chen, Z. Y.; Niu, H.; Ding, J.; Liu, H.; Chen, P. H.; Lu, Y. H.; Lu, Y. R.; Zuo, W. B.; Han, L.; Guo, Y. Z. et al. Unraveling the origin of sulfur-doped Fe-N-C single-atom catalyst for enhanced oxygen reduction activity: Effect of iron spin-state tuning. Angew. Chem., Int. Ed. 2021, 60, 25404–25410.

19

Zhang, G. X.; Jia, Y.; Zhang, C.; Xiong, X. Y.; Sun, K.; Chen, R. D.; Chen, W. X.; Kuang, Y.; Zheng, L. R.; Tang, H. L. et al. A general route via formamide condensation to prepare atomically dispersed metal-nitrogen-carbon electrocatalysts for energy technologies. Energy Environ. Sci. 2019, 12, 1317–1325.

20

Wang, M. F.; Qian, T.; Liu, S. S.; Zhou, J. Q.; Yan, C. L. Unprecedented activity of bifunctional electrocatalyst for high power density aqueous zinc-air batteries. ACS Appl. Mater. Interfaces 2017, 9, 21216–21224.

21

Zhang, J. T.; Zhang, M.; Zeng, Y.; Chen, J. S.; Qiu, L. X.; Zhou, H.; Sun, C. J.; Yu, Y.; Zhu, C. Z.; Zhu, Z. H. Single Fe atom on hierarchically porous S,N-codoped nanocarbon derived from porphyra enable boosted oxygen catalysis for rechargeable Zn-air batteries. Small 2019, 15, 1900307.

22

Wang, C. Y.; Chen, W. X.; Xia, K. L.; Xie, N. H.; Wang, H. M.; Zhang, Y. Y. Silk-derived 2D porous carbon nanosheets with atomically-dispersed Fe-Nx-C sites for highly efficient oxygen reaction catalysts. Small 2019, 15, 1804966.

23

Jiang, W. J.; Hu, W. L.; Zhang, Q. H.; Zhao, T. T.; Luo, H.; Zhang, X.; Gu, L.; Hu, J. S.; Wan, L. J. From biological enzyme to single atomic Fe-N-C electrocatalyst for efficient oxygen reduction. Chem. Commun. 2018, 54, 1307–1310.

24

Li, Z. Y.; Gao, Q. M.; Liang, X.; Zhang, H.; Xiao, H.; Xu, P.; Liu, Z. P. Low content of Fe3C anchored on Fe, N, S-codoped graphene-like carbon as bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Carbon 2019, 150, 93–100.

25

Li, T. F.; Li, M.; Zhang, M. R.; Li, X.; Liu, K. H.; Zhang, M. Y.; Liu, X. E.; Sun, D. M.; Xu, L.; Zhang, Y. W. et al. Immobilization of Fe3N nanoparticles within N-doped carbon nanosheet frameworks as a high-efficiency electrocatalyst for oxygen reduction reaction in Zn-air batteries. Carbon 2019, 153, 364–371.

26

Cheng, Y. J.; Sun, Q. D.; Huang, L. Y.; He, Q.; Zhang, H.; Wang, P. B.; Zhang, Y.; Shi, S. L.; Zhang, X. C.; Gan, T. et al. Protein powder derived nitrogen-doped carbon supported atomically dispersed iron sites for selective oxidation of ethylbenzene. Dalton Trans. 2021, 50, 11711–11715.

27

Devi, R.; Dhamodharan, R. Sustainable process for separating chitin and simultaneous synthesis of carbon nanodots from shellfish waste using 2% aqueous urea solution. ACS Sustainable Chem. Eng. 2018, 6, 11313–11325.

28

Qu, J. Y.; Geng, C.; Lv, S. Y.; Shao, G. H.; Ma, S. Y.; Wu, M. B. Nitrogen, oxygen and phosphorus decorated porous carbons derived from shrimp shells for supercapacitors. Electrochim. Acta 2015, 176, 982–988.

29

Gao, F.; Qu, J. Y.; Geng, C.; Shao, G. H.; Wu, M. B. Self-templating synthesis of nitrogen-decorated hierarchical porous carbon from shrimp shell for supercapacitors. J. Mater. Chem. A 2016, 4, 7445–7452.

30

Lu, S. Y.; Jin, M.; Zhang, Y.; Niu, Y. B.; Gao, J. C.; Li, C. M. Chemically exfoliating biomass into a graphene-like porous active carbon with rational pore structure, good conductivity, and large surface area for high-performance supercapacitors. Adv. Energy Mater. 2018, 8, 1702545.

31

Huang, L. Y.; Wu, K.; He, Q.; Xiong, C.; Gan, T.; He, X. H.; Ji, H. B. Quasi-continuous synthesis of iron single atom catalysts via a microcapsule pyrolysis strategy. AIChE J. 2021, 67, e17197.

32

Wang, Z.; Jin, X. Y.; Zhu, C.; Liu, Y. P.; Tan, H.; Ku, R. Q.; Zhang, Y. Q.; Zhou, L. J.; Liu, Z.; Hwang, S. J. et al. Atomically dispersed CO2-N6 and Fe-N4 costructures boost oxygen reduction reaction in both alkaline and acidic media. Adv. Mater. 2021, 33, 2104718.

33

He, Q.; Meng, Y. Y.; Zhang, H.; Zhang, Y.; Chen, H. Y.; Xiao, H. J.; He, X. H.; Wu, M. M.; Ji, H. B. Facile synthesis of impurity-free iron single atom catalysts for highly efficient oxygen reduction reaction and active-site identification. Catal. Sci. Technol. 2019, 9, 6556–6560.

34

Shang, H. S.; Zhou, X. Y.; Dong, J. C.; Li, A.; Zhao, X.; Liu, Q. H.; Lin, Y.; Pei, J. J.; Li, Z.; Jiang, Z. L. et al. Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nat. Commun. 2020, 11, 3049.

Nano Research
Pages 5995-6000
Cite this article:
Zhang H, Sun Q, He Q, et al. Single Cu atom dispersed on S,N-codoped nanocarbon derived from shrimp shells for highly-efficient oxygen reduction reaction. Nano Research, 2022, 15(7): 5995-6000. https://doi.org/10.1007/s12274-022-4289-3
Topics:

2018

Views

42

Crossref

40

Web of Science

43

Scopus

5

CSCD

Altmetrics

Received: 10 January 2022
Revised: 26 February 2022
Accepted: 03 March 2022
Published: 26 April 2022
© Tsinghua University Press 2022
Return