Journal Home > Volume 15 , Issue 7

Immunostimulatory therapies based on pattern recognition receptors (PRRs) have emerged as an effective approach in the fight against cancer, with the ability to recruit tumor-specific lymphocytes in a low-immunogenicity tumor environment. The agonist cyclic dinucleotides (CDNs) of the stimulator of interferon gene (STING) are a group of very promising anticancer molecules that increase tumor immunogenicity by activating innate immunity. However, the tumor immune efficacy of CDNs is limited by several factors, including relatively narrow cytokine production, inefficient delivery to STING, and rapid clearance. In addition, a single adjuvant molecule is unable to elicit a broad cytokine response and thus cannot further amplify the anticancer effect. To address this problem, two or more agonist molecules are often used together to synergistically enhance immune efficacy. In this work, we found that a combination of the STING agonist CDGSF and the Toll-like receptor 7/8 (TLR7/8) agonist 522 produced a broader cytokine response. Subsequently, we developed multicomponent nanovaccines (MCNVs) consisting of a PC7A polymer as a nanocarrier encapsulating the antigen OVA and adjuvant molecules. These MCNVs activate bone marrow-derived dendritic cells (BMDCs) to produce multiple proinflammatory factors that promote antigen cross-presentation to stimulate specific antitumor T-cell responses. In in vivo experiments, we observed that MCNVs triggered a strong T-cell response in tumor-infiltrating lymphocytes, resulting in significant tumor regression and, notably, a 100% survival rate in mice through 25 days without other partnering therapies. These data suggest that our nanovaccines have great potential to advance cancer immunotherapy with increased durability and potency.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

STING and TLR7/8 agonists-based nanovaccines for synergistic antitumor immune activation

Show Author's information Bo-Dou Zhang1Jun-Jun Wu1Wen-Hao Li1Hong-Guo Hu1Lang Zhao1Pei-Yang He1Yu-Fen Zhao1,3Yan-Mei Li1,2( )
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
Beijing Institute for Brain Disorders, Beijing 100069, China
Institute of Drug Discovery Technology, Ningbo University, Ningbo 315201, China

Abstract

Immunostimulatory therapies based on pattern recognition receptors (PRRs) have emerged as an effective approach in the fight against cancer, with the ability to recruit tumor-specific lymphocytes in a low-immunogenicity tumor environment. The agonist cyclic dinucleotides (CDNs) of the stimulator of interferon gene (STING) are a group of very promising anticancer molecules that increase tumor immunogenicity by activating innate immunity. However, the tumor immune efficacy of CDNs is limited by several factors, including relatively narrow cytokine production, inefficient delivery to STING, and rapid clearance. In addition, a single adjuvant molecule is unable to elicit a broad cytokine response and thus cannot further amplify the anticancer effect. To address this problem, two or more agonist molecules are often used together to synergistically enhance immune efficacy. In this work, we found that a combination of the STING agonist CDGSF and the Toll-like receptor 7/8 (TLR7/8) agonist 522 produced a broader cytokine response. Subsequently, we developed multicomponent nanovaccines (MCNVs) consisting of a PC7A polymer as a nanocarrier encapsulating the antigen OVA and adjuvant molecules. These MCNVs activate bone marrow-derived dendritic cells (BMDCs) to produce multiple proinflammatory factors that promote antigen cross-presentation to stimulate specific antitumor T-cell responses. In in vivo experiments, we observed that MCNVs triggered a strong T-cell response in tumor-infiltrating lymphocytes, resulting in significant tumor regression and, notably, a 100% survival rate in mice through 25 days without other partnering therapies. These data suggest that our nanovaccines have great potential to advance cancer immunotherapy with increased durability and potency.

Keywords: lymph node targeting, nanovaccines, stimulator of interferon gene (STING), Toll-like receptor 7/8, synergistic immune activation

References(83)

1

Mellman, I.; Coukos, G.; Dranoff, G. Cancer immunotherapy comes of age. Nature 2011, 480, 480–489.

2

Sanmamed, M. F.; Chen, L. P. A paradigm shift in cancer immunotherapy: From enhancement to normalization. Cell 2018, 175, 313–326.

3

Esfahani, K.; Roudaia, L.; Buhlaiga, N.; Del Rincon, S. V.; Papneja, N.; Miller, W. H. A review of cancer immunotherapy: From the past, to the present, to the future. Curr. Oncol. 2020, 27, 87–97.

4

Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 2012, 12, 252–264.

5

Ribas, A.; Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. Science 2018, 359, 1350–1355.

6

Hu, Z. T.; Ott, P. A.; Wu, C. J. Towards personalized, tumour-specific, therapeutic vaccines for cancer. Nat. Rev. Immunol. 2018, 18, 168–182.

7

Liu, Y. F.; Sun, Z. Y.; Chen, P. G.; Huang, Z. H.; Gao, Y.; Shi, L.; Zhao, Y. F.; Chen, Y. X.; Li, Y. M. Glycopeptide nanoconjugates based on multilayer self-assembly as an antitumor vaccine. Bioconjugate Chem. 2015, 26, 1439–1442.

8

Cai, H.; Huang, Z. H.; Shi, L.; Zou, P.; Zhao, Y. F.; Kunz, H.; Li, Y. M. Synthesis of Tn/T antigen MUC1 glycopeptide BSA conjugates and their evaluation as vaccines. Eur. J. Org. Chem. 2011, 2011, 3685–3689.

9

Sun, Z. Y.; Chen, P. G.; Liu, Y. F.; Shi, L.; Zhang, B. D.; Wu, J. J.; Zhao, Y. F.; Chen, Y. X.; Li, Y. M. Self-assembled nano-immunostimulant for synergistic immune activation. ChemBioChem 2017, 18, 1721–1729.

10

Irvine, D. J.; Hanson, M. C.; Rakhra, K.; Tokatlian, T. Synthetic nanoparticles for vaccines and immunotherapy. Chem. Rev. 2015, 115, 11109–11146.

11

Shao, Y.; Sun, Z. Y.; Wang, Y. J.; Zhang, B. D.; Liu, D. S.; Li, Y. M. Designable immune therapeutical vaccine system based on DNA supramolecular hydrogels. ACS Appl. Mater. Interfaces 2018, 10, 9310–9314.

12

Li, W. H.; Li, Y. M. Chemical strategies to boost cancer vaccines. Chem. Rev. 2020, 120, 11420–11478.

13

Sun, Z. Y.; Chen, P. G.; Liu, Y. F.; Zhang, B. D.; Wu, J. J.; Chen, Y. X.; Zhao, Y. F.; Li, Y. M. Multi-component self-assembled anti-tumor nano-vaccines based on MUC1 glycopeptides. Chem. Commun. 2016, 52, 7572–7575.

14

Beatty, G. L.; Gladney, W. L. Immune escape mechanisms as a guide for cancer immunotherapy. Clin. Cancer Res. 2015, 21, 687–692.

15

Khalil, D. N.; Smith, E. L.; Brentjens, R. J.; Wolchok, J. D. Erratum: The future of cancer treatment: Immunomodulation, CARs and combination immunotherapy. Nat. Rev. Clin. Oncol. 2016, 13, 394.

16

Gotwals, P.; Cameron, S.; Cipolletta, D.; Cremasco, V.; Crystal, A.; Hewes, B.; Mueller, B.; Quaratino, S.; Sabatos-Peyton, C.; Petruzzelli, L. et al. Prospects for combining targeted and conventional cancer therapy with immunotherapy. Nat. Rev. Cancer 2017, 17, 286–301.

17

Fridman, W. H.; Zitvogel, L.; Sautès-Fridman, C.; Kroemer, G. The immune contexture in cancer prognosis and treatment. Nat. Rev. Clin. Oncol. 2017, 14, 717–734.

18

Binnewies, M.; Roberts, E. W.; Kersten, K.; Chan, V.; Fearon, D. F.; Merad, M.; Coussens, L. M.; Gabrilovich, D. I.; Ostrand-Rosenberg, S.; Hedrick, C. C. et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 2018, 24, 541–550.

19

Mount, A.; Koernig, S.; Silva, A.; Drane, D.; Maraskovsky, E.; Morelli, A. B. Combination of adjuvants: The future of vaccine design. Expert Rev. Vaccines 2013, 12, 733–746.

20

Deng, L. F.; Liang, H.; Xu, M.; Yang, X. M.; Burnette, B.; Arina, A.; Li, X. D.; Mauceri, H.; Beckett, M.; Darga, T. et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 2014, 41, 843–852.

21

Woo, S. R.; Fuertes, M. B.; Corrales, L.; Spranger, S.; Furdyna, M. J.; Leung, M. Y. K.; Duggan, R.; Wang, Y.; Barber, G. N.; Fitzgerald, K. A. et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 2014, 41, 830–842.

22

Wu, J. J.; Zhao, L.; Hu, H. G.; Li, W. H.; Li, Y. M. Agonists and inhibitors of the STING pathway: Potential agents for immunotherapy. Med. Res. Rev. 2020, 40, 1117–1141.

23

Jiang, M. L.; Chen, P. X.; Wang, L.; Li, W.; Chen, B.; Liu, Y.; Wang, H.; Zhao, S.; Ye, L. Y.; He, Y. Y. et al. cGAS-STING, an important pathway in cancer immunotherapy. J. Hematol. Oncol. 2020, 13, 81.

24

Chen, Q.; Sun, L. J.; Chen, Z. J. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat. Immunol. 2016, 17, 1142–1149.

25

Gao, P.; Ascano, M.; Zillinger, T.; Wang, W. Y.; Dai, P. H.; Serganov, A. A.; Gaffney, B. L.; Shuman, S.; Jones, R. A.; Deng, L. et al. Structure-function analysis of STING activation by c[G(2',5')pA(3',5')p] and targeting by antiviral DMXAA. Cell 2013, 154, 748–762.

26

Corrales, L.; McWhirter, S. M.; Dubensky, T. W. Jr.; Gajewski, T. F. The host STING pathway at the interface of cancer and immunity. J. Clin. Invest. 2016, 126, 2404–2411.

27

Li, A. P.; Yi, M.; Qin, S.; Song, Y. P.; Chu, Q.; Wu, K. M. Activating cGAS-STING pathway for the optimal effect of cancer immunotherapy. J. Hematol. Oncol. 2019, 12, 35.

28

Fu, J.; Kanne, D. B.; Leong, M.; Glickman, L. H.; McWhirter, S. M.; Lemmens, E.; Mechette, K.; Leong, J. J.; Lauer, P.; Liu, W. Q. et al. STING agonist formulated cancer vaccines can cure established tumors resistant to PD-1 blockade. Sci. Transl. Med. 2015, 7, 283ra52.

29

Demaria, O.; De Gassart, A.; Coso, S.; Gestermann, N.; Di Domizio, J.; Flatz, L.; Gaide, O.; Michielin, O.; Hwu, P.; Petrova, T. V. et al. STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity. Proc. Natl. Acad. Sci. USA 2015, 112, 15408–15413.

30

Hanson, M. C.; Crespo, M. P.; Abraham, W.; Moynihan, K. D.; Szeto, G. L.; Chen, S. H.; Melo, M. B.; Mueller, S.; Irvine, D. J. Nanoparticulate STING agonists are potent lymph node-targeted vaccine adjuvants. J. Clin. Invest. 2015, 125, 2532–2546.

31

Corrales, L.; Glickman, L. H.; McWhirter, S. M.; Kanne, D. B.; Sivick, K. E.; Katibah, G. E.; Woo, S. R.; Lemmens, E.; Banda, T.; Leong, J. J. et al. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep. 2015, 11, 1018–1030.

32

Nakamura, T.; Miyabe, H.; Hyodo, M.; Sato, Y.; Hayakawa, Y.; Harashima, H. Liposomes loaded with a STING pathway ligand, cyclic di-GMP, enhance cancer immunotherapy against metastatic melanoma. J. Controlled Release 2015, 216, 149–157.

33

Curran, E.; Chen, X. F.; Corrales, L.; Kline, D. E.; Dubensky, T. W. Jr.; Duttagupta, P.; Kortylewski, M.; Kline, J. STING pathway activation stimulates potent immunity against acute myeloid leukemia. Cell Rep. 2016, 15, 2357–2366.

34

Ohkuri, T.; Kosaka, A.; Ishibashi, K.; Kumai, T.; Hirata, Y.; Ohara, K.; Nagato, T.; Oikawa, K.; Aoki, N.; Harabuchi, Y. et al. Intratumoral administration of cGAMP transiently accumulates potent macrophages for anti-tumor immunity at a mouse tumor site. Cancer Immunol. Immunother. 2017, 66, 705–716.

35

Koshy, S. T.; Cheung, A. S.; Gu, L.; Graveline, A. R.; Mooney, D. J. Liposomal delivery enhances immune activation by STING agonists for cancer immunotherapy. Adv. Biosyst. 2017, 1, 1600013.

36

Gulen, M. F.; Koch, U.; Haag, S. M.; Schuler, F.; Apetoh, L.; Villunger, A.; Radtke, F.; Ablasser, A. Signalling strength determines proapoptotic functions of STING. Nat. Commun. 2017, 8, 427.

37

Wu, J. J.; Li, W. H.; Chen, P. G.; Zhang, B. D.; Hu, H. G.; Li, Q. Q.; Zhao, L.; Chen, Y. X.; Zhao, Y. F.; Li, Y. M. Targeting STING with cyclic di-GMP greatly augmented immune responses of glycopeptide cancer vaccines. Chem. Commun. 2018, 54, 9655–9658.

38

An, M.; Yu, C. S.; Xi, J. C.; Reyes, J.; Mao, G. Z.; Wei, W. Z.; Liu, H. P. Induction of necrotic cell death and activation of STING in the tumor microenvironment via cationic silica nanoparticles leading to enhanced antitumor immunity. Nanoscale 2018, 10, 9311–9319.

39

Baird, J. R.; Bell, R. B.; Troesch, V.; Friedman, D.; Bambina, S.; Kramer, G.; Blair, T. C.; Medler, T.; Wu, Y. P.; Sun, Z. Y. et al. Evaluation of explant responses to STING ligands: Personalized immunosurgical therapy for head and neck squamous cell carcinoma. Cancer Res. 2018, 78, 6308–6319.

40

Leach, D. G.; Dharmaraj, N.; Piotrowski, S. L.; Lopez-Silva, T. L.; Lei, Y. L.; Sikora, A. G.; Young, S.; Hartgerink, J. D. STINGel: Controlled release of a cyclic dinucleotide for enhanced cancer immunotherapy. Biomaterials 2018, 163, 67–75.

41

Park, C. G.; Hartl, C. A.; Schmid, D.; Carmona, E. M.; Kim, H. J.; Goldberg, M. S. Extended release of perioperative immunotherapy prevents tumor recurrence and eliminates metastases. Sci. Transl. Med. 2018, 10, eaar1916.

42

Wilson, D. R.; Sen, R.; Sunshine, J. C.; Pardoll, D. M.; Green, J. J.; Kim, Y. J. Biodegradable STING agonist nanoparticles for enhanced cancer immunotherapy. Nanomed. :Nanotechnol., Biol. Med. 2018, 14, 237–246.

43

Junkins, R. D.; Gallovic, M. D.; Johnson, B. M.; Collier, M. A.; Watkins-Schulz, R.; Cheng, N.; David, C. N.; McGee, C. E.; Sempowski, G. D.; Shterev, I. et al. A robust microparticle platform for a STING-targeted adjuvant that enhances both humoral and cellular immunity during vaccination. J. Controlled Release 2018, 270, 1–13.

44

Collier, M. A.; Junkins, R. D.; Gallovic, M. D.; Johnson, B. M.; Johnson, M. M.; Macintyre, A. N.; Sempowski, G. D.; Bachelder, E. M.; Ting, J. P. Y.; Ainslie, K. M. Acetalated dextran microparticles for codelivery of STING and TLR7/8 agonists. Mol. Pharmaceutics 2018, 15, 4933–4946.

45

Shae, D.; Becker, K. W.; Christov, P.; Yun, D. S.; Lytton-Jean, A. K. R.; Sevimli, S.; Ascano, M.; Kelley, M.; Johnson, D. B.; Balko, J. M. et al. Endosomolytic polymersomes increase the activity of cyclic dinucleotide STING agonists to enhance cancer immunotherapy. Nat. Nanotechnol. 2019, 14, 269–278.

46

Hu, H. G.; Wu, J. J.; Zhang, B. D.; Li, W. H.; Li, Y. M. Pam3CSK4-CDGSF augments antitumor immunotherapy by synergistically activating TLR1/2 and STING. Bioconjugate Chem. 2020, 31, 2499–2503.

47

Li, S. X.; Luo, M.; Wang, Z. H.; Feng, Q.; Wilhelm, J.; Wang, X.; Li, W.; Wang, J.; Cholka, A.; Fu, Y. X. et al. Prolonged activation of innate immune pathways by a polyvalent STING agonist. Nat. Biomed. Eng. 2021, 5, 455–466.

48

Wu, J. J.; Zhao, L.; Han, B. B.; Hu, H. G.; Zhang, B. D.; Li, W. H.; Chen, Y. X.; Li, Y. M. A novel STING agonist for cancer immunotherapy and a SARS-CoV-2 vaccine adjuvant. Chem. Commun. 2021, 57, 504–507.

49
Staats, H. F.; Ennis, F. A. Jr. IL-1 is an effective adjuvant for mucosal and systemic immune responses when coadministered with protein immunogens. J. Immunol. 1999, 162, 6141–6147.
50

Huang, T.; Zhao, K. L.; Zhang, Z. Q.; Tang, C.; Zhang, X. Y.; Yue, B. S. DNA vaccination based on pyolysin co-immunized with IL-1β enhances host antibacterial immunity against Trueperella pyogenes infection. Vaccine 2016, 34, 3469–3477.

51

Metzger, D. W. Interleukin-12 as an adjuvant for induction of protective antibody responses. Cytokine 2010, 52, 102–107.

52

Stevceva, L.; Moniuszko, M.; Ferrari, M. G. Utilizing IL-12, IL-15 and IL-7 as mucosal vaccine adjuvants. Lett. Drug Des. Discov. 2006, 3, 586–592.

53

Diehl, S. A.; Schmidlin, H.; Nagasawa, M.; Blom, B.; Spits, H. IL-6 triggers IL-21 production by human CD4+ T cells to drive STAT3-dependent plasma cell differentiation in B cells. Immunol. Cell Biol. 2012, 90, 802–811.

54

Arulanandam, B. P.; O'Toole, M.; Metzger, D. W. Intranasal interleukin-12 is a powerful adjuvant for protective mucosal immunity. J. Infect. Dis. 1999, 180, 940–949.

55

Arulanandam, B. P.; Mittler, J. N.; Lee, W. T.; O'Toole, M.; Metzger, D. W. Neonatal administration of IL-12 enhances the protective efficacy of antiviral vaccines. J. Immunol. 2000, 164, 3698–3704.

56

Ichinohe, T.; Lee, H. K.; Ogura, Y.; Flavell, R.; Iwasaki, A. Inflammasome recognition of influenza virus is essential for adaptive immune responses. J. Exp. Med. 2009, 206, 79–87.

57

Kayamuro, H.; Yoshioka, Y.; Abe, Y.; Arita, S.; Katayama, K.; Nomura, T.; Yoshikawa, T.; Kubota-Koketsu, R.; Ikuta, K.; Okamoto, S. et al. Interleukin-1 family cytokines as mucosal vaccine adjuvants for induction of protective immunity against influenza virus. J. Virol. 2010, 84, 12703–12712.

58

Schulz, E. G.; Mariani, L.; Radbruch, A.; Höfer, T. Sequential polarization and imprinting of type 1 T helper lymphocytes by interferon-γ and interleukin-12. Immunity 2009, 30, 673–683.

59

Randolph, G. J.; Angeli, V.; Swartz, M. A. Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat. Rev. Immunol. 2005, 5, 617–628.

60

Bousso, P. T-cell activation by dendritic cells in the lymph node: Lessons from the movies. Nat. Rev. Immunol. 2008, 8, 675–684.

61

Smith, D. M.; Simon, J. K.; Baker, J. R. Jr. Applications of nanotechnology for immunology. Nat. Rev. Immunol. 2013, 13, 592–605.

62

Trevaskis, N. L.; Kaminskas, L. M.; Porter, C. J. H. From sewer to saviour—Targeting the lymphatic system to promote drug exposure and activity. Nat. Rev. Drug Discov. 2015, 14, 781–803.

63

Goldberg, M. S. Improving cancer immunotherapy through nanotechnology. Nat. Rev. Cancer 2019, 19, 587–602.

64

Zhou, K. J.; Wang, Y. G.; Huang, X. N.; Luby-Phelps, K.; Sumer, B. D.; Gao, J. M. Tunable, ultrasensitive pH-responsive nanoparticles targeting specific endocytic organelles in living cells. Angew. Chem., Int. Ed. 2011, 50, 6109–6114.

65

Luo, M.; Wang, H.; Wang, Z. H.; Cai, H. C.; Lu, Z. G.; Li, Y.; Du, M. J.; Huang, G.; Wang, C. S.; Chen, X. et al. A STING-activating nanovaccine for cancer immunotherapy. Nat. Nanotechnol. 2017, 12, 648–654.

66

Aroh, C.; Wang, Z. H.; Dobbs, N.; Luo, M.; Chen, Z. J.; Gao, J. M.; Yan, N. Innate immune activation by cGMP-AMP nanoparticles leads to potent and long-acting antiretroviral response against HIV-1. J. Immunol. 2017, 199, 3840–3848.

67

Luo, M.; Liu, Z. D.; Zhang, X. Y.; Han, C. H.; Samandi, L. Z.; Dong, C. B.; Sumer, B. D.; Lea, J.; Fu, Y. X.; Gao, J. M. Synergistic STING activation by PC7A nanovaccine and ionizing radiation improves cancer immunotherapy. J. Controlled Release 2019, 300, 154–160.

68

Feng, Q.; Wilhelm, J.; Gao, J. M. Transistor-like ultra-pH-sensitive polymeric nanoparticles. Acc. Chem. Res. 2019, 52, 1485–1495.

69

Wilhelm, J.; Wang, Z. H.; Sumer, B. D.; Gao, J. M. Exploiting nanoscale cooperativity for precision medicine. Adv. Drug Deliv. Rev. 2020, 158, 63–72.

70

Li, S. X.; Bennett, Z. T.; Sumer, B. D.; Gao, J. M. Nano-immune-engineering approaches to advance cancer immunotherapy: Lessons from ultra-pH-sensitive nanoparticles. Acc. Chem. Res. 2020, 53, 2546–2557.

71

Wilhelm, J.; Quinoñes-Pérez, M.; Wang, J.; Wang, X.; Basava, V. S.; Gao, J. M. Antigen folding improves loading efficiency and antitumor efficacy of PC7A nanoparticle vaccine. J. Controlled Release 2021, 329, 353–360.

72

Kim, H.; Niu, L.; Larson, P.; Kucaba, T. A.; Murphy, K. A.; James, B. R.; Ferguson, D. M.; Griffith, T. S.; Panyam, J. Polymeric nanoparticles encapsulating novel TLR7/8 agonists as immunostimulatory adjuvants for enhanced cancer immunotherapy. Biomaterials. 2018, 164, 38–53.

73

Schiaffo, C. E.; Shi, C.; Xiong, Z. M.; Olin, M.; Ohlfest, J. R.; Aldrich, C. C.; Ferguson, D. M. Structure-activity relationship analysis of imidazoquinolines with Toll-like receptors 7 and 8 selectivity and enhanced cytokine induction. J. Med. Chem. 2014, 57, 339–347.

74

Schmitz, N.; Kurrer, M.; Bachmann, M. F.; Kopf, M. Interleukin-1 is responsible for acute lung immunopathology but increases survival of respiratory influenza virus infection. J. Virol. 2005, 79, 6441–6448.

75

Guglani, L.; Khader, S. A. Th17 cytokines in mucosal immunity and inflammation. Curr. Opin. HIV AIDS 2010, 5, 120–127.

76

Warger, T.; Osterloh, P.; Rechtsteiner, G.; Fassbender, M.; Heib, V.; Schmid, B.; Schmitt, E.; Schild, H.; Radsak, M. P. Synergistic activation of dendritic cells by combined Toll-like receptor ligation induces superior CTL responses in vivo. Blood. 2006, 108, 544–550.

77

Trinchieri, G.; Sher, A. Cooperation of Toll-like receptor signals in innate immune defence. Nat. Rev. Immunol. 2007, 7, 179–190.

78

Hu, Y.; Cong, X. Y.; Chen, L.; Qi, J.; Wu, X. J.; Zhou, M. M.; Yoo, D.; Li, F.; Sun, W. B.; Wu, J. Q. et al. Synergy of TLR3 and 7 ligands significantly enhances function of DCs to present inactivated PRRSV antigen through TRIF/MyD88-NF-κB signaling pathway. Sci. Rep. 2016, 6, 23977.

79

Bocanegra Gondan, A. I.; Ruiz-de-Angulo, A.; Zabaleta, A.; Gómez Blanco, N.; Cobaleda-Siles, B. M.; García-Granda, M. J.; Padro, D.; Llop, J.; Arnaiz, B.; Gato, M. et al. Effective cancer immunotherapy in mice by polyIC-imiquimod complexes and engineered magnetic nanoparticles. Biomaterials 2018, 170, 95–115.

80

Matsumoto, M.; Seya, T. TLR3: Interferon induction by double-stranded RNA including poly(I:C). Adv. Drug Deliv. Rev. 2008, 60, 805–812.

81

Krieg, A. M. Therapeutic potential of Toll-like receptor 9 activation. Nat. Rev. Drug Discov. 2006, 5, 471–484.

82

Dellacherie, M. O.; Seo, B. R.; Mooney, D. J. Macroscale biomaterials strategies for local immunomodulation. Nat. Rev. Mater. 2019, 4, 379–397.

83

Milling, L.; Zhang, Y.; Irvine, D. J. Delivering safer immunotherapies for cancer. Adv. Drug Deliv. Rev. 2017, 114, 79–101.

File
12274_2022_4282_MOESM1_ESM.pdf (1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 27 December 2021
Revised: 28 February 2022
Accepted: 01 March 2022
Published: 18 April 2022
Issue date: July 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Key R&D Program of China (Nos. 2019YFA0904200 and 2018YFA0507600), Tsinghua University Spring Breeze Fund (No. 2020Z99CFY042), and the National Natural Science Foundation of China (No. 92053108).

Return