Journal Home > Volume 15 , Issue 7

In comparison to monolayer (1L), multilayer (ML) two-dimensional (2D) semiconducting transition metal dichalcogenides (TMDs) exhibit more application potential for electronic and optoelectronic devices due to their improved current carrying capability, higher mobility, and broader spectral response. However, the investigation of devices based on wafer-scale ML-TMDs is still restricted by the synthesis of uniform and high-quality ML films. In this work, we propose a strategy of stacking MoS2 monolayers via a vacuum transfer method, by which one could obtain wafer-scale high-quality MoS2 films with the desired number of layers at will. The optical characteristics of these stacked ML-MoS2 films (> 2L) indicate a weak interlayer coupling. The stacked ML-MoS2 phototransistors show improved optoelectrical performances and a broader spectral response (approximately 300–1,000 nm) than that of 1L-MoS2. Additionally, the dual-gate ML-MoS2 transistors enable enhanced electrostatic control over the stacked ML-MoS2 channel, and the 3L and 4L thicknesses exhibit the optimal device performances according to the turning point of the current on/off ratio and the subthreshold swing.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Stacking monolayers at will: A scalable device optimization strategy for two-dimensional semiconductors

Show Author's information Xiaojiao Guo1Honglei Chen1Jihong Bian1Fuyou Liao2Jingyi Ma1Simeng Zhang1Xinzhi Zhang3Junqiang Zhu4Chen Luo5Zijian Zhang5Lingyi Zong1Yin Xia1Chuming Sheng1Zihan Xu6Saifei Gou1Xinyu Wang1Peng Gong7Liwei Liu1Xixi Jiang1Zhenghua An3Chunxiao Cong4Zhijun Qiu4Xing Wu5Peng Zhou1Xinyu Chen1( )Ling Tong1( )Wenzhong Bao1( )
State Key Laboratory of ASIC and System, School of Microelectronics, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200433, China
The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
Department of Physics, State Key Laboratory of Surface Physics, Institute of Nanoelectronic Devices and Quantum Computing and Key Laboratory of Micro, Fudan University, Shanghai 200433, China
State Key Laboratory of ASIC and System, School of Information Science and Engineering, Fudan University, Shanghai 200433, China
Shanghai Key Laboratory of Multidimensional Information Processing Department of Electronic Engineering, East China Normal University, Shanghai 200241, China
Shenzhen Six Carbon Technology, Shenzhen 518055, China
Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China

Abstract

In comparison to monolayer (1L), multilayer (ML) two-dimensional (2D) semiconducting transition metal dichalcogenides (TMDs) exhibit more application potential for electronic and optoelectronic devices due to their improved current carrying capability, higher mobility, and broader spectral response. However, the investigation of devices based on wafer-scale ML-TMDs is still restricted by the synthesis of uniform and high-quality ML films. In this work, we propose a strategy of stacking MoS2 monolayers via a vacuum transfer method, by which one could obtain wafer-scale high-quality MoS2 films with the desired number of layers at will. The optical characteristics of these stacked ML-MoS2 films (> 2L) indicate a weak interlayer coupling. The stacked ML-MoS2 phototransistors show improved optoelectrical performances and a broader spectral response (approximately 300–1,000 nm) than that of 1L-MoS2. Additionally, the dual-gate ML-MoS2 transistors enable enhanced electrostatic control over the stacked ML-MoS2 channel, and the 3L and 4L thicknesses exhibit the optimal device performances according to the turning point of the current on/off ratio and the subthreshold swing.

Keywords: field-effect transistors, two-dimensional semiconductor, interlayer coupling, chemical vapor deposition (CVD) synthesis, vacuum transfer method, dual-gate transistor

References(54)

1

Long, M. S.; Wang, P.; Fang, H. H.; Hu, W. D. Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater. 2018, 29, 1803807.

2

Mak, K. F.; Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 2016, 10, 216–226.

3

Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033.

4

Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439.

5

Kwon, J.; Lee, J. Y.; Yu, Y. J.; Lee, C. H.; Cui, X.; Hone, J.; Lee, G. H. Thickness-dependent Schottky barrier height of MoS2 field-effect transistors. Nanoscale 2017, 9, 6151–6157.

6

Lee, G. H.; Yu, Y. J.; Cui, X.; Petrone, N.; Lee, C. H.; Choi, M. S.; Lee, D. Y.; Lee, C.; Yoo, W. J.; Watanabe, K. et al. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano 2013, 7, 7931–7936.

7

Shin, G. H.; Park, C.; Lee, K. J.; Jin, H. J.; Choi, S. Y. Ultrasensitive phototransistor based on WSe2–MoS2 van der Waals heterojunction. Nano Lett. 2020, 20, 5741–5748.

8

Wang, B.; Yang, S. X.; Wang, C.; Wu, M. H.; Huang, L.; Liu, Q.; Jiang, C. B. Enhanced current rectification and self-powered photoresponse in multilayer p-MoTe2/n-MoS2 van der Waals heterojunctions. Nanoscale 2017, 9, 10733–10740.

9

Li, F.; Xu, B. Y.; Yang, W.; Qi, Z. Y.; Ma, C.; Wang, Y. J.; Zhang, X. H.; Luo, Z. R.; Liang, D. L.; Li, D. et al. High-performance optoelectronic devices based on van der Waals vertical MoS2/MoSe2 heterostructures. Nano Res. 2020, 13, 1053–1059.

10

Huo, N. J.; Konstantatos, G. Ultrasensitive all-2D MoS2 phototransistors enabled by an out-of-plane MoS2 PN homojunction. Nat. Commun. 2017, 8, 572.

11

Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

12

Ottaviano, L.; Palleschi, S.; Perrozzi, F.; D’Olimpio, G.; Priante, F.; Donarelli, M.; Benassi, P.; Nardone, M.; Gonchigsuren, M.; Gombosuren, M. et al. Mechanical exfoliation and layer number identification of MoS2 revisited. 2D Mater. 2017, 4, 045013.

13

Ling, Z. P.; Yang, R.; Chai, J. W.; Wang, S. J.; Leong, W. S.; Tong, Y.; Lei, D.; Zhou, Q.; Gong, X.; Chi, D. Z. et al. Large-scale two-dimensional MoS2 photodetectors by magnetron sputtering. Opt. Express 2015, 23, 13580–13586.

14

Tan, L. K.; Liu, B.; Teng, J. H.; Guo, S. F.; Low, H. Y.; Loh, K. P. Atomic layer deposition of a MoS2 film. Nanoscale 2014, 6, 10584–10588.

15

Liu, H.; Chen, L.; Zhu, H.; Sun, Q. Q.; Ding, S. J.; Zhou, P.; Zhang, D. W. Atomic layer deposited 2D MoS2 atomic crystals: From material to circuit. Nano Res. 2020, 13, 1644–1650.

16

Jiao, L.; Jie, W. J.; Yang, Z.; Wang, Y. H.; Chen, Z. W.; Zhang, X.; Tang, W. H.; Wu, Z. P.; Hao, J. H. Layer-dependent photoresponse of 2D MoS2 films prepared by pulsed laser deposition. J. Mater.Chem. C 2019, 7, 2522–2529.

17

Choudhary, N.; Park, J.; Hwang, J. Y.; Choi, W. Growth of large-scale and thickness-modulated MoS2 nanosheets. ACS Appl. Mater. Interfaces 2014, 6, 21215–21222.

18

Kim, T.; Mun, J.; Park, H.; Joung, D.; Diware, M.; Won, C.; Park, J.; Jeong, S. H.; Kang, S. W. Wafer-scale production of highly uniform two-dimensional MoS2 by metal–organic chemical vapor deposition. Nanotechnology 2017, 28, 18LT01.

19

Zheng, J. Y.; Yan, X. X.; Lu, Z. X.; Qiu, H. L.; Xu, G. C.; Zhou, X.; Wang, P.; Pan, X. Q.; Liu, K. H.; Jiao, L. Y. High-mobility multilayered MoS2 flakes with low contact resistance grown by chemical vapor deposition. Adv. Mater. 2017, 29, 1604540.

20

Xu, H.; Zhang, H. M.; Guo, Z. X.; Shan, Y. W.; Wu, S. W.; Wang, J. N.; Hu, W. D.; Liu, H. Q.; Sun, Z. Z.; Luo, C. et al. High-performance wafer-scale MoS2 transistors toward practical application. Small 2018, 14, e1803465.

21

Yang, S. Y.; Shim, G. W.; Seo, S. B.; Choi, S. Y. Effective shape-controlled growth of monolayer MoS2 flakes by powder-based chemical vapor deposition. Nano Res. 2017, 10, 255–262.

22

Shang, S. L.; Lindwall, G.; Wang, Y.; Redwing, J. M.; Anderson, T.; Liu, Z. K. Lateral versus vertical growth of two-dimensional layered transition-metal dichalcogenides: Thermodynamic insight into MoS2. Nano Lett. 2016, 16, 5742–5750.

23

Zhu, D. C.; Shu, H. B.; Jiang, F.; Lv, D. H.; Asokan, V.; Omar, O.; Yuan, J.; Zhang, Z.; Jin, C. H. Capture the growth kinetics of CVD growth of two-dimensional MoS2. npj 2D Mater. Appl. 2017, 1, 8.

24

Gurarslan, A.; Yu, Y. F.; Su, L. Q.; Yu, Y. L.; Suarez, F.; Yao, S. S.; Zhu, Y.; Ozturk, M.; Zhang, Y.; Cao, L. Y. Surface-energy-assisted perfect transfer of centimeter-scale monolayer and few-layer MoS2 films onto arbitrary substrates. ACS Nano 2014, 8, 11522–11528.

25

Kang, K.; Lee, K. H.; Han, Y. M.; Gao, H.; Xie, S. E.; Muller, D. A.; Park, J. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature 2017, 550, 229–233.

26

Zhang, S. M.; Xu, H.; Liao, F. Y.; Sun, Y. Y.; Ba, K.; Sun, Z. Z.; Qiu, Z. J.; Xu, Z. H.; Zhu, H.; Chen, L. et al. Wafer-scale transferred multilayer MoS2 for high performance field effect transistors. Nanotechnology 2019, 30, 174002.

27

Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 2012, 22, 1385–1390.

28

Liu, K. H.; Zhang, L. M.; Cao, T.; Jin, C. H.; Qiu, D. N.; Zhou, Q.; Zettl, A.; Yang, P. D.; Louie, S. G.; Wang, F. Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nat. Commun. 2014, 5, 4966.

29

Gao, Q. G.; Zhang, Z. F.; Xu, X. L.; Song, J.; Li, X. F.; Wu, Y. Q. Scalable high performance radio frequency electronics based on large domain bilayer MoS2. Nat. Commun. 2018, 9, 4778.

30

Di Bartolomeo, A.; Grillo, A.; Urban, F.; Iemmo, L.; Giubileo, F.; Luongo, G.; Amato, G.; Croin, L.; Sun, L. F.; Liang, S. J. et al. Asymmetric Schottky contacts in bilayer MoS2 field effect transistors. Adv. Funct. Mater. 2018, 28, 1800657.

31

Su, W. T.; Kumar, N.; Spencer, S. J.; Dai, N.; Roy, D. Transforming bilayer MoS2 into single-layer with strong photoluminescence using UV-ozone oxidation. Nano Res. 2015, 8, 3878–3886.

32

Molina-Sánchez, A.; Wirtz, L. Phonons in single-layer and few-layer MoS2 and WS2. Phys. Rev. B 2011, 84, 155413.

33

Wang, H.; Yu, L. L.; Lee, Y. H.; Shi, Y. M.; Hsu, A.; Chin, M. L.; Li, L. J.; Dubey, M.; Kong, J.; Palacios, T. Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 2012, 12, 4674–4680.

34

Castellanos-Gomez, A.; van der Zant, H. S. J.; Steele, G. A. Folded MoS2 layers with reduced interlayer coupling. Nano Res. 2015, 7, 572–578.

35

Oh, H. M.; Kim, H.; Kim, H.; Jeong, M. S. Fabrication of stacked MoS2 bilayer with weak interlayer coupling by reduced graphene oxide spacer. Sci. Rep. 2019, 9, 5900.

36

Hui, Y. Y.; Liu, X. F.; Jie, W. J.; Chan, N. Y.; Hao, J. H.; Hsu, Y. T.; Li, L. J.; Guo, W. L.; Lau, S. P. Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet. ACS Nano 2013, 7, 7126–7131.

37

Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.

38

Zhou, W. D.; Yuan, C. L.; Hong, A. J.; Luo, X. F.; Lei, W. Laminated bilayer MoS2 with weak interlayer coupling. Nanoscale 2018, 10, 1145–1152.

39

Kaushik, N.; Mackenzie, D. M. A.; Thakar, K.; Goyal, N.; Mukherjee, B.; Boggild, P.; Petersen, D. H.; Lodha, S. Reversible hysteresis inversion in MoS2 field effect transistors. npj 2D Mater. Appl. 2017, 1, 34.

40

Min, S. W.; Lee, H. S.; Choi, H. J.; Park, M. K.; Nam, T.; Kim, H.; Ryu, S.; Im, S. Nanosheet thickness-modulated MoS2 dielectric property evidenced by field-effect transistor performance. Nanoscale 2013, 5, 548–551.

41

Nagashio, K.; Nishimura, T.; Kita, K.; Toriumi, A. Mobility variations in mono- and multi-layer graphene films. Appl. Phys. Express 2009, 2, 025003.

42

Leong, W. S.; Li, Y. D.; Luo, X.; Nai, C. T.; Quek, S. Y.; Thong, J. T. L. Tuning the threshold voltage of MoS2 field-effect transistors via surface treatment. Nanoscale 2015, 7, 10823–10831.

43

Smithe, K. K. H.; Suryavanshi, S. V.; Rojo, M. M.; Tedjarati, A. D.; Pop, E. Low variability in synthetic monolayer MoS2 devices. ACS Nano 2017, 11, 8456–8463.

44

Li, S. L.; Wakabayashi, K.; Xu, Y.; Nakaharai, S.; Komatsu, K.; Li, W. W.; Lin, Y. F.; Aparecido-Ferreira, A.; Tsukagoshi, K. Thickness-dependent interfacial Coulomb scattering in atomically thin field-effect transistors. Nano Lett. 2013, 13, 3546–3552.

45

Kim, J. H.; Kim, T. H.; Lee, H.; Park, Y. R.; Choi, W.; Lee, C. J. Thickness-dependent electron mobility of single and few-layer MoS2 thin-film transistors. AIP Adv. 2016, 6, 065106.

46

Chang, H. Y.; Zhu, W. N.; Akinwande, D. On the mobility and contact resistance evaluation for transistors based on MoS2 or two-dimensional semiconducting atomic crystals. Appl. Phys. Lett. 2014, 104, 113504.

47

Zhang, W. J.; Huang, J. K.; Chen, C. H.; Chang, Y. H.; Cheng, Y. J.; Li, L. J. High-gain phototransistors based on a CVD MoS2 monolayer. Adv. Mater. 2013, 25, 3456–3461.

48

Huang, Y.; Deng, H. X.; Xu, K.; Wang, Z. X.; Wang, Q. S.; Wang, F. M.; Wang, F.; Zhan, X. Y.; Li, S. S.; Luo, J. W. et al. Highly sensitive and fast phototransistor based on large size CVD-grown SnS2 nanosheets. Nanoscale 2015, 7, 14093–14099.

49

Liao, F. Y.; Deng, J. N.; Chen, X. Y.; Wang, Y.; Zhang, X. Z.; Liu, J.; Zhu, H.; Chen, L.; Sun, Q. Q.; Hu, W. D. et al. A dual-gate MoS2 photodetector based on interface coupling effect. Small 2020, 16, 1904369.

50

Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497–501.

51

Yin, Z. Y.; Li, H.; Li, H.; Jiang, L.; Shi, Y. M.; Sun, Y. H.; Lu, G.; Zhang, Q.; Chen, X. D.; Zhang, H. Single-layer MoS2 phototransistors. ACS Nano 2012, 6, 78–80.

52

Di Bartolomeo, A.; Genovese, L.; Foller, T.; Giubileo, F.; Luongo, G.; Croin, L.; Liang, S. J.; Ang, L. K.; Schleberger, M. Electrical transport and persistent photoconductivity in monolayer MoS2 phototransistors. Nanotechnology 2017, 28, 214002.

53

Kozbial, A.; Gong, X.; Liu, H. T.; Li, L. Understanding the intrinsic water wettability of molybdenum disulfide (MoS2). Langmuir 2015, 31, 8429–8435.

54

Wang, J. L.; Li, S. L.; Zou, X. M.; Ho, J.; Liao, L.; Xiao, X. H.; Jiang, C. Z.; Hu, W. D.; Wang, J. L.; Li, J. C. Integration of high-k oxide on MoS2 by using ozone pretreatment for high-performance MoS2 top-gated transistor with thickness-dependent carrier scattering investigation. Small 2015, 11, 5932–5938.

File
12274_2022_4280_MOESM1_ESM.pdf (3.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 24 November 2021
Revised: 18 February 2022
Accepted: 28 February 2022
Published: 05 May 2022
Issue date: July 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Nos. 2021YFA1200500 and 2018YFA0703700), in part by the National Natural Science Foundation of China (No. 61774042), the Innovation Program of Shanghai Municipal Education Commission (No. 2021-01-07-00-07-E00077), and Shanghai Municipal Science and Technology Commission (Nos. 21DZ1100900 and 20ZR1403200).

Return